JPS60137828A - Production of colloidal antimony oxide - Google Patents

Production of colloidal antimony oxide

Info

Publication number
JPS60137828A
JPS60137828A JP24290683A JP24290683A JPS60137828A JP S60137828 A JPS60137828 A JP S60137828A JP 24290683 A JP24290683 A JP 24290683A JP 24290683 A JP24290683 A JP 24290683A JP S60137828 A JPS60137828 A JP S60137828A
Authority
JP
Japan
Prior art keywords
antimony
concentration
antimony oxide
hydrogen peroxide
antimony trioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24290683A
Other languages
Japanese (ja)
Other versions
JPH0429610B2 (en
Inventor
Toshiyuki Kobashi
小橋 利行
Hideo Naka
秀雄 中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Exlan Co Ltd
Original Assignee
Japan Exlan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Exlan Co Ltd filed Critical Japan Exlan Co Ltd
Priority to JP24290683A priority Critical patent/JPS60137828A/en
Priority to US06/620,046 priority patent/US4533538A/en
Publication of JPS60137828A publication Critical patent/JPS60137828A/en
Publication of JPH0429610B2 publication Critical patent/JPH0429610B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To produce colloidal antimony oxide having improved stability and fine particle diameter in a high concentration, by reacting antimony trioxide with hydrogen peroxide in a specific proportion in the presence of an inorganic alkaline substance in an aqueous medium. CONSTITUTION:An inorganic alkaline substance, e.g. LiOH or NaOH, in 1.5- 30mol% concentration based on antimony trioxide is added to a dispersion (in about 5-40wt% concentration) of the antimony trioxide (preferably having about <=10mu particle diameter). Hydrogen peroxide in a molar amount of 1.25- 1.8 times of that of the antimony trioxide is added to the resultant mixture while slurrying the mixture with stirring, and the reaction is carried out at about >=30 deg.C to form a colloidal sol (in about 6-45wt% concentration) of antimony oxide. The above-mentioned colloidal sol can be concentrated without requiring the addition of a stabilizer to give easily a sol in a concentration as high as >=45wt% solid.

Description

【発明の詳細な説明】 本発明はコロイド状酸化アンチモンの製造方法に関する
ものであり、更に詳しくは安定性に1憂れ、1〜かも微
細粒子径で且つ高濃度のコロイド状酸化アンチモンを工
業的有利に製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing colloidal antimony oxide, and more specifically, due to concerns about stability, it is difficult to produce colloidal antimony oxide industrially with a particle size of 1 to 100 microns and a high concentration. Advantageously, it relates to a method of manufacturing.

従来より酸化アンチモンは、織物、繊維、フ゛ラスチッ
ク等を難燃化させるために、有機性塩化物、臭化物、そ
の他のハロゲン含有物質と共に用いられて来た。ところ
が、かかる従来のj′フ化アンチモンはいずれも顔旧程
度の粒径の大きな粒子であるため、製品の風合、光沢、
透明性、物性等を劣化きせる等種々のトラブルを惹起し
7ている。
Antimony oxide has traditionally been used in conjunction with organic chlorides, bromides, and other halogen-containing substances to make textiles, fibers, plastics, etc. flame retardant. However, since all such conventional antimony fluoride particles have a particle size as large as that of a traditional Japanese fluoride, the texture, gloss, and
This causes various troubles such as deterioration of transparency, physical properties, etc.

