JPS60137623A - Manufacture of resin mold for injection molding product excellent in luster - Google Patents

Manufacture of resin mold for injection molding product excellent in luster

Info

Publication number
JPS60137623A
JPS60137623A JP24485083A JP24485083A JPS60137623A JP S60137623 A JPS60137623 A JP S60137623A JP 24485083 A JP24485083 A JP 24485083A JP 24485083 A JP24485083 A JP 24485083A JP S60137623 A JPS60137623 A JP S60137623A
Authority
JP
Japan
Prior art keywords
resin
mold
epoxy resin
model
injection molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24485083A
Other languages
Japanese (ja)
Inventor
Yasuyuki Abe
康幸 阿部
Yoshio Yoshizawa
義男 吉沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON DEBUKON KK
Original Assignee
NIPPON DEBUKON KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON DEBUKON KK filed Critical NIPPON DEBUKON KK
Priority to JP24485083A priority Critical patent/JPS60137623A/en
Publication of JPS60137623A publication Critical patent/JPS60137623A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/003Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2063/00Use of EP, i.e. epoxy resins or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2833/00Use of polymers of unsaturated acids or derivatives thereof as mould material

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Abstract

PURPOSE:To obtain the mold made of epoxy resin for injection molding, which enables the product excellent in luster to be obtained by causing epoxy resin fluidized under reduced pressure after the epoxy resin containing a specified diluent and curing agent has been cast, etc. in the mold made of methacryl. CONSTITUTION:The epoxy resin containing the low viscous and reactive diluent with at least one epoxy radical in one molecule and amine group curing agent, is used. Bath diluent and curing agent have vapour pressure equal to or lower than 1mm.Hg at 30 deg.C and the thermal deformation temperature equal to or higher than 60 deg.C after curing. This resin is cast into the master form model made of methacryl resin, or the master form model is gel-coated with the epoxy resin, and then said resin is cured after it has been caused to fluidize under reduced pressure.

Description

【発明の詳細な説明】 本発明は射出成形用樹脂型の製作法に関するものであっ
て、その目的とするところは、光沢の優れた射出成形品
をこの射出成形用樹脂型によって得るようにしたもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a resin mold for injection molding, and an object thereof is to obtain an injection molded product with excellent gloss using this resin mold for injection molding. It is something.

一般には射出成形用の型としては金型が一使われている
。しかし、金型は非常匠高価であること及び製作に多く
の日数を要するという難点がある。
Generally, one metal mold is used as a mold for injection molding. However, the molds have the drawbacks of being extremely expensive and requiring many days to manufacture.

射出成形品である新製品を開発する際には、予め成形品
を試作することが通常行われている。試作の段階で金型
を使用すると金型費がかさみ金型の製作に多くの日数を
要する。
When developing a new product that is an injection molded product, it is common practice to make a prototype of the molded product in advance. If a mold is used at the prototype stage, the cost of the mold increases and it takes many days to manufacture the mold.

特に、自動車や電気製品関係においては他の部品との関
連において、ある部品の試作期間を短縮することは製品
全体の試作期間を短縮することになるので試作費の低減
に結びつく。したがって。
Particularly in relation to automobiles and electrical products, shortening the trial production period for a certain part in relation to other parts will shorten the trial production period for the entire product, leading to a reduction in trial production costs. therefore.

金型に比べて製作費が安く製作日数の短かい射出成形用
の簡易型が注目されている。射出成形用の簡易型として
エポキシ樹脂型、電鋳型、金属溶射型および可融合金に
よる鋳造型等が知られている。
Simple molds for injection molding are attracting attention because they are cheaper to manufacture and take less time to manufacture than molds. Epoxy resin molds, electroforming molds, metal spray molds, and casting molds made of fusible metal are known as simple molds for injection molding.

これらの簡易型はそれぞれの長所と短所がある。Each of these simplified types has its own advantages and disadvantages.

例えば、電鋳型は原型をきわめて忠実に再現し射出成形
品の表面の仕上りが良い1寸法精度が優れているなどの
長所があるが、電鋳シェルの製作にかなりの日数を要す
るという欠点がある。
For example, electroforming molds have advantages such as extremely faithful reproduction of the original mold, good surface finish of injection molded products, and excellent 1-dimensional accuracy, but the disadvantage is that it takes a considerable number of days to produce the electroformed shell. .

金属溶射型は寸法精度、忠実度の高い簡易型が短時間に
得られ試作用として適する点も多いが。
Metal spray molds are often suitable for prototyping as they can produce simple molds with high dimensional accuracy and fidelity in a short time.

凹凸が特に激しいもの、韓の深いものは製作が困難であ
る。加えて型の寿命も短かいという欠点がある。
It is difficult to manufacture items with particularly severe unevenness or deep grooves. In addition, the mold has a short lifespan.

これらの電鋳型と金属溶射型には、それぞれのシェルに
可融合金やエポキシ樹脂にアルミ粉や粒状アルミを配合
したものを裏打ちして通常使用される。可融合金による
鋳造型は、忠実度はよいが他の型に比べて寸法精度と面
粗度に問題を有するという欠点がある。そして、これら
の簡易型はいずれも製作す・る上で相応の設備が必要で
ある。
These electroforming molds and metal spray molds are usually used with their respective shells lined with a mixture of fusible metal or epoxy resin mixed with aluminum powder or granular aluminum. Casting molds made from fusible alloys have good fidelity, but have the drawback of having problems with dimensional accuracy and surface roughness compared to other molds. All of these simple types require appropriate equipment to manufacture.

これに対して、エポキシ樹脂型は設備を必要とせず、低
コストで短時日vc製作でき、型の忠実度と寸法精度も
よい上、形状に左右されることもほとんどない。しかし
、エポキシ樹脂は熱間での機械的強度が強くはないので
、肘用成形中にエポキシ樹脂型が破損したりすることが
ある。加えて。
On the other hand, epoxy resin molds do not require any equipment, can be manufactured at low cost in a short period of time, have good mold fidelity and dimensional accuracy, and are hardly influenced by shape. However, since epoxy resin does not have strong mechanical strength under hot conditions, the epoxy resin mold may be damaged during molding of the elbow. In addition.

射出成形品の光沢が出ないという短所がある。The disadvantage is that injection molded products do not have the same gloss.

