JPS6013736B2 - Manufacturing method for spherical granules - Google Patents

Manufacturing method for spherical granules

Info

Publication number
JPS6013736B2
JPS6013736B2 JP12852776A JP12852776A JPS6013736B2 JP S6013736 B2 JPS6013736 B2 JP S6013736B2 JP 12852776 A JP12852776 A JP 12852776A JP 12852776 A JP12852776 A JP 12852776A JP S6013736 B2 JPS6013736 B2 JP S6013736B2
Authority
JP
Japan
Prior art keywords
granules
granulation
dish
binder
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12852776A
Other languages
Japanese (ja)
Other versions
JPS5353585A (en
Inventor
薫 梅屋
嘉郎 船越
辰郎 竹内
隆造 木本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takeda Pharmaceutical Co Ltd
Original Assignee
Takeda Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takeda Chemical Industries Ltd filed Critical Takeda Chemical Industries Ltd
Priority to JP12852776A priority Critical patent/JPS6013736B2/en
Publication of JPS5353585A publication Critical patent/JPS5353585A/en
Publication of JPS6013736B2 publication Critical patent/JPS6013736B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は粉体から球状造粒物を製造する方法に関する。[Detailed description of the invention] The present invention relates to a method for producing spherical granules from powder.

さらに詳しくは、夏球度が高く、粒粘度が均一に揃い、
しかも機械的強度の高い高品質の球状造粒物を工業的大
規模に、かつ効率よく、しかも経済的有利に製造する方
法に関するものである。一般に、粉体を造粒して粒状物
にすることは、工鉱業界において多くの利点を生むこと
が知られている。
More specifically, the summer sphericity is high, the grain viscosity is uniform,
Moreover, the present invention relates to a method for producing high-quality spherical granules with high mechanical strength on an industrial scale, efficiently, and economically. In general, granulation of powder into granules is known to have many advantages in the mining industry.

たとえば、流動性がよくなるために、固体の輸送、供給
、包装などが容易となり、また、粉塵の発生、粉体の容
器への付着が抑制される。これらの粒、球状物の利点に
着目して、最近、工鉱業界、とりわけ鉄鋼、非鉄金属、
セメント、肥料、飼料、農薬、活性炭、カーボンブラッ
ク等の技術分野において、原料、中間製品または最終製
品の粒球状化技術に対して大きな関Dが集まっており、
高品質の球状造粒物を大量かつ廉価に製造する技術の開
発に大きな期待が寄せられている。従釆行なわれている
粉体からの粒、球状造粒物の製造法としては、ほとんど
の場合転動造粒物が採用されている。転勤造粒物は、粉
体原料を造粒機内で転がしながら結合剤液を撒布して、
ほぼ球状で、かつ必要な強度をそなえた凝集物、造粒物
をつくる操作であって、これに用いられる装置は、具体
的には、回転皿型造粒機や、回転ドラム型造粒機といっ
た造粒装置である。この造粒法によると、比較的球状に
近い造粒物を連続的に大量生産できるので、各方面で多
く採用されてはいるが、転勤造粒物は凝集造粒を行なう
方法であり、原料粉体は造粒機へ供給されるにさきだち
、通常混練機で結合剤や水と充分混線されるという、い
わゆる調湿前処理をする必要がある。この調溢前処理の
工程を必要とすることは、造粒工程を複雑化することと
なるばかりではなく、本質的に次のような欠点を有して
いる。すなわち、調湿前処理工程における予糠渥練時に
、粉体は液膜によって被覆されるのであるが「混線操作
が不充分なときは、時として完全には液膜が構成されず
、不完全な液膜構成状態のままで造粒機へ送られること
となる。このような場合には、たとえば造粒工程におい
て理想的な操作が行なわれたとしても、造粒時に添加す
る結合剤を粒子接点部へ平均的にまんべんなく撒布また
は供給することができない。その結果、結合剤の分散が
不均一となるために、得られる造粒物の機械的強度にば
らつきを生じ、乾燥等の後の工程でも、結合剤量から予
測されるとうりの充分な機械的強度をうろことができな
くなる。さらに、結合剤のまわりの早い造粒物と、遅い
造粒物が同時に生成するために、凝集造粒に遅速を生じ
、でき上った造粒物の粒度分布が大きく拡がることとな
る。これらの2つの問題点「すなわち、充分な強度を得
難いこと、および粒度分布が拡がることとの欠点は、転
勤造粒法のみで凝集造粒を実施するかぎりにおいて、な
かば宿命的なものであるとされている。一方、本発明者
らは、まず転動造粒機にコア−、すなわち核となるべき
粒子を供給し「 これに調湿前処理を施した原料粉体を
供給して被覆造粒を行なってみたが、転勤造粒機のもつ
分級特性のために、被覆造粒と凝集造粒が同時に並行し
て起り「粒度のそろった造粒物をうろことはきわめて困
難なことを知った。
For example, the improved fluidity facilitates transportation, supply, packaging, etc. of solids, and also suppresses generation of dust and adhesion of powder to containers. Focusing on the advantages of these grains and spherical materials, recently the industrial and mining industries, especially steel, non-ferrous metals,
In technical fields such as cement, fertilizer, feed, pesticides, activated carbon, and carbon black, there is a great deal of interest in granulation technology for raw materials, intermediate products, or final products.
There are great expectations for the development of technology to produce high-quality spherical granules in large quantities at low cost. As a conventional method for producing grains or spherical granules from powder, rolling granules are employed in most cases. Transfer granules are made by sprinkling binder liquid while rolling powder raw materials in a granulator.
This is an operation to create aggregates or granules that are almost spherical and have the necessary strength. Specifically, the equipment used for this is a rotating plate type granulator or a rotating drum type granulator. This is a granulation device. According to this granulation method, relatively spherical granules can be produced in large quantities continuously, so it is widely used in various fields, but transfer granulation is a method of agglomeration granulation, Before the powder is supplied to the granulator, it is usually necessary to perform a so-called humidity conditioning pretreatment in which the powder is thoroughly mixed with a binder and water in a kneader. The necessity of this pre-flooding treatment process not only complicates the granulation process, but also inherently has the following drawbacks. In other words, the powder is covered with a liquid film during the pre-bran mixing in the humidity conditioning pre-treatment process, but ``if the mixing operation is insufficient, the liquid film may not be completely formed and may be incomplete. In this case, even if the granulation process is performed in an ideal manner, the binder added during granulation may not be present in the particles. It is not possible to spread or supply the binder evenly and evenly to the contact area.As a result, the dispersion of the binder becomes uneven, resulting in variations in the mechanical strength of the resulting granules, which may cause problems in subsequent processes such as drying. However, it is not possible to obtain sufficient mechanical strength as predicted from the amount of binder.Furthermore, since fast granules and slow granules are formed around the binder, agglomeration This causes the grains to slow down and the particle size distribution of the finished granules to widen greatly.These two problems, namely, difficulty in obtaining sufficient strength and broadening of the particle size distribution, As long as agglomeration granulation is carried out only by the rolling granulation method, it is considered to be a somewhat fateful process.On the other hand, the present inventors first developed a core, that is, a nucleus, in the rolling granulation machine. We tried coating and granulating by supplying raw material powder that had been subjected to humidity conditioning pretreatment, but due to the classification characteristics of the transfer granulator, coating and agglomeration granulation were not possible. At the same time, I learned that it was extremely difficult to scale granules with uniform particle size.