そこで、近年かかるトラブルを解消するために微粒子状
の酸化アンチモンを得る方法力1社究され、その代表例
として特公昭57−11848号において、5b203
 をKOH及びH2O2とほぼl:2.l:2のモル比
で反応させてアンチモン酸カリウムを形成させた後、脱
イオンを行なうことにより2〜100mμ のオ立子径
を自する5bzosのコロイドゾルを形成させる技(d
:i手段が開示されている。ところが、この方法におい
ては多量のKOHを使用するため生成物中に不純物が残
存することとなり、該不純物を除去するたd)に脱イオ
ン工程を必要としている。また、実際にはこの方法で得
た5b205は低濃度である(高濃度にすると粒子径が
大きくなる)ため、商業的1dl+ f直を有するのに
充分な高濃度品を得るためには更に蒸発工程を必要とし
ている〇一方、例えば特開昭52−128997号に示
されるように、アルカリ物質を添加しない技i号ス手段
においては不純物除去操作の問題がない反面、反応速度
が非常に遅いために沸騰状態に近い高温度条件が採用さ
れており、突沸等の危険を伴なうと共に一旦反応が開始
すると反応熱のため急激に発熱してγ品度コントロール
が田螺であるなどスケールアップに対して多大の制約を
伴なうと共に設備的、エネルギー的にも高価なものにな
らざるを得ない0 さらに、得られた酸化アンチモンは前述の種々の用途に
使用されるが、中でも種々のラテックスと混合する場合
が多く、かかるラテックスとの混合時にラテックス中の
無機塩類等によりてコロイドが凝集する、いわゆる化学
的安定性に欠けるという問題があった0 ここにおいて、本発明者等は上記欠陥を克服し商業的価
値を有するコロイド状酸化アンチモンの工業的製造方法
について精緻な検討を行なった結果、従来は三酸化アン
チモン1モルに対して使用する過酸化水素の量は、三酸
化アンチモンが五酸化アンチモンに酸化されるのに必要
な化学量論値でるる2モル以上であったのに対し、かか
る化学量論値よりもはるかに少ない量の過酸化水素を使
用し、且つ反応系に211(磯舟アルカリ物質を添加す
ることによって従来技術に付随する欠陥が悉く解消され
、安定性に優れ、しかも微細粒子径で且つ高濃度のコロ
イド状酸化アンチモンを工業的有利に製造し得る。a 
< −<き事実を見出し、本発明に到達した。
Therefore, in recent years, one company has researched a method for obtaining fine particulate antimony oxide in order to solve this problem, and as a representative example, 5b203
with KOH and H2O2 in approximately 1:2. A technique (d
:i means are disclosed. However, since this method uses a large amount of KOH, impurities remain in the product, and d) requires a deionization step to remove the impurities. In addition, in reality, the 5b205 obtained by this method has a low concentration (the higher the concentration, the larger the particle size). On the other hand, as shown in JP-A No. 52-128997, for example, in the technique No. 1 without adding an alkali substance, there is no problem with impurity removal operation, but the reaction rate is very slow. Therefore, high temperature conditions close to boiling conditions are adopted, which poses risks such as bumping, and once the reaction starts, it rapidly generates heat due to the reaction heat, making γ quality control difficult and making it difficult to scale up. In addition, the antimony oxide obtained is used for the various purposes mentioned above, including various latexes. In many cases, the colloids are mixed with such latexes, and when mixed with such latexes, the colloids aggregate due to the inorganic salts in the latexes, resulting in a lack of chemical stability. Here, the present inventors have solved the above defects. As a result of detailed studies on the industrial production method of colloidal antimony oxide, which overcomes the problem and has commercial value, we found that the amount of hydrogen peroxide used per mole of antimony trioxide was While the stoichiometric value required for oxidation to antimony was more than 2 moles, we used much less hydrogen peroxide than this stoichiometric value and added 211 (211) moles to the reaction system. By adding the Isofune alkaline substance, all the defects associated with the prior art are eliminated, and colloidal antimony oxide with excellent stability, fine particle size, and high concentration can be produced industrially and advantageously.a
We discovered the fact that <-< and arrived at the present invention.

即ち、本発明の主要な目的は、不純物が少なく化学的、
機械的に安定で微細粒子径且つ高濃度の酸化アンチモン
のコロイドm r&の工業的有−利な製造方法を提供す
ることにある。本発明の目的は、省エネルギー、工程の
簡便性、反応操作の容易性等経済的、工業的に優れたコ
ロイド状酸化アンチモンの製造方法を提供することにあ
り、本発明の他の目的は、以下に記述する本発明の詳細
な説明より明らかとなろう。
That is, the main object of the present invention is to provide chemically
The object of the present invention is to provide an industrially advantageous method for producing mechanically stable antimony oxide colloid mr& having a fine particle size and a high concentration. The purpose of the present invention is to provide a method for producing colloidal antimony oxide that is economically and industrially superior in terms of energy saving, simplicity of process, and ease of reaction operation.Other purposes of the present invention are as follows. The invention will become clearer from the detailed description of the invention set forth in .