通常、試作に要する射出成形品の成形個数は三百個以下
であるが1時には少量生産といえる数百〜数千個の成形
品をめられることがある。′近年1社会的、経済的ニー
ズの多様化が進み。
Normally, the number of injection molded products required for trial production is 300 or less, but at one time, several hundred to several thousand molded products, which can be considered as small-volume production, may be produced. 'In recent years, social and economic needs have become increasingly diverse.

製品がファッション化するに伴い、モデルチェンジの激
しい多品種少量生産の形態が進んでいる。
As products become fashionable, high-mix, low-volume production with frequent model changes is progressing.

このような場合、一般に金型は経済的に問題となる。す
なわち、高い製作費、経験を要する設計及び長い製作期
間などである。一方、量産型として金型を製作する@に
も量産上の問題点を事前に検討すべく試作がしばしば行
われる。すなわち、このような場合は簡易型を必要とす
るわけである。
In such cases, the mold is generally economically problematic. That is, high manufacturing cost, design requiring experience, and long manufacturing period. On the other hand, when manufacturing molds for mass production, prototypes are often made in order to consider problems in mass production in advance. In other words, in such cases, a simplified version is required.

金型は一旦製作されるとほとんど修正がきかないことが
多いため2本型を製作する前に目的とする成形品を試作
して単独または他の部品と一緒に組立てて全体のデザイ
ン形状の良悪を判断したり。
Once a mold is made, it is often difficult to modify it, so before making two molds, make a prototype of the desired molded product and assemble it alone or with other parts to determine the quality of the overall design shape. or judge.

くす品設計や型設計に欠陥が’4(いかチェックしたり
There are defects in the product design and mold design.

強度試験を行い形状的な欠点を知ったりする。また、成
形品に使用される材料の全般的な収縮を見極めたり、他
社に先がけて製品化しユーザーヘアフピールするか、限
定されたマーケラティングを行ったりする。
Conduct strength tests and learn about shape defects. We also determine the general shrinkage of the materials used in molded products, commercialize products ahead of other companies and offer user hair peels, or perform limited marketing.

射出成形品の試作では試作に要する費用を低く。The cost required for prototyping of injection molded products is low.

成形品を入手する期間も短(かつできるだけ金型で成形
されたものに近い美麗な成形品が要求されるのが現状で
ある。
The current situation is that the time required to obtain molded products is short (and beautiful molded products as close to those molded in a mold as possible) are required.

更に、少量生産型としては型の製作費が安いことに加え
て製品であるために試作以上に美麗な成形品が要求され
る。
Furthermore, as a small-volume production type, in addition to the low manufacturing cost of the mold, since it is a finished product, a molded product that is more beautiful than a prototype is required.

本発明は、前述のような理由から試作及び少量生産の際
に金型の代替としてエポキシ樹脂型を使用し、低コスト
で、9作日数が短くかつ金型によって射出成形・された
成形品に近い光沢の優れた成形品を得ることができるエ
ポキシ樹脂型の製作法に関するものである。
For the reasons mentioned above, the present invention uses an epoxy resin mold as a substitute for a mold during trial production and small-scale production, is low cost, requires a short production period, and can be used to mold products injection-molded using a mold. The present invention relates to a method for manufacturing an epoxy resin mold that can produce molded products with excellent gloss.

エポキシ樹脂型は、製品となるべき形状をした原型モデ
ルの形状及び寸法を注型のみまたはハケによるゲルコー
トと樹脂等による裏打ちによって簡単にネガ型を複製で
きるという現象を利用している。裏打ちの方法としては
、エポキシ樹脂の流し込み、エポキシ樹脂とガラスクロ
スまたはカーボンクロスもしくは芳香族ポリアミド等の
耐熱繊維との積層またはエボ・キシ樹脂とケイ砂1粒状
アルミ等の樹脂コンクリートによるものなどがある。
Epoxy resin molds utilize the phenomenon that the shape and dimensions of a prototype model that is to become a product can be easily replicated as a negative mold by casting alone or by brushing gel coat and backing with resin or the like. Methods of lining include pouring epoxy resin, laminating epoxy resin with heat-resistant fibers such as glass cloth, carbon cloth, or aromatic polyamide, or using resin concrete such as Evo-xy resin and silica sand with one grain of aluminum. .

本発明者らは、型の基本的構造部がエポキシ樹脂から構
成される射出成形用樹脂型の開発に永年携わってきたが
、エポキシ樹脂型の大きな難点である射出成形品の光沢
が出ない点を研究し、その結果外られる成形品の光沢が
優れた射出成形用樹脂ηLの製作法を見い出したのであ
る。
The present inventors have been involved in the development of resin molds for injection molding in which the basic structure of the mold is made of epoxy resin for many years, but one of the major drawbacks of epoxy resin molds is that the injection molded product is not glossy. As a result, they discovered a method for producing an injection molding resin ηL that gives a molded product with excellent gloss.

すなわち、樹脂型を構成するエポキシ樹脂は。That is, the epoxy resin that makes up the resin mold.

硬化前のエポキシ樹脂中に含有される反応性希釈剤と硬
化剤を構成するアミン化合物は共に30CKおける蒸気
圧がlmmHg以下であり、かつ硬化後の熱変形温度が
60℃以上となる成分から構成されるものであって、こ
れをメタクリル類の原型モデルに注型もしくはゲルコー
トした後、減圧下で排気し樹脂を流動させるようにした
方法である。
The reactive diluent contained in the epoxy resin before curing and the amine compound constituting the curing agent both have a vapor pressure of 1 mmHg or less at 30CK, and are composed of components whose heat distortion temperature after curing is 60°C or higher. This is a method in which the resin is cast or gel coated onto a methacrylic prototype model and then evacuated under reduced pressure to cause the resin to flow.

本発明において使用される硬化前のエポキシ樹脂は脂環
式エポキシを除けば特に限定されない−ビスフェノール
A、ビスフェノールF、ノボラック樹脂及びそれらのハ
ロゲン化化合物等とエピクロルヒドリンから合成される
エポキシ樹脂などである。脂環式エポキシ樹脂を用いる
と硬化温度が高くなり、原型モデルのメタクリル樹脂の
耐熱性(約100〜110℃)を超えるので事実上使用
できない。
The epoxy resin before curing used in the present invention is not particularly limited, except for alicyclic epoxy, and includes epoxy resins synthesized from bisphenol A, bisphenol F, novolak resins, halogenated compounds thereof, and epichlorohydrin. When a cycloaliphatic epoxy resin is used, the curing temperature becomes high and exceeds the heat resistance (approximately 100 to 110° C.) of the methacrylic resin of the original model, so it is practically unusable.