他方、最近遠心流動被覆造粒法と呼ばれる新しい造粒法
が開発された。
On the other hand, a new granulation method called centrifugal fluidized coating granulation has recently been developed.

この造粒法は従来用いられて来た転勤造粒法とは全く異
なる観点から発明されたものであって、その詳細は、た
とえば特公昭46−22544号公報等に記載されてい
るが、その概要はつぎのとうりである。すなわち、中心
部にほぼ水平に回転する皿状部、皿状部の周囲に設けら
れた減速部、および減速部につらなる円筒状部から構成
される系内に被覆対象物を収容し、皿状部の回転によっ
て該被覆対象物を遠0流動させながら被覆剤を系内へ噂
露し、さらに必要に応じて系の下方または上方から通気
することにより粒状物を被覆造粒する方法である。この
方法で得られる球状造粒物は、粒径がきわめて均一にそ
ろっており、しかも機械的強度も高いので、工業上利用
度のきわめて高い新しい造粒法として注目されている。
しかしながら、経済性を考慮にいれたこの方法の連続化
が困難で、しかも装置をあまり大型化することは設計上
容易ではないとされている。従って、付加価値が低く、
しかも大量生産を要求されるような製品の造粒には必ず
しも適しているとはいい難い。上述の事情にかんがみ、
本発明者らは、粉体から高品質の球状造粒物を大規模か
つ効率的、経済的に製造する方法について鋭意研究を重
ねて来た結果、まず遠心流動被覆造粒法によって、特定
の粒径を有する1次造粒物をつくり、ついで転動造粒機
の分級特性を活かしたままほとんど被覆造粒のみを行な
わせ、公知の方法に比して粒蓬が均一にそろい、しかも
機械的強度の大きい球状造粒物を工業的大規模に、効率
よく製造する方法を完成した。
This granulation method was invented from a completely different perspective from the conventional transfer granulation method, and its details are described in, for example, Japanese Patent Publication No. 46-22544. The outline is as follows. That is, the object to be coated is housed in a system consisting of a dish-shaped part that rotates approximately horizontally at the center, a deceleration part provided around the dish-shaped part, and a cylindrical part connected to the deceleration part. This is a method of coating and granulating granules by exposing the coating agent into the system while causing the object to be coated to flow through the system by rotating the part, and then ventilating the system from below or above as necessary. The spherical granules obtained by this method have extremely uniform particle sizes and high mechanical strength, and are therefore attracting attention as a new granulation method with extremely high industrial applicability.
However, it is said that it is difficult to make this method continuous in consideration of economic efficiency, and furthermore, it is not easy to increase the size of the device due to the design. Therefore, added value is low;
Moreover, it is not necessarily suitable for granulating products that require mass production. In view of the above circumstances,
The present inventors have conducted intensive research on a method for producing high-quality spherical granules from powder on a large scale, efficiently, and economically.As a result, we first determined that a specific A primary granulated material having a certain particle size is made, and then only coating granulation is performed while taking advantage of the classification characteristics of a rolling granulator. Compared to known methods, the granules are more uniformly arranged, and it is easy to machine. We have completed a method for efficiently producing spherical granules with high mechanical strength on an industrial scale.

すなわち、本発明は、中心部にほぼ水平に回転する皿状
部、皿状部の周囲に設けられた減速部および減速部に連
なる円筒状部から構成される系内へコアーを収容し、皿
状部の回転によって該コアーを遠心流動させながら、乾
燥粉末および結合剤を系内へ供給して1次造粒物をつく
り、ここに得られる1次造粒物を転動造粒機へ移して乾
燥粉末および結合剤を供給しながら造粒を行なってその
平均粒蓬が1次造粒物の平均粒径の4倍まで球状造粒物
とすることを特徴とする球状造粒物の製造法である。換
言すれば、本発明の方法は、まず遠心流動被覆装置を用
いて、粒径が均一にそろい、かつ機械的強度の大きい1
次造粒物をつくり、その際この1次造粒物の平均粒径は
少なくとも最終造粒物の平均粒径の1/4の大きさとな
るようにし、これを転勤造粒機に供給して乾燥粉末と結
合剤を供繋舎して造粒を続け、その平均粒径が1次造粒
物の平均粒径の4倍までの球状造粒物とする方法である
。本発明の方法によれば、転動造粒機内では凝集造粒は
ほとんど行なわれず、被覆造粒のみが行なわれるため転
動造粒機の特徴と遠0流動被覆造粒機の特徴の両者を充
分に活かし、しかも両装置の欠点を克服した球状造粒物
の新規な造粒方法が提供される。つぎに、本発明の造粒
法を具体的に説明する。
That is, the present invention accommodates the core in a system consisting of a dish-shaped part that rotates approximately horizontally at the center, a deceleration part provided around the dish-shaped part, and a cylindrical part connected to the deceleration part. Dry powder and binder are fed into the system while the core is centrifugally fluidized by rotation of the shaped part to produce a primary granule, and the primary granule obtained here is transferred to a rolling granulator. Production of spherical granules, characterized in that granulation is carried out while supplying dry powder and a binder to produce spherical granules whose average particle diameter is up to four times the average particle diameter of the primary granules. It is the law. In other words, the method of the present invention first uses a centrifugal fluid coating device to coat particles with uniform particle size and high mechanical strength.
A secondary granulate is made, with the average particle diameter of the primary granulate being at least 1/4 of the average particle diameter of the final granulate, and this is fed to a transfer granulator. This is a method in which granulation is continued by supplying the dry powder and a binder to form spherical granules with an average particle size of up to four times the average particle size of the primary granules. According to the method of the present invention, almost no agglomeration granulation is performed in the tumbling granulator, and only coating granulation is performed. A new method for granulating spherical granules is provided that takes full advantage of the above methods and overcomes the drawbacks of both devices. Next, the granulation method of the present invention will be specifically explained.