かくの如き本発明の目的は、三酸化アンチモンと過酸化
水素を反応させて酸化アンチモンのコロイドゾルを形成
させる際に、三酸化アンチモンと過酸化水素のモル比を
1:1.25〜1.8と(−1且つ反応系に無機糸アル
カリ物質を添加することにより、達成される。
The object of the present invention is to react antimony trioxide and hydrogen peroxide to form a colloidal sol of antimony oxide, with a molar ratio of antimony trioxide and hydrogen peroxide of 1:1.25 to 1.8. (-1) and is achieved by adding an inorganic alkaline substance to the reaction system.

ここにおいて、本発明で使用される無機系アルカリ物質
としては、リチウム、カリウム、ナトリウム等のアルカ
リ金属又はマグネシウム、カルシウム、バリウム等のア
ルカリ土類金属の水酸化物;アンモニア;炭酸ナトリウ
ム、炭酸アンモニウム、リン酸すトリウム等のma塩m
などをあげることができるが、中でもLi0H1KOH
,NaOHなどのアルカリ金属水酸化物を使用すること
により、一段と反応速度が加速さを効率的に提供し得る
ので好ましい。勿論、上記物質を併用することは何ら差
支えない。
Here, the inorganic alkaline substances used in the present invention include hydroxides of alkali metals such as lithium, potassium, and sodium, or alkaline earth metals such as magnesium, calcium, and barium; ammonia; sodium carbonate, ammonium carbonate, MA salts such as thorium phosphate
Among them, Li0H1KOH
It is preferred to use an alkali metal hydroxide such as , NaOH because it can efficiently provide a further acceleration of the reaction rate. Of course, there is no problem in using the above substances in combination.

また、前記アルカリ物質の使用量としては、三酸化アン
チモンに対して1.5〜30モル%、好ましくは2〜2
0モル%の範囲内に設定する必要があり、かかる範囲を
外れた場侍は、反応促進効果が不充分となるため三酸化
アンチモンと過酸化水素の反応を水の沸点付近あるいは
bl1点以上の温度に維持する必要があるばかりか、と
りわけ高濃度反応系においては得られる酸化アンチモン
の粒子径が著しく粗大化していくため好ましくない。
Further, the amount of the alkaline substance used is 1.5 to 30 mol%, preferably 2 to 2 mol%, based on antimony trioxide.
It is necessary to set it within the range of 0 mol%, and if it is outside this range, the reaction promotion effect will be insufficient, so the reaction of antimony trioxide and hydrogen peroxide should be set at a temperature near the boiling point of water or above the bl1 point. Not only is it necessary to maintain the temperature, but especially in a high concentration reaction system, the particle size of the obtained antimony oxide becomes significantly coarse, which is undesirable.

なお、製品のpHを調整するためにさらに多量のアルカ
リ物質の添加を要する場合は、反応の終期に所望量を追
加添加することは可能である0 本発明において使用される三酸化アンチモンの粒子径は
、概ね100μ以下であればよいが、水への分散性、過
酸化水素との反応性等の観点から、特に10.u以下で
あることが望ましい。
In addition, if it is necessary to add a larger amount of alkaline substance to adjust the pH of the product, it is possible to add the desired amount additionally at the final stage of the reaction.0 Particle size of antimony trioxide used in the present invention may be approximately 100μ or less, but from the viewpoint of dispersibility in water, reactivity with hydrogen peroxide, etc., it is particularly 10. It is desirable that it be less than or equal to u.