射出成形用樹脂型に使用されるエポキシ樹脂は注型また
はハケによるゲルコートとして使用されるので1作業K
 3WJ切な粘度を有する必要がある。
The epoxy resin used in resin molds for injection molding is used as a gel coat by casting or brushing, so one job is 1 K.
It is necessary to have a viscosity of 3WJ.

粘度の調節には反応性希釈剤が用いられる。本発明にお
いて使用される反応性希釈剤は蒸発しにくいものでなけ
ればならない。これは樹脂を注型またはゲルコートした
後に減圧1でて排気するためである。反応性希釈剤の蒸
気圧が高いと排気の際に絶えず泡が発生するので硬化物
中に泡が残存することになる。加えて反応性希釈剤の蒸
発によりエポキシ樹脂の粘度が増大し原型モデルとの儒
れが悪くなり、樹脂の硬化後原型モデルと樹脂型とを脱
型すると樹脂型の表面は凹凸が生じたりして不均一とな
り、射出成形すると表面の光沢のない成形品になってし
捷う。
Reactive diluents are used to adjust the viscosity. The reactive diluent used in this invention must be resistant to evaporation. This is because after the resin is cast or gel coated, it is evacuated by applying a vacuum of 1. When the vapor pressure of the reactive diluent is high, bubbles are constantly generated during evacuation, resulting in bubbles remaining in the cured product. In addition, the viscosity of the epoxy resin increases due to the evaporation of the reactive diluent, making it less compatible with the original model, and when the resin mold is removed from the original model after the resin has hardened, the surface of the resin mold may become uneven. This results in non-uniformity, and when injection molded, the molded product has a dull surface and shatters.

同様の理由により1本発明において使用されるアミン系
硬化剤も蒸気圧の低いものが好ましい。
For the same reason, the amine curing agent used in the present invention preferably has a low vapor pressure.

本発明者らは鋭意研究の結果1反応性希釈剤と硬化剤の
蒸気圧は共に30CKてlmmHg以下、好ましくは0
.1++++nHg以下であることが必要であることを
見い出した。
As a result of intensive research, the present inventors have found that the vapor pressure of both the reactive diluent and the curing agent is 30CK and 1 mmHg or less, preferably 0.
.. It has been found that it is necessary to be 1+++nHg or less.

反応性希釈剤として使用できるものは、1.4−ブタン
ジオールジグリシジルエーテル、フェニルグリシジルエ
ーテル、エチレンオキサイドとエピクロルヒドリンの付
加共重准の両末端ジグリシジルエーテル、アニリンや0
−)ルイジンとエピクロルヒドリンとの反応生成物であ
るグリシジルアミン、ポリアルキレングリコールのジグ
リシジルエーテルなどである。
Examples of reactive diluents that can be used include 1,4-butanediol diglycidyl ether, phenylglycidyl ether, diglycidyl ether at both ends of an addition copolymer of ethylene oxide and epichlorohydrin, aniline, and
-) Glycidylamine, which is a reaction product of luidine and epichlorohydrin, and diglycidyl ether of polyalkylene glycol.

ブチルグリシジルエーテル、アリルグリシジルエーテル
等は30℃でlmmHg以上の蒸気圧を有するので2反
応性希釈剤として本発明に使用することはできない。
Butyl glycidyl ether, allyl glycidyl ether, etc. have a vapor pressure of 1 mmHg or more at 30° C., so they cannot be used as two-reactive diluents in the present invention.

好ましいアミン系硬化剤としては、トリエチレンテトラ
ミン、テトラエチレンペンタミン等の脂肪族ポリアミン
か、脂肪族アミン又は芳香族アミンのエチレンオキサイ
ド又はプロピレンオキサイド等の付加物やポリアミドア
ミン等がある。これらの硬化剤は単独捷たは混合して使
用できる。
Preferred amine curing agents include aliphatic polyamines such as triethylenetetramine and tetraethylenepentamine, adducts of aliphatic amines or aromatic amines such as ethylene oxide or propylene oxide, and polyamide amines. These curing agents can be used alone or in combination.

ジメチルアミンプロピルアミン、ジエチルアミノプロピ
ルアミンや1.3ジアミノプロパン等は。
Dimethylamine propylamine, diethylaminopropylamine, 1.3 diaminopropane, etc.

いずれも30℃の蒸気圧が1+nmHg以上なのでアミ
ン系硬化剤として使用できない。
In either case, the vapor pressure at 30°C is 1+nmHg or more, so they cannot be used as amine curing agents.

本発明において、使用されるエポキシ樹脂と硬化剤は硬
化後の棹I脂の熱変形温度は60℃以上となる成分から
構成される必要があり、好1しくは70℃以上である。
In the present invention, the epoxy resin and curing agent used must be composed of components such that the heat deformation temperature of the curing resin is 60°C or higher, preferably 70°C or higher.

本発明者らは、射出成形の際に冷却パイプな通した11
脂型で型の表面温度が通常60〜110Cに達すること
を知った。したがって、このような温度下で高い射出圧
(5001t/rd前後)に耐えるには。
The present inventors have discovered that 11
I learned that the surface temperature of the fat mold usually reaches 60-110C. Therefore, to withstand high injection pressure (around 5001 t/rd) at such temperatures.

エポキシ樹脂は耐熱性が必要である。熱変形温度60℃
以下の樹脂かもなる樹脂型では溶融ポリマーが射出さ→
すると型の表面が半溶融2なり、成形材料と融着な起こ
1−て成形品の離型抵抗が大きくなる。離型時には成形
品が型の表面から引張られるため成形品の表面は凹凸と
なり光沢がなくなってしまう。
Epoxy resin needs to be heat resistant. Heat distortion temperature 60℃
Molten polymer is injected into the resin mold, which can also include the following resins →
As a result, the surface of the mold becomes semi-molten and does not fuse with the molding material, increasing the mold release resistance of the molded product. When the mold is released, the molded product is pulled from the surface of the mold, so the surface of the molded product becomes uneven and loses its luster.