まず1次造粒物をつくる遠心流動被覆装置としては、た
とえば第1図ないし第6図に示されるような装置などが
用いられる。図面に示される装置は、回転皿状部1と造
粒物の運動方向を円滑にするための減速部5、およびこ
の減速部とつらなる円筒状部3により、造粒部Aが構成
されている。回転皿状部1は、ほぼ垂直な回転軸7に固
定され。、回転皿状部の回転速度は自在に変えることが
できるようになっている。この皿状部1は、平板状であ
ってもよく、また周辺付近がせり上った皿上であっても
よく、さらに皿状部の中心部に円錐状突起2を有してい
てもよい。皿状部の回転速度は、装置の大きさ、原料の
種類、コアーおよび撒布する原料粉体の粒度などにより
適宜に決定しうるが、一般には周速が10の/秒以下と
なるようにするのがよく、特に2〜7m/秒がよい。な
お、造粒部Aの上部に原料粉末供給口4は、結合剤噴霧
ノズル14を設けてもよく、さらに第2図に示すごとく
円筒状部3の上部を蓋12を閉じ、そこに原料粉末供給
口4を設けてもよい。さらに、回転皿状部1の上面には
、たとえば第3図および第4図に示すように、粒子の蝿
拝をより円滑にするためのすべり止め13を設けてもよ
い。また、第5図に示すように、円錐状突起2の底板に
中空部11を設けるとともに周辺に通気孔9を設け、か
つ回転軸7を中空として吹込口6から空気等のガスを吹
きこむようにしてもよい。また、吹込口6は第2図、第
3図に示すように装置の上部に設けてもよく、第1図に
示すように装置の底部に空間Bを設け、その空間Bに吹
込口6からガスを供給して、回転皿状部と減速部との間
隙10からガスを装置内に通気することもできる。第1
図では回転軸7はシーリング8を介して装置の底部に位
置しているが造粒部Aを通る様上方から設けてもよい。
減速部5は、一般には図面に示すように曲線的な断面を
有することが望ましいが、所望により第6図で示される
ように、直線的な断面を有するものとすることもできる
。また、減速部5は、円筒状部3に接合され、または円
筒状部3と一体に構成されており、回転皿状部1の周辺
から適宜の間隙10を有するように固定されている。減
速部5が曲線的な断面を有するときは、回転皿状部1か
ら円筒状部3へ至る断面は円滑な曲線で連なり造粒がき
わめて効果的に行なわれる。円筒状部3は、その関口部
を朝顔型に開いている形状としてもよく、または多少絞
り勝手とする等の形状をとるようにしてもよい。なお、
この造粒装置には、結合剤曙霧ノズル、散粉装置、水分
検出器等を付設し、これを自動制御装置と接続して造粒
操作を自動的に行なうようにすることもできる。このよ
うな遠′0流動被覆袋層を用いて被覆造粒を行なうには
、たとえばコアーに結合剤を含む被覆剤液を贋覆しなが
ら造粒する手段、コアーに調湿前処理を施した原料湿粉
を撒布して造粒する手段などが既に知られてはいるが、
本発明の方法における1次造粒物の製造にあたってはコ
アーに原料の乾燥粉末と結合剤とを別々の供給口から供
給しながら造粒する手段が用いられる。ここに用いられ
るコアーすなわち核となるべき粒子としては、その粒子
群の均等係数がなるべく小さいものであることが望まし
いが、それはいかなる手段によって得られるものであっ
てもよい。
First, as a centrifugal fluid coating apparatus for producing the primary granules, for example, apparatuses such as those shown in FIGS. 1 to 6 are used. In the device shown in the drawing, a granulation section A is constituted by a rotating plate-shaped section 1, a deceleration section 5 for smoothing the direction of movement of the granulated material, and a cylindrical section 3 connected to this deceleration section. . The rotating plate-like portion 1 is fixed to a substantially vertical rotating shaft 7. , the rotational speed of the rotating plate-shaped portion can be changed freely. This dish-shaped part 1 may be flat, or may be a dish with a raised peripheral area, or may have a conical protrusion 2 at the center of the dish-shaped part. . The rotational speed of the dish-shaped part can be determined appropriately depending on the size of the device, the type of raw material, the particle size of the core and the raw material powder to be spread, etc., but in general, the peripheral speed should be 10 m/sec or less. The speed is preferably 2 to 7 m/sec. The raw material powder supply port 4 may be provided with a binder spray nozzle 14 in the upper part of the granulation part A, and the upper part of the cylindrical part 3 is closed with a lid 12 as shown in FIG. A supply port 4 may also be provided. Furthermore, as shown in FIGS. 3 and 4, for example, a non-slip member 13 may be provided on the upper surface of the rotary plate-shaped portion 1 in order to make the movement of the particles smoother. Further, as shown in FIG. 5, a hollow part 11 is provided in the bottom plate of the conical protrusion 2, and a ventilation hole 9 is provided around the circumference, and the rotating shaft 7 is made hollow so that gas such as air can be blown into it from the inlet 6. Good too. Alternatively, the air inlet 6 may be provided at the top of the device as shown in FIGS. 2 and 3, or a space B may be provided at the bottom of the device as shown in FIG. It is also possible to supply gas and vent the gas into the device through the gap 10 between the rotary plate and the speed reducer. 1st
In the figure, the rotating shaft 7 is located at the bottom of the apparatus via the sealing 8, but it may be provided from above so as to pass through the granulation section A.
Generally, it is desirable that the speed reducer 5 has a curved cross section as shown in the drawings, but it can also have a straight cross section as shown in FIG. 6 if desired. Further, the deceleration part 5 is joined to the cylindrical part 3 or is configured integrally with the cylindrical part 3, and is fixed so as to have an appropriate gap 10 from the periphery of the rotating plate-shaped part 1. When the deceleration part 5 has a curved cross section, the cross section from the rotary plate-shaped part 1 to the cylindrical part 3 is a continuous smooth curve, and granulation is performed very effectively. The cylindrical part 3 may have a shape in which the opening part thereof is open in a morning glory shape, or may have a shape in which it is somewhat easy to squeeze. In addition,
This granulation device may be equipped with a binder atomizing nozzle, a dusting device, a moisture detector, etc., and connected to an automatic control device to automatically carry out the granulation operation. In order to carry out coating granulation using such a far-flow coating bag layer, for example, there is a method of granulating the core while displacing the coating solution containing a binder, and a raw material whose core has been pretreated with moisture conditioning. Although methods such as spreading wet powder and granulating it are already known,
In producing the primary granulated product in the method of the present invention, a method is used in which the dry raw powder and the binder are supplied to the core from separate supply ports for granulation. It is preferable that the particles to be used as the core, that is, the nucleus used here, have a uniformity coefficient as small as possible for the particle group, but it may be obtained by any means.

たとえば、遠心流動被覆装置に乾燥粉末を仕込み、適宜
の結合剤を頃露しながら遠心流動させて得られるもので
あってもよく、コアーとするべき物質を適宜の手段で粉
砕し、分級筋別して得たものであってもよい。これらの
うち、遠心流動被覆装置を用いて乾燥粉末から造粒を行
なう手段によるときは、コア−の形成とこれに続く本発
明の方法による1次造粒物の形成とを同一の装置内で継
続して行なうこともできるばかりではなく、分級駒別等
の煩雑な操作をしなくても粒子の大きさの揃ったコアー
が得られるので、多くの場合有利である。また、コアー
は、造粒するべき原料粉体と異質のものであっても、ま
た同質のものであってもよい。コァーは多くの場合粒径
が約40叫程度よりも大きいものが望ましく、、その粒
子群の均等係数がなるべく小さいものであることが望ま
しい。 \一方、原料粉体は粒径
が約25叱程度よりも小さいものを用いたときに好結果
が得られることが多く、通常の場合水分が3重量%程度
以下に調製した乾燥粉末として用いるのがよい。
For example, it may be obtained by charging a dry powder into a centrifugal fluid coating device and centrifugally fluidizing it while exposing an appropriate binder, or by crushing the material to be made into a core by an appropriate means and separating it into grains. It may be something you have obtained. Among these methods, when granulation is performed from dry powder using a centrifugal fluid coating device, core formation and subsequent formation of primary granules by the method of the present invention are performed in the same device. Not only can it be carried out continuously, but it is also advantageous in many cases because cores of uniform particle size can be obtained without complicated operations such as classification into separate pieces. Further, the core may be different from the raw material powder to be granulated, or may be the same. In most cases, it is desirable that the core has a particle size larger than about 40 mm, and it is desirable that the uniformity coefficient of the particle group be as small as possible. \On the other hand, good results are often obtained when using raw material powder with a particle size smaller than about 25%, and usually it is used as a dry powder with a moisture content of about 3% by weight or less. Good.