かかる三酸化アンチモンを水中に分散し分散tffを調
整する。なお、分散液中の三酸化アンチモン濃度は一般
に5〜40重量%、特に7〜25車量%が好ましい。捷
た、過酸化水素の使用量は三酸化アンチモン1モルに対
して1.25〜l。
Such antimony trioxide is dispersed in water to adjust the dispersion tff. The concentration of antimony trioxide in the dispersion is generally 5 to 40% by weight, particularly preferably 7 to 25% by weight. The amount of strained hydrogen peroxide used is 1.25 to 1 per mole of antimony trioxide.

8モル、好ましくは1.3〜1.8モルの範囲であるこ
とが必要である。かかる使用量が1.25モル未満の場
診はコロイド状の微粒子が得られず、また1、8モルを
越える場合は無機塩等の電解質に対する化学的安定性が
低下するという欠点を惹起し、また得られた製品中に未
反応の過酸化水素が残存するという問題が派生し、好ま
しくない。
It is necessary that the amount is 8 mol, preferably in the range of 1.3 to 1.8 mol. If the amount used is less than 1.25 mol, colloidal fine particles cannot be obtained, and if it exceeds 1.8 mol, the chemical stability against electrolytes such as inorganic salts will be reduced. Further, there is a problem that unreacted hydrogen peroxide remains in the obtained product, which is not preferable.

かくして得られた三酸化アンチモン、過酸化水素及び水
からなる分散液にMiJ記の無機系アルカリ物JRを添
加することとなるが、該アルカリ物質の添加手順として
は、例えば三酸化アンチモン分散液に予め添加して加熱
し反応させる方法、あるいは三酸化アンチモンを水、無
機糸アルカリ物質で分散後、過酸化水素を添加しても差
支λない。
The inorganic alkali JR described in MiJ is added to the thus obtained dispersion of antimony trioxide, hydrogen peroxide, and water. There is no difference in adding hydrogen peroxide in advance, heating and reacting it, or adding hydrogen peroxide after dispersing antimony trioxide in water or an inorganic alkaline substance.

本発明における反応温度としては、工業上30 ’c以
」二、好ましくは50〜100 ’cに保ト、′I′す
ることが望ましいが、例えば50′C以下の低601で
も反応を開始させることができるため、反応系の加熱に
要するエネルギーが非常に少なくできるのみならず、反
応による発熱量は反応系が/dli点状態にまで昇温さ
れる熱敏として殆ど吸収され、外部からの冷却の必要性
は小さく、突沸防止のための温度コントロールのm」題
は殆ど解消された。
The reaction temperature in the present invention is industrially preferably maintained at 30'C or higher, preferably 50 to 100'C, but the reaction can also be initiated at a low temperature of 50'C or lower, for example. As a result, not only can the energy required to heat the reaction system be extremely reduced, but most of the heat generated by the reaction is absorbed as heat, which raises the temperature of the reaction system to the There is little need for this, and the problem of temperature control to prevent bumping has been almost eliminated.

かくの如き条件下に反応させた分散液は、該分散液中の
三酸化アンチモン濃度に応じて約6〜45重量%、好唸
しくけ8〜28市’9%の固形分濃度の酸化アンチモン
のコロイドゾルに変換され、また必要に応じてこれを濃
縮することによって安定剤の添加を何等必安とせずに4
5%以上の固形分濃度のコロイドゾルとすることもでき
る。
The dispersion reacted under these conditions has a solid content of antimony oxide of about 6 to 45% by weight, depending on the concentration of antimony trioxide in the dispersion, and 8 to 9% by weight. is converted into a colloidal sol, and if necessary, by concentrating it, 4
It can also be a colloidal sol with a solid content concentration of 5% or more.

また、かかるコロイドゾルは長時間の放置に列して何等
のコロイド破壊も惹起されず、夕めて安定であることは
訂うまでもない。
Further, it goes without saying that such a colloidal sol does not cause any colloidal destruction when left for a long time and is stable over time.