本発明のもう一つの特徴は、メタクリル樹脂製のモデル
を使用することKある。メタクリル樹脂は熱成形により
簡単に希望の形状がだせ、仕上げの研摩加工がしやすく
かつ表面が均一で光沢のある状態にできる。加えてモデ
ルとして使用する時にに1.型剤を必要としないので、
モデルの表面が忠実にエポキシ樹脂に転写される特徴が
ある。モデルが木型であれば離型剤が必要となり、エポ
キシ樹脂への転写性は良くなくなる。メタクリル樹脂と
してはアクリライト(商品名、三菱レイヨン)が使用さ
れる。
Another feature of the invention is the use of a model made of methacrylic resin. Methacrylic resin can be easily shaped into the desired shape by thermoforming, and can be easily polished to give a uniform, glossy surface. In addition, when using it as a model, 1. Since no molding agent is required,
It has the characteristic that the surface of the model is faithfully transferred to the epoxy resin. If the model is a wooden model, a mold release agent will be required, and the transferability to the epoxy resin will be poor. Acrylite (trade name, Mitsubishi Rayon) is used as the methacrylic resin.

しかしながら1本発明者らは前述のような射出成形用型
のエポキシ樹脂とモデルの材質の条件のみを満足しても
十分な光沢を有する射出成形品が得られないことを知っ
た。
However, the inventors of the present invention have found that it is not possible to obtain an injection molded product with sufficient gloss by satisfying only the conditions of the epoxy resin of the injection mold and the material of the model as described above.

すなわち1本発明の内容を達成するには、モデルにエポ
キシ樹脂を注型もしくはゲルコートした後に減圧下で排
気17.樹脂を気体吹込み攪拌の如く流動させることが
必要である。この効果は、既に樹脂中に存在していた気
泡を除去するだけでなく、モデルの複雑な形状の故に生
じるマクロ的及びミクロ的な空気だまりを取り除いてこ
れを樹脂に置換させ、樹脂を圧入したのと同じようにす
ることにある。加えてモデルの表面に物理吸着された空
気層を取除ヘモデルへの樹脂の濡れを促進させ、モデル
表面の均一性を忠実に反転させるのである。
That is, 1. In order to achieve the content of the present invention, after casting or gel coating the model with epoxy resin, the model is evacuated under reduced pressure.17. It is necessary to flow the resin by blowing gas and stirring. This effect not only removes the air bubbles that were already present in the resin, but also removes the macroscopic and microscopic air pockets that occur due to the complex shape of the model and replaces them with resin. It's about doing the same thing. In addition, it removes the air layer that is physically adsorbed on the surface of the model, promotes wetting of the resin to the model, and faithfully reverses the uniformity of the model surface.

また、樹脂を流動させることによって、エポキシ樹脂が
硬化を開始する初期の段階で生成するミクロゲルの分散
を均−vcl、、偏析を抑制する効果があると考えられ
る。一般にエポキシ樹脂を注型すると、空気の混入を防
ぐために樹脂を攪拌せずに静置して硬化させるが、硬化
は発熱反応であるために注型物の中心が最も高い温度と
なる。したがって、その中心が最も硬化率が高くなる。
In addition, it is believed that by fluidizing the resin, it is effective to even out the dispersion of microgels generated at an early stage when the epoxy resin starts to harden, and to suppress segregation. Generally, when epoxy resin is cast, the resin is allowed to stand and cure without stirring in order to prevent air from entering, but since curing is an exothermic reaction, the center of the cast material is at the highest temperature. Therefore, the curing rate is highest at the center.

すなわ、ち、注型物の内側と外側とでは分子の長さや架
橋密度も異なっている筈である。実際にモデルに樹脂を
注型するとモデルと接触する面の樹脂の硬化率は低い方
であるが1m樹脂型して使用すると射出成形品と接触す
る面となるので最も重要な個所となる。モデルと接触す
る而の硬化率を増大させる手段として更シて加熱するこ
とがあるが、型の寸法変化を防ぐにはモデルをつけてキ
ャビティーとコアをセットしたままで加熱する必要があ
る。
In other words, the length of the molecules and the crosslinking density should be different between the inside and outside of the cast material. When resin is actually cast into a model, the curing rate of the resin on the surface that comes into contact with the model is low, but when used as a 1m resin mold, this is the most important part because it becomes the surface that comes into contact with the injection molded product. As a means of increasing the hardening rate of the part that comes into contact with the model, it is sometimes heated by heating it, but in order to prevent dimensional changes in the mold, it is necessary to heat it with the model attached and the cavity and core set.

通常、乾燥機の中1c入れて加熱されるが、樹脂型は熱
伝導性が良くないので注型物に温度勾配が生じてモデル
と接触する面が最も温度が低くなって1−まう。
Usually, it is heated by placing it in a dryer, but since resin molds do not have good thermal conductivity, a temperature gradient occurs in the cast material, and the surface that comes into contact with the model has the lowest temperature.

注型捷たはゲルコート樹脂を排気することによって流動
させると、巨視的なゲル化の段階までの樹脂の温度勾配
を少なくさせ、硬化初期段階の樹脂の各部分の分子量分
布と架橋密度を均一にする効果があるので、モデルと接
触する樹脂型として鏝も重要な個所の機械的強度の増大
に寄与する。
Flowing by casting or evacuation of the gel coat resin reduces the temperature gradient of the resin up to the macroscopic gelation stage, making the molecular weight distribution and crosslinking density uniform in each part of the resin at the early stage of curing. As the resin mold comes into contact with the model, the trowel also contributes to increasing the mechanical strength of important parts.

したがって、1M脂型の割れやエツジ部のカケ等が少な
ぐなる。加えて成形品の光沢を良くする効果もあると考
えられる。
Therefore, cracks in the 1M mold and chips at the edges are reduced. In addition, it is thought to have the effect of improving the gloss of the molded product.

樹脂型の一つの欠点として熱伝導性が悪いことが挙げら
れる。このために射出成形の際に樹脂型が蓄熱して型の
耐久性を低下させると共に通常成形サイクルを長くする
。これらの欠点なで六るだけ少なくするために熱伝導性
の良い充填剤を樹脂に含有させるのが良い。また、充填
剤を加えることにより樹脂が硬化する時の収縮率シ低く
する効果も得られる。
One drawback of resin molds is that they have poor thermal conductivity. For this reason, the resin mold accumulates heat during injection molding, reducing the durability of the mold and generally prolonging the molding cycle. In order to minimize these drawbacks, it is preferable to include a filler with good thermal conductivity in the resin. Furthermore, by adding a filler, the shrinkage rate when the resin is cured can be reduced.