本発明の方法における原料粉体は、工鉱業技術の分野に
おいて球状造粒物の原料となりうる粉体であればし、か
なるものであってもよく、たとえば、活性炭原料粉末、
金属鉱石粉末、セメント原料粉末、肥料・農薬・飼料等
の粉末などがあげられる。また、本発明の方法に用いら
れる結合剤としては、水または有機溶剤自体、または徴
粉で非水溶性であるが水によく分散するもの、たとえば
粘土、ベントナィト、消石灰、石こう、セメントなど、
水落性のもの、たとえばアルカリ金属水酸化物、水ガラ
ス、パルプ廃液、澱粉、糠密、セルロ−スエーテル類、
アラビアゴム、デキストリン、ポリワックス、食塩、合
成樹脂など、あるいは非水潟性であるが有機溶剤に溶け
るもの、たとえばビチユメン、タール、パラフイン、ワ
ックス、ピッチ、アスファルト等を適宜の溶剤に溶解ま
たは分散させたもの等の通常の造粒法において結合剤と
して使用されうるものならばいずれも便宜に使用しうる
The raw material powder in the method of the present invention may be any powder that can be used as a raw material for spherical granules in the field of engineering and mining technology, such as activated carbon raw material powder,
Examples include metal ore powder, cement raw material powder, powder for fertilizers, pesticides, feed, etc. In addition, the binder used in the method of the present invention may be water or the organic solvent itself, or a powder that is insoluble in water but disperses well in water, such as clay, bentonite, slaked lime, gypsum, and cement.
Water-repellent substances such as alkali metal hydroxides, water glass, pulp waste liquid, starch, bran, cellulose ethers,
Dissolve or disperse gum arabic, dextrin, polywax, salt, synthetic resin, etc., or non-water lagoonal substances that are soluble in organic solvents, such as bitumen, tar, paraffin, wax, pitch, asphalt, etc. in an appropriate solvent. Any binder that can be used as a binder in conventional granulation methods, such as binders, can be conveniently used.

本発明の方法においては、まず遠心流動被覆装置を用い
て1次造粒物が製造される。
In the method of the present invention, first, a primary granule is produced using a centrifugal fluid coating device.

すなわち、遠0流動被覆装置内にコァーを収容し、回転
皿状部を回転させながら原料粉末と結合剤を別々の供給
口から系内へ供給して被覆造粒を行なうことにより1次
造粒物が得られる。第1図に示す形式の遠0流動被覆装
置を用いて1次造粒物を製造する場合における装置内で
の造粒物の流動は、回転皿状部1と、これに固定された
円錐状突起物2の回転により、造粒物が回転軸7を中心
とする円運動をしながら遠心力によって中心部から周辺
部へ回転皿状部1に沿って押し上げられ、それにともな
って中心部上層の造粒物は円錐状突起物2に沿って下降
する。また、周辺部に押し上げられた造粒物は、減速部
5および円筒状部3にそってさらに押し上げられ、最上
層部に至って中心側へ崩れ落ちる。このような運動の反
復によって渦巻状の循環運動が行なわれることになる。
この、造粒物の遠心力、重力、摩擦力を利用して流動さ
せること、すなわち遠心流動させることにより、粒子相
互の研摩性および結合剤の展延性が良好となるという特
徴が出る。従って、遠心流動被覆装置を用いて造粒する
場合には、この装置自体が混練機能を有していることと
なり、その結果、従来用いられて釆た被覆造粒装置にお
けるような別個の濠練設備が不要となるばかりでなく、
得られる1次造粒物は粒径の揃った強度の高い球状造粒
物となるのである。以上が1次造粒物を製造する工程の
詳細であるが、さきにも述べたように、コアーとして、
遠心流動被覆装置を用いて乾燥粉末と結合剤を供給して
遠心流動させることによって得られる紬粒を用いるのは
便宜な手段である。
That is, the core is housed in a far-0 flow coating device, and the raw material powder and binder are supplied into the system from separate supply ports while rotating the rotating dish-shaped part to perform coating granulation, thereby performing primary granulation. You can get things. When producing primary granules using a far-zero flow coating device of the type shown in FIG. Due to the rotation of the protrusion 2, the granules move circularly around the rotating shaft 7 and are pushed up from the center to the periphery along the rotating dish-shaped part 1 by centrifugal force, and as a result, the upper layer of the center part is pushed up by the centrifugal force. The granules descend along the conical projections 2. Moreover, the granulated material pushed up to the peripheral part is further pushed up along the deceleration part 5 and the cylindrical part 3, reaches the uppermost layer part, and collapses toward the center. The repetition of such movements results in a spiral circular movement.
By making the granules flow by using centrifugal force, gravity, and frictional force, that is, by centrifugal flow, the abrasiveness of the particles and the spreadability of the binder are improved. Therefore, when granulating using a centrifugal fluid coating device, this device itself has a kneading function, and as a result, a separate moat and kneading function as in the conventionally used coating and granulating device is required. Not only does it eliminate the need for equipment, but
The primary granules obtained are spherical granules with uniform particle size and high strength. The above is the details of the process of manufacturing the primary granules, but as mentioned earlier, as the core,
It is convenient to use pongee grains obtained by centrifugal flow using a centrifugal flow coating device, feeding dry powder and binder.

すなわち、上述の方法において、コアーとして、中心部
にほぼ平面に回転する皿状部、皿状部の周囲に設けられ
た減速部、および減速部に連なる円筒状部から構成され
る系内へ乾燥粉末および結合剤を供繋舎して皿状部を回
転せしめて遠心流動させて得られる球状粒子を用いる手
段である。この手段でコアーを製造するときは、コア−
の製造と1次造粒物の製造を同一装置内で引き続いて行
ないうる。たとえば、装置として第1図の遠0流動被覆
装置を用い、造粒部Aに少量乾燥粉末を仕込み、空気吹
込口6から原料粉体を流動させる最少量以上の量の空気
を通じ、回転皿状部を回転させながら結合剤液を膿霧ノ
ズル14から原料粉体に供輪葺する。原料粉体に対して
一定量の結合剤が供給されると、原料粉体は凝集を起し
て粒状となり、1次造粒のためのコア−が造られる。ひ
きつづき、あるいは所望により別の遠D流動被覆装置に
コアーを移し、結合剤と原料乾燥粉体を別々の供給口か
ら連続的または間歌的に供給してコァーに原料粉体を被
覆しながら肥大させると、1次造粒物が得られる。この
場合、遠D流動被覆装置内の混合物の水分を自動的に検
出するようにして、結合剤や原料粉体の供孫合量を自動
制御することもできる。本発明の方法においては、この
ようにして得られる1次造粒物が、転動造粒装置へ供給
され、これに原料粉体を結合剤を適宜に供給して転動造
粒に付して球状造粒物とする工程に付される。
That is, in the above-mentioned method, drying is carried out as a core into a system consisting of a dish-shaped part in the center that rotates approximately flat, a deceleration part provided around the dish, and a cylindrical part connected to the deceleration part. This method uses spherical particles obtained by supplying powder and a binder and rotating a dish-shaped part to cause centrifugal flow. When manufacturing the core by this means, the core
The production of the primary granules and the production of the primary granules can be carried out successively in the same apparatus. For example, using the far-zero flow coating device shown in FIG. While rotating the unit, the binder liquid is applied from the mist nozzle 14 onto the raw material powder. When a certain amount of binder is supplied to the raw material powder, the raw material powder is agglomerated and becomes granular to form a core for primary granulation. Continuously, or if desired, the core is transferred to another far-D fluid coating device, and the binder and raw material dry powder are fed continuously or intermittently from separate supply ports, and the core is enlarged while being coated with the raw material powder. By doing so, primary granules are obtained. In this case, by automatically detecting the water content of the mixture in the far-D fluidized coating apparatus, it is also possible to automatically control the combined amount of the binder and raw material powder. In the method of the present invention, the primary granules thus obtained are supplied to a rolling granulator, and the raw material powder is appropriately supplied with a binder and subjected to rolling granulation. and subjected to a step of forming spherical granules.