上述の如く、三嘲化アンチモンを過酸化水素と反応させ
る際に、化学量論値よシ少ない過酸化水素を用い、且つ
無機系アルカリ物質を添加することによ−て何故容易に
反応が進行し、極めて微細な粒子径で1.かもとりわけ
化学的に安定な酸化アンチモンのコロイドゾルが得られ
るのか明瞭ではないが、三酸化アンチモンと過酸化水素
との反応において無機系アルカリ物質がfi!I(41
1作用を果し、反応を促進すると共に、反応系に存在す
る特定)41のアルカリが生成する酸化アンチモン粒子
f:微細化する」二で何らかの役割を果すとともに、生
成する酸化アンチモンは従来にえられていた五酸化アン
チモンとは若干異ったものとなっているものと推定され
る。
As mentioned above, when antimony trioxide is reacted with hydrogen peroxide, why does the reaction proceed easily by using less hydrogen peroxide than the stoichiometric value and by adding an inorganic alkaline substance? 1. With extremely fine particle size. It is not clear whether a chemically stable colloidal sol of antimony oxide can be obtained, but in the reaction between antimony trioxide and hydrogen peroxide, an inorganic alkaline substance fi! I (41
The antimony oxide particles produced by the specific alkali present in the reaction system are It is presumed that the antimony pentoxide is slightly different from the antimony pentoxide that was previously used.

かかる本発明方法に従えば、適量の無機系アルカリ物質
を添加することによって水系媒体中での三酸化アンチモ
ンと所定量の過酸化水素との反応が容易に進行するため
、簡単な製造工程で沸点以下の温度で不純物が少なく極
めて微細な粒子径で且つ化学的安定性に優れた酸化アン
チモンのコロイドゾルを高濃度で作製し得、シかも得ら
れた酸化アンチモンのコロイドゾル中に未反応の過酸化
水素が残存しない点が、本発明の特筆すべき効果である
According to the method of the present invention, the reaction between antimony trioxide and a predetermined amount of hydrogen peroxide in an aqueous medium easily proceeds by adding an appropriate amount of an inorganic alkaline substance. It is possible to produce a highly concentrated colloidal sol of antimony oxide with few impurities, extremely fine particle size, and excellent chemical stability at the following temperatures. A noteworthy effect of the present invention is that no residue remains.

また、本発明においては高濃度のコロイド状酸化アンチ
モンが得られるので蒸発DARM操作が不要であるか、
必ヅであったとしても僅かでよく、また低温度で反応を
行なうことができるのでエネルギー消費filが少なく
てすむなど経済的効果が大きく、更に低温度での反応か
り能であることから突沸等の安全上の問題がなく、また
反応温度コン1−ロールが容易であるなどの利点を有す
るものである。
In addition, in the present invention, since highly concentrated colloidal antimony oxide is obtained, evaporation DARM operation is not necessary.
Even if it is necessary, it is only a small amount, and since the reaction can be carried out at a low temperature, it has a great economical effect such as less energy consumption.Furthermore, since the reaction can be carried out at a low temperature, there is no problem such as bumping. This method has advantages such as no safety problems and easy control of the reaction temperature.

また、本発明に係るコロイド状酸化アンチモンは極めて
粒子径が小さく、従って表面積が顕著に増大しているこ
とから#′燃性を付与するのに非常に効率が良く、所定
の難燃性を得るに必要なアンチモンの量を既存品と較べ
て減少させ得る利点も有している。
In addition, the colloidal antimony oxide according to the present invention has an extremely small particle size and a significantly increased surface area, so it is very efficient in imparting #' flame resistance and achieving the desired flame retardancy. It also has the advantage of reducing the amount of antimony required compared to existing products.

かくの如き本発明方法を採用することにより、従来法の
欠点であった工程の複雑性、高価な副原料使用による製
品のコストアップ、品質の不均一性、製品からの不純物
の除去等肉の問題が悉く解消され、更にその品質の疑秀
性においても従来のコロイドゾルをはるかに凌ぐもので
ある。
By adopting the method of the present invention, the drawbacks of conventional methods such as complexity of the process, increased product cost due to the use of expensive auxiliary materials, uneven quality, and removal of impurities from the product can be improved. All of the problems have been solved, and its quality far exceeds that of conventional colloidal sols.