本発明において、使用される充填剤としては。In the present invention, the fillers used are:

アルミ粉、鉄粉、銅粉や黄銅粉のような金蛎粉や酸化ア
ルミや酸化チタンなどの金属酸化物、タルクや炭酸カル
シウムなどの無機充填剤などで、特には限定されない。
Examples include aluminum powder, iron powder, gold powder such as copper powder and brass powder, metal oxides such as aluminum oxide and titanium oxide, and inorganic fillers such as talc and calcium carbonate, but are not particularly limited.

排気によって樹脂を流動させると樹脂中の充填剤を浮遊
させて、モデルとの界面にごく薄い充填剤を含°まない
樹脂層な形成する。これは樹脂型の表面を充填剤が存在
することによって生5梵するミクロ的な凹凸をなくする
のに効果がある。モデルに樹脂を注型して静置すると一
部の充填剤は沈降してモナル面と接触する。したがって
、モデルに接触する型のごく薄い層は樹脂層の中から充
填剤が頭を出すような形となってミクロ的るで樹脂の表
面に凹凸ができることになる。この凹凸の存在は。
When the resin is fluidized by exhaust gas, the filler in the resin is suspended, forming a very thin layer of filler-free resin at the interface with the model. This is effective in eliminating microscopic irregularities that occur on the surface of the resin mold due to the presence of the filler. When resin is poured into a model and left to stand still, some of the filler settles and comes into contact with the monaural surface. Therefore, the very thin layer of the mold that comes into contact with the model has a shape in which the filler protrudes from within the resin layer, resulting in microscopic unevenness on the resin surface. The existence of this unevenness.

射出成形の際に成形品の表面の光沢を悪くするのである
。また、成形ショツト数が増えてくると型の表面を粗面
化する傾向がある。
This reduces the gloss of the surface of the molded product during injection molding. Furthermore, as the number of molding shots increases, the surface of the mold tends to become rougher.

このように本発明の方法によって製作した樹脂型によっ
て成形される樹脂は@に限定されない。
As described above, the resin molded by the resin mold manufactured by the method of the present invention is not limited to @.

ABS、メタクリル樹脂、ナイロン6.6.ポリアセタ
ール、ポリカーボネート、ポリウレタン等の樹脂に光沢
の優Atた成形品を得るこ七ができる。
ABS, methacrylic resin, nylon 6.6. It is possible to obtain molded products with excellent gloss from resins such as polyacetal, polycarbonate, and polyurethane.

本発明における射出成形用樹脂型製作法の手順を図面も
利用1−て以下説明する。
The procedure for manufacturing a resin mold for injection molding according to the present invention will be explained below with reference to the drawings.

図面は本発明に係る射出成形用樹脂型の断面図の一例で
ある。見切板の上に木枠を置きその中にメタクリル樹脂
製の原型モデルな離型剤を塗らずにセットする。冷却パ
イプ17も適当な位置にセットする。反応性希釈剤を含
有する未硬化エポキシ樹脂と硬化剤を混合して注型する
かゲルコート、する。直ち忙木枠ごと真空系に置いて排
気を開始する。樹脂に含まれていた気泡とモデルの表面
に物理吸着されていた空気が上昇してくるが、これによ
って樹脂は上下にかなり流動する。
The drawing is an example of a cross-sectional view of a resin mold for injection molding according to the present invention. Place a wooden frame on the parting board and set it in it without applying a mold release agent like the original model made of methacrylic resin. The cooling pipe 17 is also set in an appropriate position. An uncured epoxy resin containing a reactive diluent and a curing agent are mixed and cast or gel coated. Immediately place the entire wooden frame in the vacuum system and begin evacuation. The air bubbles contained in the resin and the air that was physically adsorbed on the surface of the model rise, causing the resin to flow considerably up and down.

樹脂中の充てん剤も浮遊しモデルとの界面から少し離れ
ている筈である。排気をしばらく続けると泡の発生が少
なくなるのでその時点で排気系を常圧に戻してゲル化す
るのか待つ。排気を長くすると泡が残存1−ている状態
でゲル化するので1通常10〜30分程度の排気が良い
The filler in the resin should also float and be a little far from the interface with the model. If you continue evacuation for a while, the generation of bubbles will decrease, so at that point return the evacuation system to normal pressure and wait to see if it gels. If the evacuation is prolonged, the remaining bubbles will gel, so evacuation for about 10 to 30 minutes is usually best.

ゲルコートの際は、ゲルコート層がタックの状態になっ
た時に更に樹脂を注型するか、樹脂とガラスクロス、カ
ーボンクロスや高耐熱性繊維等で積層するか、または粉
状アルミやケイ砂でバッキングするかどれかを選ぶ。こ
うして見切板と木型から脱型すると一般的にはキャビテ
ィー16が得られる。
When applying gel coat, when the gel coat layer is in a tack state, further resin is cast, resin is laminated with glass cloth, carbon cloth, high heat resistant fiber, etc., or backing is done with powdered aluminum or silica sand. choose which one to do. When the parting board and wooden mold are removed from the mold in this way, a cavity 16 is generally obtained.

コア20の製作は、モデルを離型することなくモデルと
キャビティー16の表面に離型剤を塗布1−。
The core 20 is manufactured by applying a mold release agent to the surfaces of the model and the cavity 16 without releasing the model 1-.

木枠にセットして冷却パイプ21もセットする。この場
合、モデルに離型剤を塗るのは成形品の裏側で光沢を必
要としない場合である。樹脂を注型またはゲルコートし
た後の操作はキャビティ−16製作と同様である。
Set it in a wooden frame and also set the cooling pipe 21. In this case, the release agent is applied to the model when gloss is not required on the back side of the molded product. The operations after resin casting or gel coating are the same as those for producing the cavity 16.

必要があれば加熱硬化させるが、その際はキャビティー
16とコア20をモデルから離型せずに加熱する。加熱
温度はモデルが変形しない程度の110℃以下が望オし
い。キャビティー16トコア20の製作が終了したらモ
デルを離型してそJlぞれを金属製のダイセyトに常温
硬化型エポキシ樹脂を使用12て接着固定すれば射出成
形用樹脂型が完成する。
If necessary, it is heated and cured, but in that case, the cavity 16 and core 20 are heated without being released from the model. The heating temperature is desirably 110° C. or lower, which is enough to prevent the model from deforming. When the production of the cavities 16 and cores 20 is completed, the models are released and each is fixed to a metal mold using room temperature curing epoxy resin 12 to complete the resin mold for injection molding.