ここに用いられる転勤造粒装置としては、一般に通常用
いられている皿型造粒機やドラム型造粒機などの公3敗
の転勤造粒機のいずれをも便宜に使用しうる。また、こ
の際使用される原料粉体、結合剤等は、1次造粒物製造
の際と同じものを用いてもよく、必要に応じ、または目
的によっては、適宜に変更して別種の材料を用いてもよ
い。本発明の方法における転勤造粒は、上記したような
装置と材料を使用し、それ自体公知の手段によって行な
われ、1次造粒物の平均直径の約4倍程度までの大きさ
に生長させられる。
As the transfer granulator used here, any of the three commonly used transfer granulators, such as a dish-type granulator or a drum-type granulator, can be conveniently used. In addition, the raw material powder, binder, etc. used at this time may be the same as those used in the production of the primary granules, or may be changed as needed or depending on the purpose to use a different type of material. may also be used. Transfer granulation in the method of the present invention is carried out by means known per se using the above-mentioned equipment and materials, and the primary granules are grown to a size up to about four times the average diameter. It will be done.

すなわち、転動造粒装置に供給された1次造粒物に、乾
燥粉体および結合剤を適宜の割合で別々の供聯合口から
連続的または間歌的に供給して乾燥被覆造粒を行なわし
め、所望の球状造粒物を連続的にとり出すのである。転
勤造粒により球状造粒物をうるにあたって、製品である
球状造粒物の機械的強度と粒度分布についての検討の結
果、それらの物性と1次造粒物の平均粒径と製品である
球状造粒物の平均粒径との比率との間に密接な関係があ
ることが判明した。
That is, dry powder and binder are continuously or intermittent fed to the primary granules fed to the rolling granulator from separate feed ports in appropriate proportions to perform dry coating granulation. The desired spherical granules are continuously taken out. When obtaining spherical granules by transfer granulation, we investigated the mechanical strength and particle size distribution of the spherical granules, which are the product, and found that the physical properties, the average particle diameter of the primary granules, and the spherical product It was found that there is a close relationship between the ratio and the average particle diameter of the granulated product.

すなわち、製品である球状造粒物の機械的強度を大なら
しめ、かつ粒度を揃えるには、つぎに示す実験例から明
らかなように、1次造粒物の平均粒径が製品である球状
造粒物の平均粒系の1/4以上のものであることが望ま
しい。実験例 使用原料 鉄鋼石粉末 使用装置 遠心流動被覆装置(回転皿状部の直径360肌、深さ2
75肋の第1図に示す形式のもの)皿型造粒機(皿径5
00側、深さ15仇舷、煩斜角500)1次造粒物の製
造 原料鉄鉱石粉末(100メッシュ100%節週 200
メッシュ80%筋過品 水分1.笹重量%)2.0k9
を遠心流動被覆装置に仕込み、回転皿状部を周速3肌/
秒で回転させながら、結合剤としてケイ酸ナトリウム1
6重量%水溶液を6の‘/分で噴霧しながら供給すると
、30分後に粒径1.0±0.5肋の1次造粒物が得ら
れた。
In other words, in order to increase the mechanical strength of the spherical granules that are the product and to make the particle size uniform, as is clear from the experimental examples shown below, the average particle size of the primary granules must be It is desirable that the average grain size of the granules is 1/4 or more. Raw materials used in the experiment: Equipment using iron and steel stone powder Centrifugal flow coating equipment (rotating plate diameter 360 mm, depth 2
75 ribs (of the type shown in Figure 1) dish type granulator (dish diameter 5
00 side, depth 15 yards, angle 500) Iron ore powder (100 mesh 100%) Raw material for manufacturing primary granules 200
Mesh 80% strained product Moisture 1. Bamboo weight%) 2.0k9
is charged into a centrifugal fluid coating device, and the rotating plate-shaped part is rotated at a circumferential speed of 3 skins/
1 sodium silicate as a binder while rotating in seconds.
When a 6% by weight aqueous solution was supplied while being sprayed at a rate of 6'/min, primary granules with a particle size of 1.0±0.5 ribs were obtained after 30 minutes.

前記と同様の操作により粒状物を生成させた時点で、原
料鉄鉱粉末を0.5kg/分、結合剤を40私/分の速
度で供給しながら被覆造粒を続けて粒径2.0±0.5
脚の1次造粒物を得た。
When granules were produced by the same operation as above, coating and granulation was continued while feeding the raw iron ore powder at a rate of 0.5 kg/min and the binder at a rate of 40 kg/min, until the particle size was 2.0±. 0.5
A primary granulated product of legs was obtained.

同様にして、粒径3.0±0.5肋、4.5±0.5柳
、8.0±0.5肋および12.0土0.5脚の1次造
粒物を調製した。球状造粒物の製造皿型造粒機をあらか
じめ35回転/分で回転させておき、1次造粒物および
乾燥原料粉末をそれぞれ0.07k9/分および0.5
3k9/分の速度で供給し、同時に前工程と同じ結合剤
を48M/分の速度で贋霧しながら造粒を行ない、いづ
れの1次造粒物からもそれぞれ平均粒径16.5土0.
2側の球状造粒物が得られるまで造粒を行なった。
In the same manner, primary granules with particle sizes of 3.0 ± 0.5 ribs, 4.5 ± 0.5 ribs, 8.0 ± 0.5 ribs, and 12.0 soil 0.5 legs were prepared. . Production of spherical granules The dish-type granulator was rotated in advance at 35 rpm, and the primary granules and dry raw material powder were rotated at 0.07 k9/min and 0.5 k9/min, respectively.
Granulation was carried out by supplying at a rate of 3k9/min and at the same time atomizing the same binder as in the previous step at a rate of 48M/min, resulting in an average particle size of 16.5 m/min from each of the primary granules. ..
Granulation was carried out until a second spherical granule was obtained.

製品の粒度分布 各1次粒子から得られた球状造粒物の粒径と重量分布の
関係は第7図に示すとうりである。
Particle size distribution of the product The relationship between the particle size and weight distribution of the spherical granules obtained from each primary particle is as shown in FIG.