な訃、本発明に従って得られる酸化アンチモンのコロイ
ドゾルはそのままで、或いは所望によf)きらに濃縮さ
れて難燃剤等の用途に用いられるが、噴霧乾燥等の操作
を施して酸化アンチモン粒子のみを分離して前述した用
途に使用することも可能である。
However, the colloidal sol of antimony oxide obtained according to the present invention can be used as it is or, if desired, after being concentrated to a certain degree for use as a flame retardant. It is also possible to separate it and use it for the above-mentioned purposes.

U丁に実施例を示し本発明を更に具体的に説明するが、
かかる実施例は本発明をよりよく説明するためのもので
あり、本発明の範囲を何ら限定するものではない。
The present invention will be explained in more detail by showing examples in the following.
These Examples are provided to better explain the present invention, and are not intended to limit the scope of the present invention in any way.

なk、実施例における光透過率はHITACHI−10
18pectrophotometer(日立製作所製
)を使用して、固形分0.4%の濃度のコロイドゾルに
対する白色光の光透過率を測定したものであり、その値
が大きい程コロイド粒子が小さいことを意味している。
The light transmittance in the example is HITACHI-10.
The light transmittance of white light to a colloidal sol with a solid content of 0.4% was measured using a 18 pectrophotometer (manufactured by Hitachi, Ltd.), and the larger the value, the smaller the colloidal particles. .

実施例 1 攪拌機付三ロフラスコ(容積11)を90υ恒温水槽に
浸漬した反応装置を使用して酸化アンチモンのコロイド
ゾルの合成を行った。
Example 1 A colloidal sol of antimony oxide was synthesized using a reaction apparatus in which a three-loaf flask (volume 11) equipped with a stirrer was immersed in a 90υ constant temperature water bath.

反応は先ず反応容器に所定量の水、三酸化アンチモン、
N’ aOHを仕込んだ撹拌下にスラリー化し、内容物
の温度が50′CK達した時点で、H2O2水溶液(濃
度35%)を添加し1時間反応させた。
The reaction begins by adding a predetermined amount of water, antimony trioxide, and
The mixture was slurried with N' aOH and stirred, and when the temperature of the contents reached 50'CK, an aqueous H2O2 solution (concentration 35%) was added and reacted for 1 hour.

反応条件及び生成品の特性を下記第1表に示す。The reaction conditions and properties of the product are shown in Table 1 below.

明細書の浄書(内容に変更なし) 第1表 上表よシ実験Ng、 2〜8からは徽細な粒子径を有す
る重化アンチモンのコロイドゾルが得られることがわか
る。
Reprint of the specification (no change in content) From the upper table of Table 1 and Experiments 2 to 8, it can be seen that a colloidal sol of heavy antimony having a fine particle size can be obtained.

一方、無機塩電解質に対する安定性を調べるため、光透
過率1l11す定においてサンプルを0.4%濃度に稀
釈する際、水の代シに0.5チのロダンソーダ水溶a(
を使用した場合の測定結果は次の通りであった。
On the other hand, in order to investigate the stability against inorganic salt electrolytes, when diluting the sample to a concentration of 0.4% at a light transmittance of 1l11, 0.5g of rhodan soda aqueous solution a (
The measurement results were as follows.

以上の如く1本発明に係る実験Na 2〜5及びN[L
8では光透過率の低下が小さく、ロダンソーダ水溶液中
でも凝集を殆ど起こさす、イヒq−的に非常に安定であ
る事実が理)眸される0なお、NaOHの代りにトリエ
タノールアミンを二酸化アンチモンに対して5モル%、
10モル95添加し反応温度を100〜110 ’Cに
するほかは上広に従って反応させたところ、生)友物の
光透過率は夫々17%と20%であった。
As described above, 1 experiments related to the present invention Na 2 to 5 and N[L
In No. 8, the decrease in light transmittance is small, and the fact that it is very stable in terms of stability, causing almost no aggregation even in an aqueous solution of rhodan soda (see). 5 mol%,
When the reaction was carried out according to the procedure described above, except that 10 moles of 95% were added and the reaction temperature was adjusted to 100 to 110'C, the light transmittance of the raw materials was 17% and 20%, respectively.