以下9本発明の内容を実施例にて更に詳しく説明する。The contents of the present invention will be explained in more detail below with reference to Examples.

実施例1〜7 液状エポキシ樹脂(商品名エピコート828.シェル化
学)440部に、平均粒子径が約44μのアルミ粉55
0部と沈降防上剤(商品名サイロイドAL−1.富士デ
ヴインン化学)5部及び表IK示したような反応性希釈
剤を所定量加えてディシルバーで2時間かきまぜた。こ
れらの樹脂に所定の硬化剤を所定のPHR加えて注型用
樹脂とした。別にメタクリル製モデル(直径150丁屑
、!早さ2蝙の円板)をメタクリル製見切板の上&てセ
ットし、内寸190−の木枠で周囲をかこった。外径6
1M1の冷却パイプ21ナモデル表面から約101#I
I+離れた位置にセットしてから硬化剤を加えた注型用
樹脂を注型厚め30!1IIIIK注型した。注型樹脂
散は約1.7 Kfであった。また、注型直前の樹脂温
度は実施例1〜71で全て27〜29℃の範囲内であっ
た。木枠ごと真空系におき排気情g 50 Z/ll#
+の真空ポンプで排気した。約1分間で約1wHgの減
圧屋となった。更に20分間排気を続けた。この間+Q
r脂は流動1一つづけた。排気終了後、系を常圧冗戻し
約12時開放1賃して硬化を更に進めた。硬化後モデル
は脱型を七ずに木枠と見切板を取り除いてコア20を製
作した。次いでコア200表面でモデルKf51われて
いる部分を除いたパーティング面Lc離型剤を塗った。
Examples 1 to 7 440 parts of liquid epoxy resin (trade name Epicote 828. Shell Chemical) was added with 55 parts of aluminum powder having an average particle size of about 44μ.
0 parts, 5 parts of an anti-sedimentation agent (trade name Thyroid AL-1, Fuji Devine Chemical), and predetermined amounts of reactive diluents as shown in Table IK were added and stirred for 2 hours using a Disilver. A predetermined curing agent at a predetermined PHR was added to these resins to obtain a casting resin. Separately, a methacrylic model (150 pieces in diameter, a disc with a speed of 2 feet) was set on top of a methacrylic parting board, and surrounded by a wooden frame with an inner diameter of 190 mm. Outer diameter 6
Approximately 101 #I from the surface of the 1M1 cooling pipe 21 model
After setting it at a distance of I+, a casting resin with a hardening agent added thereto was cast to a thickness of 30!1IIIK. The casting resin powder was approximately 1.7 Kf. Further, the resin temperature immediately before casting was in the range of 27 to 29°C in all Examples 1 to 71. Place the entire wooden frame in a vacuum system and exhaust information g 50 Z/ll#
It was evacuated using a + vacuum pump. The pressure was reduced to about 1 wHg in about 1 minute. Evacuation was continued for an additional 20 minutes. During this time +Q
I added 1 fluid amount of r fat. After completing the evacuation, the system was returned to normal pressure and opened at about 12:00 to further advance curing. After curing, the model was removed from the mold and the wooden frame and parting board were removed to produce Core 20. Next, a mold release agent Lc was applied to the parting surface of the core 200 except for the part coated with model Kf51.

コ・アク0製作のと鎗と同じ寸法の木枠にコア20を置
き冷却パイプ17もセット口た後、同じ樹脂を厚さ約3
0+mlC注型した。コア20製作と同じ条件で排気l
−1硬化させた。更にモデルも脱型せずに80℃で6時
間加熱して硬化を進めた。冷却後キャビティー16とコ
ア20を分離する。キャビティー16は巾8咽、深さ5
曹の溝18つきの固定側型板4と固定1′HII取付板
3に常温硬化型エポキシ樹脂を注入【7て接着固定した
。同様にコア20を溝22つきの可動111+1型板5
と受板6に接着同定した。成形材料としてメタクリル樹
脂(アクリベットM、三菱レイヨン)を使い、射出成形
機(JSW−N 200BIl 、日本製鋼所)+でて
射出温度240℃、射出ゲージ圧53Kg/l−4、射
出時間15秒、冷却時間30秒の条件で成形した。射出
成形品の光沢はJIS K 6714 K準拠した曇価
の測定によって評価した。
After placing the core 20 in a wooden frame of the same size as the spear made by Ko-Aku 0 and setting the cooling pipe 17, apply the same resin to a thickness of about 3 mm.
0+mlC was cast. Exhaust l under the same conditions as core 20 production.
-1 Cured. Further, the model was heated at 80° C. for 6 hours to proceed with curing without demolding. After cooling, the cavity 16 and the core 20 are separated. Cavity 16 is 8 in width and 5 in depth.
Room-temperature curing epoxy resin was injected into the fixed side template 4 with the groove 18 and the fixed 1' HII mounting plate 3 [7] and fixed with adhesive. Similarly, the core 20 is attached to the movable 111+1 template 5 with the groove 22.
It was confirmed that it was adhered to the receiving plate 6. Methacrylic resin (Acrivet M, Mitsubishi Rayon) was used as the molding material, and an injection molding machine (JSW-N 200BIl, Japan Steel Works) was used at an injection temperature of 240°C, an injection gauge pressure of 53 kg/l-4, and an injection time of 15 seconds. Molding was performed under conditions of cooling time of 30 seconds. The gloss of the injection molded product was evaluated by measuring the haze value in accordance with JIS K 6714K.

別に混合後の各樹脂をASTM D 648に準拠して
試嗅片を作製1.、 80Cで6時間加熱硬化させた後
、ファイバーストレス18.6 K9/crlにて熱変
形温度を測定した。結果は表IK示した。
Separately, each resin after mixing was used to prepare a sample scent strip according to ASTM D 648.1. After heat curing at 80C for 6 hours, the heat distortion temperature was measured at a fiber stress of 18.6 K9/crl. The results are shown in Table IK.

表1 反応性希釈剤と硬化剤による20f/、、)後の
成形品の曇価への影響 表IK示したような反応性希釈剤と硬化剤の蒸気圧は低
い方が曇価は低い値となる。また、実施例7の如く蒸気
圧の低い反応性希釈剤と硬化剤を使用しても熱変形温度
が低いと曇価は高くなる。
Table 1 Influence of reactive diluent and curing agent on haze value of molded product after 20 f/,, becomes. Furthermore, even if a reactive diluent and curing agent with low vapor pressure are used as in Example 7, the haze value will be high if the heat distortion temperature is low.