図中記号■,■,■,■,■,■は、それぞれ1次造粒
物の粒径1.仇奴、2.0肋、3.W吻、4.5肌、8
.仇伽、12.仇岬のものを示し「破線は1次造粒物の
、実線は製品である球状造粒物のそれぞれ粒度分布を示
す。なお、各製品の均等係数(積算ふるい下重量が6の
重量%にあたる粒径を積算ふるい下重量が1の重量%に
あたる粒径で除した値、以下これを6の重量%粒径/1
0重量%粒径と表示する。
Symbols ■, ■, ■, ■, ■, ■ in the figure indicate the particle size of the primary granules, 1. Enemy, 2.0 ribs, 3. W snout, 4.5 skin, 8
.. 12. The dashed line shows the particle size distribution of the primary granulated product, and the solid line shows the particle size distribution of the spherical granulated product. The value obtained by dividing the particle size by the particle size for which the cumulative under-sieve weight is 1% by weight, hereinafter calculated as 6% by weight particle size/1
Displayed as 0% particle size by weight.

)は、第1表のとうりであった。第1表本発明の方法に
おいては、1次造粒物の製造は遠心流動被覆装置を用い
て行なわれるが、これを転動造粒機を用いて行なうとき
は、さきに記した凝集造粒の宿命的な問題があるため、
1次造粒物自体の粒度が均一に揃わないので、1次造粒
後に節分け工程を挿入することが必須となる。
) were as shown in Table 1. Table 1 In the method of the present invention, the production of primary granules is carried out using a centrifugal flow coating device, but when this is carried out using a rolling granulator, the agglomeration granulation described earlier Because of the fateful problem of
Since the particle size of the primary granules themselves is not uniform, it is essential to insert a dividing step after the primary granulation.

さらに、1次造粒物の機械的強度も劣っているため、後
段の転敷造粒装置を用いる被覆造粒の工程で、造粒装置
内での粒状物の破壊や粉化が起って不都合を生ずること
となる。本発明の方法の特徴は、以上の詳細な説明から
容易に理解しうるところではあるが、これらは次の諸点
に要約しうる。
Furthermore, since the mechanical strength of the primary granules is poor, the granules may be broken or powdered in the granulation equipment during the covering granulation process using the subsequent granulation equipment. This will cause inconvenience. The features of the method of the present invention can be easily understood from the above detailed description, and these can be summarized in the following points.

{1} 本発明の方法により、従来法におけるような混
練設備は不要となり、乾燥粉体をそのまま造粒装置へ供
給できるようになる。
{1} The method of the present invention eliminates the need for kneading equipment as in the conventional method, and allows the dry powder to be directly supplied to the granulation device.

■ 1次造粒物の製造に遠心流動被覆装置を用いるので
、渦巻上の循還運動が強制され、固体粒子は造粒装置内
で一種の混線作用をうけると同時に、結合剤の展延性も
良好となり、かつ乾粉被覆造粒が行なわれるので機械的
強度の大きい1次造粒物が得られる。
■ Since a centrifugal flow coating device is used to produce the primary granules, circulating motion on the spiral is forced, and the solid particles are subject to a kind of crosstalk in the granulation device, while at the same time the spreadability of the binder is also affected. Since the dry powder coating and granulation are carried out, primary granules with high mechanical strength can be obtained.

また、被覆造粒が行なわれるため、1次造粒物の粒度も
均一化される。‘3’1次造粒物と連続的に転勤造粒装
置を用いる乾粉被覆造粒に付するので、粒度のそろった
機械的強度の高い球状造粒物を連続的に取得しうる。
In addition, since coated granulation is performed, the particle size of the primary granules is also made uniform. Since the '3' primary granules are continuously subjected to dry powder coating granulation using a transfer granulator, it is possible to continuously obtain spherical granules with uniform particle size and high mechanical strength.

また、1次造粒物と原料粉体の供給比率を一定範囲内に
制御することにより、希望する粒径の且つ真球度の高い
球状造粒物を製造しうる。以下に本発明の方法を実施例
について詳細に説明する。
Moreover, by controlling the supply ratio of the primary granules and the raw material powder within a certain range, it is possible to produce spherical granules having a desired particle size and high sphericity. The method of the present invention will be described in detail below with reference to Examples.

実施例 1球状活性炭用石炭粉末の造粒 本実施例において使用した装置は、実験例において使用
した遠心流動被覆装置と皿型造粒機である。
Example 1 Granulation of coal powder for spherical activated carbon The equipment used in this example is the centrifugal fluid coating equipment and dish-type granulator used in the experimental examples.

まず、遠0流動被覆装置に球状活性炭用石炭粉末(20
0メッシュ筋過品80%、水分1.の重量%)を仕込み
、回転皿状部を周速4.5m/秒で回転させながら結合
剤として亜硫酸パルプ廃液(固型分濃度35重量%)を
5.5多/分の速度で噴霧ノズルから供給すると、30
分で平均粒径48地のコァー660夕が得られる。
First, coal powder for spherical activated carbon (20
0 mesh wired product 80%, moisture 1. % by weight), and while rotating the rotating dish-shaped part at a circumferential speed of 4.5 m/sec, a sulfite pulp waste liquid (solid content concentration 35% by weight) was sprayed as a binder at a speed of 5.5 m/min. If supplied from 30
660 cores with an average grain size of 48 mm are obtained in 1 minute.

ひきつづき、回転皿状部の周速度4.5肌/秒で回転さ
せながら上記と同じ乾燥粉末および結合剤をそれぞれ2
2.2夕/分および4.6夕/分の速度で供給しながら
被覆造粒を行なうと、9び分で平均粒径71岬の1次造
粒物約3k9が得られる。得られた1次造粒物と、上記
と同じ乾燥原料粉末とを1:12の割合に混合して2劫
司転/分で回転している皿型造粒機へ30多/分の速度
で供給し、上記と同じ結合剤を5.8多/分の速度で噴
透しながら供給する操作を続け、皿型造粒機から溢流す
る球状造粒物を採取する。
Subsequently, the same dry powder and binder as above were added at two doses each while rotating the rotating plate at a circumferential speed of 4.5 skins/second.
When coating granulation is carried out while feeding at a rate of 2.2 min/min and 4.6 min/min, primary granules of about 3k9 with an average particle size of 71 m are obtained in 9 min. The obtained primary granules and the same dry raw material powder as above were mixed at a ratio of 1:12 and transferred to a dish-type granulator rotating at 2 rotations/min at a speed of 30 rotations/min. The same binder as above was continued to be fed while being jetted at a rate of 5.8 m/min, and the spherical granules overflowing from the dish-type granulator were collected.

他方、比較対照のため、あらかじめ孫合機で原料乾燥粉
末と結合剤を100:15の割合で混練したものを上記
と同じ皿型造粒機に120夕/分の速度で供総合して凝
集造流を行ない、造流装置から溢流する造粒物を採取す
る。本発明の方法で得られる球状造粒物と、皿型造粒機
のみで得られる造粒物の物性を比較すれば、第2表に示
すとうりである。
On the other hand, for comparison, raw material dry powder and binder were kneaded in advance at a ratio of 100:15 using a grinder, and then fed to the same dish-type granulator as above at a rate of 120 min/min for agglomeration. Stream formation is performed, and the granules that overflow from the flow formation device are collected. Table 2 shows a comparison of the physical properties of the spherical granules obtained by the method of the present invention and the granules obtained only by a dish-type granulator.