手続補正帯(方式) 特許庁長官 若杉相夫殿 1、事件の表示 昭和58年特許願第242906号 2、発明の名称 コロイド状師化アンチモンの製造法 3、補正をする者 ・」9件との関係 特許出願人Procedure correction band (method) Commissioner of the Patent Office Mr. Aio Wakasugi 1.Display of the incident 1981 Patent Application No. 242906 2. Name of the invention Method for producing colloidal antimony phthalate 3. Person who makes corrections ・Relationship with 9 cases Patent applicant

Claims (1)

【特許請求の範囲】 ■、 二酸化アンチモンと過酸化水素を反応させて酸化
アンチモンのコロイドゾルを形成させる際に、三版化ア
ンチモンと過酸化水素のモル比をl:1.25〜1.8
とし、且つ反応系に無機系アルカリ物質を添加すること
を特徴とするコロイド状酸化アンチモンの製造法。 2、、I!!?機系ア機力アルカリ物質化アンチモンに
苅してl、5〜30モル%添加する特許請求の範囲第1
項記載の製造法。 3、 無機系アルカリ物質としてアルカリ金属水酸化物
を使用する特許請求の範囲第1項記載の製造法。
[Claims] (1) When antimony dioxide and hydrogen peroxide are reacted to form a colloidal sol of antimony oxide, the molar ratio of antimony trioxide and hydrogen peroxide is 1:1.25 to 1.8.
A method for producing colloidal antimony oxide, which comprises adding an inorganic alkaline substance to the reaction system. 2,,I! ! ? Claim 1: 1, 5 to 30 mol % is added to organic alkali materialized antimony.
Manufacturing method described in section. 3. The manufacturing method according to claim 1, wherein an alkali metal hydroxide is used as the inorganic alkaline substance.
JP24290683A 1983-06-16 1983-12-21 Production of colloidal antimony oxide Granted JPS60137828A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP24290683A JPS60137828A (en) 1983-12-21 1983-12-21 Production of colloidal antimony oxide
US06/620,046 US4533538A (en) 1983-06-16 1984-06-12 Method of producing colloidal antimony oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24290683A JPS60137828A (en) 1983-12-21 1983-12-21 Production of colloidal antimony oxide

Publications (2)

Publication Number Publication Date
JPS60137828A true JPS60137828A (en) 1985-07-22
JPH0429610B2 JPH0429610B2 (en) 1992-05-19

Family

ID=17095972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24290683A Granted JPS60137828A (en) 1983-06-16 1983-12-21 Production of colloidal antimony oxide

Country Status (1)

Country Link
JP (1) JPS60137828A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62125849A (en) * 1985-11-26 1987-06-08 Japan Exlan Co Ltd Hexaantimony tridecaoxide aqueous sol
JPS63282126A (en) * 1987-05-11 1988-11-18 Mitsubishi Metal Corp Production of antimony oxide powder
JPH07117091A (en) * 1993-10-26 1995-05-09 Shuji Ishihara Material pressure-introducing and heating device in rubber injection machine
EP1466867A2 (en) 2003-03-27 2004-10-13 Nissan Chemical Industries Ltd. Diantimony pentoxide sol and method for its preparation
WO2006033283A1 (en) * 2004-09-21 2006-03-30 Nissan Chemical Industries, Ltd. Process for producing antimony pentaoxide
KR100587572B1 (en) * 2004-10-15 2006-06-08 삼성전자주식회사 System and method for extracting corner point in space using pixel information on camera, robot including the system
JP2007176710A (en) * 2005-12-27 2007-07-12 Catalysts & Chem Ind Co Ltd Method for producing antimony oxide sol and antimony oxide sol
US7309457B2 (en) 2003-11-06 2007-12-18 Catalysts & Chemicals Industries Co., Ltd. Chain inorganic oxide fine particle groups

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5711848A (en) * 1980-06-24 1982-01-21 Nippon Telegr & Teleph Corp <Ntt> Fiber for optical communication