実施例8〜9 実施例2及び6と全く同じ樹脂を使用して減圧下の排気
をしない−・こと以外は全て実施例2及び6と同じ製作
法で樹脂型中製作した。樹脂型のキャビティー16とコ
ア20の表面は美しい光沢をもっていたが、実施例1〜
7と同じ条件で射出成形したところ、20シヨツト後の
成形品の曇価は実施例2Vc対応するものが83チ、実
施例6Vc対応するものが85%であり、目視による光
沢は共に非常に良くなかった。
Examples 8 to 9 The same resin as in Examples 2 and 6 was used, and resin molds were manufactured in the same manner as in Examples 2 and 6, except that evacuation under reduced pressure was not performed. The surfaces of the resin mold cavity 16 and the core 20 had a beautiful luster, but in Examples 1-
When injection molding was carried out under the same conditions as in Example 7, the haze value of the molded product after 20 shots was 83% for the molded product corresponding to Example 2Vc and 85% for the molded product corresponding to Example 6Vc, and the visual gloss was very good in both cases. There wasn't.

実施例10〜13 液状エポキシ樹脂(商品名エボ) −) YD−127
束都化成)260部に反応性希釈剤o−)ルイジンのグ
リシジルアミン(商品名GOT 、日本化薬)50部、
平均粒子径約62μのアルミ粉690部と沈降防止剤と
してオルベン(商品名、白石工業)6部を加え、ディシ
ルバーで2時間かきまぜた。混合後の樹脂100部をと
り、これにトリエチレンテトラミン30部とポリアミド
アミン(商品名トーマイド235S、富士化成)70部
の比率で混合した硬化剤9部を加え充分に混合した。
Examples 10 to 13 Liquid epoxy resin (trade name Evo) -) YD-127
260 parts of reactive diluent o-) luidine glycidylamine (trade name GOT, Nippon Kayaku),
690 parts of aluminum powder with an average particle size of about 62 μm and 6 parts of Olben (trade name, Shiraishi Kogyo) as an anti-settling agent were added, and the mixture was stirred with a Disilver for 2 hours. 100 parts of the mixed resin were taken, and 9 parts of a curing agent mixed in a ratio of 30 parts of triethylenetetramine and 70 parts of polyamide amine (trade name: Tomide 235S, manufactured by Fuji Kasei) were added and thoroughly mixed.

メタクリル製見切板の上にメタクリル製モデルをセット
し、240+w角の木枠で周囲をかこった。
A methacrylic model was set on a methacrylic partition board and surrounded by a 240+W square wooden frame.

モデルの形状は?00IIII++角、高さ10−、肉
厚2祁。
What is the shape of the model? 00III++ corner, height 10-, wall thickness 2.

エツジ部の最小R= 1.5調の箱型である。The edge part has a box shape with a minimum radius of 1.5.

冷却パイプ17をモデル表面から約10+++m離れた
位置にセットしてから混合後の樹脂を40唄厚さに注型
した。1区ちに真空系に置いて、排気が950 L/=
nの真空ポンプで15分間排気した。減圧度はlmmH
gに達17た。排気終了後真空系を常圧に戻した。減圧
を開始してから約1時間後に樹脂はゲル化したが、その
状態で約12時間放置した。木枠を取りはずしてでき上
ったキャビティー16からモデルを離°型せずに全面に
シリコーン系離型剤を塗?てからキャビティ−16製作
と全く同じようにしてコア20を製作した。
The cooling pipe 17 was set at a position approximately 10+++ meters away from the surface of the model, and the mixed resin was cast to a thickness of 40 cm. Place one section in a vacuum system and exhaust 950 L/=
The mixture was evacuated for 15 minutes using a vacuum pump. The degree of reduced pressure is lmmH
It reached 17 g. After the evacuation was completed, the vacuum system was returned to normal pressure. Approximately 1 hour after the start of reduced pressure, the resin turned into a gel, and was left in that state for about 12 hours. Apply silicone mold release agent to the entire surface of the model without releasing it from the cavity 16 created after removing the wooden frame? After that, the core 20 was manufactured in exactly the same way as the cavity 16 was manufactured.

モデルな離型後キャビティー16を固定側取付板3と固
定側型板4に、コア20な可動11111型板5と受板
6に常温硬化型エポキシ樹脂で接着固定した(実施例1
0)。別にメタクリル製モデルと全く同じ形状を有する
木型モデルを製作した。木型モデルにエポキシ樹脂を注
型するとモデルの多孔質表面から気泡が出てくるので、
予めモデルをアミノアルキッド樹脂(商品名メルビコー
ト≠20クリヤー、長高化学工業)で目止めした。更に
シリコーン系離型剤を薄く塗布した後にメタフリルミモ
デルの時と全く同様の操作でキャビティー16とコア2
0を製作した(実施例11)。また、実施例10とII
において樹脂を注型後排気のみをしないで。
After mold release, the model cavity 16 was adhesively fixed to the fixed side mounting plate 3 and the fixed side template 4, and to the movable 11111 mold plate 5 and the receiving plate 6, which were the core 20, with room temperature curing epoxy resin (Example 1)
0). Separately, a wooden model with the exact same shape as the methacrylic model was manufactured. When epoxy resin is poured into a wooden model, air bubbles will come out from the porous surface of the model.
The model was sealed in advance with an amino alkyd resin (trade name: Melbicoat≠20 Clear, Nagataka Chemical Industry). After applying a thin layer of silicone mold release agent, mold cavity 16 and core 2 using the same procedure as for the Metafurirumi model.
0 was manufactured (Example 11). In addition, Examples 10 and II
Do not exhaust the resin after casting.

その他の条件は全て同じにして樹脂型を製作した(実施
例12.13)。
Resin molds were manufactured under all other conditions (Examples 12 and 13).