第2表から明らかなように、本発明の方法で得られる球
状造粒物は、皿型造粒機のみで得られる造粒物に比して
、粒律分布の幅がせまし、範囲で均一にそろっており、
その他の物性もすぐれていることがわかる。第 2 表 (注1) 10重量努粒径 (注2)60重量%粒径/10重量※粒径(注3)平均
粒径とする。
As is clear from Table 2, the spherical granules obtained by the method of the present invention have a narrower particle distribution, compared to granules obtained only by a dish granulator. uniformly aligned,
It can be seen that other physical properties are also excellent. Table 2 (Note 1) 10 weight particle size (Note 2) 60 weight% particle size/10 weight *Particle size (Note 3) Average particle size.

(注4) 島津オートグラフを用いて50粒を測定して
得られた平均値(乾燥粒を使用)(注5) 日本工業規
格(JIS)1474による。
(Note 4) Average value obtained by measuring 50 grains using Shimadzu Autograph (dry grains are used) (Note 5) According to Japanese Industrial Standard (JIS) 1474.

(注6) 試料15夕をとり、1000〃JIS標準節
で節適し、節上品10夕を直径5/16インチ鋼球をい
れた内径25柳、長さ305のののステンレス製円筒に
収容し、25rpmで10分間回転させて衝撃を与えた
のち、1000〃JIS節で節過して節上品を仕込量で
除して得られる値を百分率で示す。実施例 2鉄鉱石粉
末の造粒 本実施例において使用された装置は、実験例において使
用した遠D流動被覆装置および皿型造粒機である。
(Note 6) 15 samples were taken, and the 10 pieces were tied with 1000 JIS standard knots, and the 10 pieces were housed in a stainless steel cylinder with an inner diameter of 25 willow and a length of 305 mm containing a 5/16 inch diameter steel ball. After applying impact by rotating at 25 rpm for 10 minutes, the sample was subjected to 1000 JIS knots, and the value obtained by dividing the cut product by the charged amount is expressed as a percentage. Example 2 Granulation of Iron Ore Powder The equipment used in this example is the far-D fluidized coating equipment and dish-type granulator used in the experimental examples.

遠D流動被覆装置に、原料鉄鉱石粉末(100メッシュ
節過品、200メッシュ筋過品80%、水分1.8重量
%)2.0k9を仕込み、回転皿状部を周速3の/秒で
回転させながら、結合剤としてケイ酸ナトリウム1亀重
量%水溶液を6の【/分で頃露して供給すると、30分
後に平均粒径1.仇肋のコアーが得られる。
Raw iron ore powder (100 mesh reduced product, 200 mesh reinforced product 80%, water content 1.8% by weight) 2.0k9 was charged into a far-D fluidized coating device, and the rotating plate was rotated at a peripheral speed of 3/sec. While rotating at a speed of 1.5% by weight, a 1% by weight aqueous solution of sodium silicate as a binder is supplied at a rate of 6°/min. After 30 minutes, the average particle size becomes 1.5% by weight. Obtains the core of the enemy.

コァーができた時点で上記と同じ乾燥鉄鉱粉末を0.5
kg/分、結合剤を40机/分の速度で供給して被覆造
粒を続けると、約30分後に平均粒径2柳の造粒物とな
る。本造粒物2k9を同じ遠心流動被覆装置へ仕込み、
上記と同様の操作で造粒すると、約3粉ごで平均粒径8
.6伽の1次造粒物が得られる。ついで、35回転/分
で回転させてある皿型造粒機に本1次造粒物と乾燥原料
粉末を、それぞれ0.07k9/分および0.53k9
/分の速度で供給し、同時に前記と同じ結合剤を48の
‘/分の速度で噴露しながら供給する。
When the core is formed, add 0.5% of the same dry iron ore powder as above.
If coating granulation is continued by supplying the binder at a rate of 40 kg/min and a binder at a rate of 40 kg/min, granules with an average particle size of 2 Yanagi will be obtained after about 30 minutes. This granulated product 2k9 is charged into the same centrifugal fluid coating equipment,
When granulated using the same procedure as above, the average particle size is 8 with approximately 3 powders.
.. A 6-ton primary granule is obtained. Next, the primary granulated material and the dry raw material powder were placed in a dish-type granulator rotating at 35 revolutions/min at 0.07 k9/min and 0.53 k9/min, respectively.
The same binder as above is simultaneously fed with a spraying rate of 48'/min.

皿型造粒機から一定速度で溢流してくる球状造粒品を製
品として採取する。他方、比較対照のため、あらかじめ
上記と同じ鉄鉱粉末に6.5重量%の水を加え、混練機
で充分に混練して湿潤原料粉末を調製し、これを本実施
例で用いたものと同じ皿型造粒機へ0.3kg/分の速
度で供給し、同時に結合剤としてケイ酸ナトリウム33
.丸亀量%水溶液を9.6のZ/分の速度で項霧して凝
集造粒を行ない、一定速度で溢流してくる造粒物を採取
する。本発明の方法で得られる球状造粒物と、皿型造粒
機のみで得られる造粒物の物性を比較すると、第3表の
とうりである。
The spherical granules that overflow from the dish granulator at a constant rate are collected as a product. On the other hand, for comparison, 6.5% by weight of water was added in advance to the same iron ore powder as above and thoroughly kneaded with a kneader to prepare a wet raw material powder, which was the same as that used in this example. 33 kg/min of sodium silicate as a binder.
.. Marugame % aqueous solution is atomized at a rate of 9.6 Z/min to perform coagulation and granulation, and the granules overflowing at a constant rate are collected. Table 3 shows a comparison of the physical properties of the spherical granules obtained by the method of the present invention and the granules obtained only by a dish-type granulator.

第3表から明らかなように、本発明の方法で得られる球
状造粒物は、皿型造粒機のみで得られる造粒物に比して
粒蓬分布および機械的強度の面で非常にすぐれたもので
あることがわかる。第 3 表 (注)物性の測定法等は第2表と同様である。
As is clear from Table 3, the spherical granules obtained by the method of the present invention are significantly superior in terms of grain distribution and mechanical strength compared to granules obtained only by a dish-type granulator. It turns out that it is excellent. Table 3 (Note) Measurement methods for physical properties are the same as in Table 2.

実施例 3球状活性炭用石炭粉末の造粒 本実施例において使用した装置は、参考例において使用
された遠心流動被覆装置と皿型造粒機である。
Example 3 Granulation of coal powder for spherical activated carbon The equipment used in this example was the centrifugal fluid coating equipment and dish-type granulator used in the reference example.