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5711848A (en) * 1980-06-24 1982-01-21 Nippon Telegr & Teleph Corp <Ntt> Fiber for optical communication

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62125849A (en) * 1985-11-26 1987-06-08 Japan Exlan Co Ltd Hexaantimony tridecaoxide aqueous sol
JPS63282126A (en) * 1987-05-11 1988-11-18 Mitsubishi Metal Corp Production of antimony oxide powder
JPH07117091A (en) * 1993-10-26 1995-05-09 Shuji Ishihara Material pressure-introducing and heating device in rubber injection machine
EP1466867A2 (en) 2003-03-27 2004-10-13 Nissan Chemical Industries Ltd. Diantimony pentoxide sol and method for its preparation
US7291652B2 (en) 2003-03-27 2007-11-06 Nissan Chemical Industries, Ltd. Diantimony pentoxide sol and method for its preparation
US7309457B2 (en) 2003-11-06 2007-12-18 Catalysts & Chemicals Industries Co., Ltd. Chain inorganic oxide fine particle groups
WO2006033283A1 (en) * 2004-09-21 2006-03-30 Nissan Chemical Industries, Ltd. Process for producing antimony pentaoxide
JPWO2006033283A1 (en) * 2004-09-21 2008-05-15 日産化学工業株式会社 Method for producing antimony pentoxide
US7897138B2 (en) 2004-09-21 2011-03-01 Nissan Chemical Industries, Ltd. Process for producing antimony pentaoxide
JP5040309B2 (en) * 2004-09-21 2012-10-03 日産化学工業株式会社 Method for producing antimony pentoxide
KR100587572B1 (en) * 2004-10-15 2006-06-08 삼성전자주식회사 System and method for extracting corner point in space using pixel information on camera, robot including the system
JP2007176710A (en) * 2005-12-27 2007-07-12 Catalysts & Chem Ind Co Ltd Method for producing antimony oxide sol and antimony oxide sol

Also Published As

Publication number Publication date
JPH0429610B2 (en) 1992-05-19

Similar Documents

Publication Publication Date Title
US2940830A (en) Method of preparing silica pigments
JP5040309B2 (en) Method for producing antimony pentoxide
US3745126A (en) Stable positively charged alumina coated silica sols
WO1999059919A1 (en) Method for producing barium titanate powder
JPS6041536A (en) Preparation of antimony pentoxide sol
JP4171850B2 (en) Modified titanium oxide-zirconium oxide-stannic oxide composite sol and method for producing the same
JPS60137828A (en) Production of colloidal antimony oxide
EP0480587B1 (en) Precipitated calcium carbonate
WO2020045165A1 (en) Method for producing aqueous dispersion and organic solvent dispersion of zirconium oxide particles
JP4493320B2 (en) Method for producing silica sol and silica sol
JPH11310415A (en) Highly pure tin oxide and its production
US2679463A (en) Process for producing calcium-silicon oxide pigment and product obtained thereby
JPH10130020A (en) Production of cubic calcium carbonate having controlled particle diameter
JP2006176392A (en) Process for producing modified stannic oxide sol and stannic oxide/zirconium oxide composite sol
JPH0335248B2 (en)
US4533538A (en) Method of producing colloidal antimony oxide
JPS6090819A (en) Production of chain calcium carbonate from ultrafine cubic calcium carbonate
US2865779A (en) Silica pigment and preparation thereof
US7291652B2 (en) Diantimony pentoxide sol and method for its preparation
SE437015B (en) PROCEDURE FOR THE RECOVERY OF APPLICABLE PRODUCTS FROM WASTE PRODUCTS CONCERNING MANUFACTURING ALUMINUM FLUORIDE
TWI323722B (en) Guanidine carbonate-containing silica sol
US4770812A (en) Process for preparing colloidal sols of antimony pentoxide in organic solvents
JPS6090822A (en) Production of spherical calcium carbonate
US2972594A (en) Process for the manufacture of finely divided metal silicates
US3711419A (en) Process for preparing silica aquasols