射出成形機(FS −150,6精樹脂工業)にて射出
温度240℃、射出ゲー□ジ圧40Kq/ln! 、射
出時間15秒、冷却時間50秒の条件でABS樹脂(サ
イコラックAM、宇部サイコン)を射出成形した。目視
による樹脂型の状態と成形品の表面状態の結果を表2v
c示した。
Injection molding machine (FS-150, 6 Seishin Kogyo), injection temperature 240℃, injection gauge pressure 40Kq/ln! ABS resin (Cycolac AM, Ube Cycon) was injection molded under the conditions of 15 seconds for injection time and 50 seconds for cooling time. Table 2v shows the results of visual inspection of the resin mold condition and the surface condition of the molded product.
c showed.

表2 樹llll11の製作条件と耐A注及び成形品の
光沢の関係
Table 2 Relationship between the manufacturing conditions of KIllll11 and the A note resistance and gloss of the molded product

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明に係る射出成形用樹脂盤の一例の断面図で
ある。 図中、1・・・スプールプッシェ、2・・・四ケートリ
ング、3・・・固定側取付板、4・・・固定側型板、5
・I・可動側型板、6・・・受板、7・・・スペンサー
ブロック。 8.9・・・エジェクタープレート、10・・・可動側
取付板。 11・・・スプールロックピン、12・・・工肉りター
ビン。 13・・・エジェクターロッド用穴、14・・・可動側
スプールロック部身補強金属、15・・・固定側接着固
定層、16・・・キャビティー、17・・・固定側冷却
パイプ。 18・・・固定側溝、19・・・可動側接着固定層、2
0・・・コア、21・・・可動側冷却パイプ、22・・
・可動側溝。 特許出願人 日本デブコン株式会社 代理人 児 玉 雄 三
The drawing is a sectional view of an example of a resin plate for injection molding according to the present invention. In the figure, 1... Spool pusher, 2... Four cater rings, 3... Fixed side mounting plate, 4... Fixed side template, 5
・I. Movable side template, 6... Receiving plate, 7... Spencer block. 8.9... Ejector plate, 10... Movable side mounting plate. 11... Spool lock pin, 12... Machining turbine. 13... Ejector rod hole, 14... Movable side spool lock part reinforcing metal, 15... Fixed side adhesive fixing layer, 16... Cavity, 17... Fixed side cooling pipe. 18... Fixed side groove, 19... Movable side adhesive fixed layer, 2
0...Core, 21...Movable side cooling pipe, 22...
- Movable gutter. Patent applicant: Nippon Devcon Co., Ltd. Agent: Yuzo Kodama

Claims (1)

【特許請求の範囲】[Claims] 1、射出成形用型の基本的構造部がエポキシ樹脂で構成
される射出成形用樹脂型を製作するに際して、エポキシ
樹脂を構成する成分中1分子中に少なくとも1個以上の
エポキシ基を有する低粘度の反応性希釈剤、及びアミン
系硬化剤を含有し、前記両者の蒸気圧は共K 30Cで
1wIHg以下であり、かつ硬化後の熱変形温度が60
℃以上のエポキシ樹脂をメタクリル樹脂製の原型モデル
に注型もしくはゲルコートした後、減圧下に排気し樹脂
を流動させるようにしたことを特徴とする射出成形用樹
脂型の製作法。
1. When manufacturing an injection molding resin mold in which the basic structure of the injection molding mold is made of epoxy resin, it is necessary to use a low viscosity resin mold that has at least one epoxy group in one molecule among the components that make up the epoxy resin. contains a reactive diluent of
A method for manufacturing a resin mold for injection molding, characterized by casting or gel coating an epoxy resin at a temperature of ℃ or above onto a prototype model made of methacrylic resin, and then exhausting the resin under reduced pressure to cause the resin to flow.
JP24485083A 1983-12-27 1983-12-27 Manufacture of resin mold for injection molding product excellent in luster Pending JPS60137623A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24485083A JPS60137623A (en) 1983-12-27 1983-12-27 Manufacture of resin mold for injection molding product excellent in luster

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24485083A JPS60137623A (en) 1983-12-27 1983-12-27 Manufacture of resin mold for injection molding product excellent in luster

Publications (1)

Publication Number Publication Date
JPS60137623A true JPS60137623A (en) 1985-07-22

Family

ID=17124900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24485083A Pending JPS60137623A (en) 1983-12-27 1983-12-27 Manufacture of resin mold for injection molding product excellent in luster

Country Status (1)

Country Link
JP (1) JPS60137623A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004051714A3 (en) * 2002-12-04 2004-11-18 Hewlett Packard Development Co A polymer solution for nanoprint lithography to reduce imprint temperature and pressure

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5878715A (en) * 1981-11-06 1983-05-12 Nissan Motor Co Ltd Preparation of experimental article

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5878715A (en) * 1981-11-06 1983-05-12 Nissan Motor Co Ltd Preparation of experimental article

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004051714A3 (en) * 2002-12-04 2004-11-18 Hewlett Packard Development Co A polymer solution for nanoprint lithography to reduce imprint temperature and pressure

Similar Documents

Publication Publication Date Title
US5260014A (en) Method of making a multilayer injection mold
JP4219278B2 (en) Rapid prototype injection molding
US5156754A (en) Metal-powder filled epoxy resin mold
JPH0236366B2 (en)
Ong et al. Rapid moulding using epoxy tooling resin
US3088174A (en) Method of producing a reinforced plastic die
US6602936B1 (en) Casting resin and process for the fabrication of resin molds
US3784152A (en) Process of producing a composite mold having cooling pipes embedded therein
US4086118A (en) Rigid composite articles and a method for their manufacture
CN112218750B (en) Preparation method of sand casting mold with protective coating
JPS60137623A (en) Manufacture of resin mold for injection molding product excellent in luster
US20100229682A1 (en) Cold cast mass element
Wortmann et al. Industrial‐scale vacuum casting with silicone molds: A review
US3393263A (en) Method for forming musical instrument bodies
JPH0755979B2 (en) Epoxy resin composition
US2860947A (en) Method of casting phenolic resins in a tin-plated mold
US20230211526A1 (en) Tooling formed from a 3d printed tooling scaffold
JPH0767698B2 (en) Epoxy resin mold and manufacturing method
JPH0839574A (en) Production of hollow plastic articles
JPH06179222A (en) Production of thermosetting resin-made counter with sink
JPH05295083A (en) Epoxy resin composition for mold and resin mold made thereof
US3814626A (en) Core box
CN107987483B (en) Method for quickly manufacturing injection mold
RU45332U1 (en) FORM FOR MANUFACTURE OF FOAM POLYURETHANE PRODUCTS
JPS612507A (en) Porous durable mold and manufacture thereof