平均粒径52帆、均等係数1.6の原料石炭破砕物50
0夕を遠心流動被覆装置に仕込み、回転皿状部を周速4
.5の/秒で回転させながら結合剤として亜硫酸パルプ
廃液(間型分濃度35重量%)を50多/分の速度で贋
霧すると同時に、乾燥石炭粉末(200メッシュ節過品
80%、水分1.0重量%)を24.0夕/分の速度で
供給して被覆造粒を行なうと、4粉ご後に平均粒径80
0仏の1次造粒物が得られる。
Crushed raw coal with an average particle size of 52 and a uniformity coefficient of 1.6 50
0 water was charged into a centrifugal fluid coating device, and the rotating plate-shaped part was set at a circumferential speed of 4.
.. At the same time, a sulfite pulp waste liquid (35 wt. When coated granulation is performed by supplying .0 wt.
A primary granulated product with a particle size of 0 is obtained.

本品の均等係数は1.4である。* 本1次造粒物と乾
燥石炭粉末を1:8の割合に混合し、あらかじめ29動
転/分で回転させてある皿型造粒機へ30夕/分の速度
で供給し、前記と同様の亜硫酸パルプ廃液を5.6夕/
分の速度で噂霧しながら供繋舎し、溢流してくる球状造
粒物を製品として採取する。
The uniformity factor of this product is 1.4. * The primary granules and dry coal powder were mixed at a ratio of 1:8 and fed at a speed of 30 rpm to a dish-type granulator that had been rotated at 29 rpm in advance, and then mixed in the same manner as above. of sulfite pulp waste liquid for 5.6 days/day
The spherical granules flowing out are collected as a product.

本品の平均粒径は16側である。一方、比較対照のため
、乾燥石炭粉末と亜硫酸パルプ廃液とを練合機で100
:15の割合で混練し、皿製造粒機に120夕/分の速
度で供給して凝集造粒を行ない、溢流する造粒物を採取
する。本発明の方法によって得られる球状造粒物と、皿
型造粒機のみで製造して得られる造粒物との物性および
粒径分布は第4表に示すとうりである。第 4 表(注
)物性等の測定法等は第2表と同様である。
The average particle size of this product is on the 16 side. On the other hand, for comparison, dry coal powder and sulfite pulp waste liquid were mixed in a kneader at 100%
:15 and fed to a dish granulator at a rate of 120 m/min for agglomeration and granulation, and the overflowing granules were collected. The physical properties and particle size distribution of the spherical granules obtained by the method of the present invention and the granules produced only using a dish-type granulator are shown in Table 4. Table 4 (Note) Measurement methods for physical properties, etc. are the same as in Table 2.

実施例 4鉄鉱石粉末の造粒 本実施例において使用する装置は、参考例で使用した遠
心流動被覆装置と皿型造粒機である。
Example 4 Granulation of iron ore powder The equipment used in this example is the centrifugal fluid coating equipment and dish-type granulator used in the reference example.

ただし皿型造粒機の傾斜角は47oとして使用する。平
均粒径2.09柳、均等係数1.53の鉄鉱石破砕物2
.0k9を遠心流動被覆装置に仕込み、回転皿状部を周
速度3m/秒で回転ざせなから、結合剤としてケイ酸ナ
トリウム1亀重量%水溶液を24の‘/分の速度で供給
し、他方乾燥鉄鉱石粉末(100メッシュ節過品、20
0メッシュ筋過品80%、水分1.5%以下)を0.3
k9/分の速度で供給して被覆造粒を行なうと、約47
分で平均粒蓬8.仇肋、均等係数1.07の1次造粒物
が得られる。あらかじめ35回転/分で回転させてある
皿型造粒機に本1次造粒物および乾燥鉄鉱粉末をそれぞ
れ0.07k9/分および0.53k9/分の速度で供
給し、同時に結合剤としてケイ酸ナトリウム1亀重量%
水溶液を48凧‘/分の速度で供給して造粒を行ない、
一定速度で皿型造粒機から溢流してくる球状造粒物を製
品として採取する。
However, the angle of inclination of the dish-type granulator is 47°. Crushed iron ore 2 with average particle size 2.09 willow and uniformity coefficient 1.53
.. 0k9 was placed in a centrifugal fluid coating device, and since the rotating plate-like part could not be rotated at a circumferential speed of 3 m/sec, a 1% by weight aqueous solution of sodium silicate was supplied as a binder at a rate of 24'/min, and the other side was dried. Iron ore powder (100 mesh waste product, 20
0.3 mesh (80% strained product, moisture 1.5% or less)
When coated granulation is performed by feeding at a rate of k9/min, approximately 47
Average grains per minute 8. As a result, primary granules with a uniformity coefficient of 1.07 are obtained. The primary granules and dry iron ore powder were fed at a rate of 0.07 k9/min and 0.53 k9/min, respectively, into a dish-type granulator which had been rotated at 35 revolutions/min, and at the same time silica was added as a binder. sodium acid 1% by weight
Granulation is carried out by supplying the aqueous solution at a rate of 48 K'/min,
The spherical granules that overflow from the dish granulator at a constant speed are collected as a product.

他方、比較対照のため、前記と同じ鉄鉱石粉末に6.5
重量%の水を加えて混練機で充分に混練して得られる湿
潤原料粉体を調製し、前記と同じ皿型造粒機へ0.3k
9/分の速度で供給し、同時に結合剤としてケイ酸ナト
リウム33.3重量%水溶液を9.物上/分の速度で鰭
霧して凝集造粒を行ない、一定速度で溢流してくる造粒
物を採取する。
On the other hand, for comparison, 6.5% was added to the same iron ore powder as above.
A wet raw material powder is prepared by adding % by weight of water and thoroughly kneading it in a kneader, and then transfer it to the same dish-type granulator as above for 0.3k.
At the same time, a 33.3% by weight aqueous solution of sodium silicate was fed as a binder at a rate of 9.9% by weight. The fins are atomized at a speed of about 100 m/min to perform agglomeration and granulation, and the granulated material overflowing at a constant speed is collected.

本発明の方法で得られる粒状造粒物と皿型造粒機のみに
よって得られる造粒物の物性、粒蓬分布等を比較して示
すと第5表のとうりである。第 5 表図面の簡単な説
明第1図、第2図、第3図、第5図および第6図は、本
発明の方法に使用される遠心流動被覆装置の数例の中心
線を通る面で裁裁断した正面断面図、第4図は第3図に
示す装置の回転皿状部の平面図、第7図は参考例の結果
を示す線図である。
Table 5 shows a comparison of the physical properties, grain distribution, etc. of the granulated product obtained by the method of the present invention and the granulated product obtained only by a dish-type granulator. Table 5 Brief Description of the Drawings Figures 1, 2, 3, 5, and 6 show planes passing through the center line of several examples of centrifugal flow coating devices used in the method of the present invention. FIG. 4 is a plan view of the rotary plate-shaped portion of the device shown in FIG. 3, and FIG. 7 is a diagram showing the results of a reference example.

多ー函多2図 多3図 多4図 多5図 多6図 第7図Multi-box 2 diagram Many 3 figures Multi 4 figures Multi-5 diagrams Multi 6 diagrams Figure 7

Claims (1)

【特許請求の範囲】 1 中心部にほぼ水平に回転する皿状部、皿状部の周囲
に設けられた減速部および減速部に連なる円筒状部から
構成される系内へコアーを収容し、皿状部の回転によっ
て該コアーを遠心流動させながら、乾燥粉末および結合
剤を系内へ供給して1次造粒物をつくり、ここに得られ
る一次造粒物を転動造粒機へ移して乾燥粉末および結合
剤を供給しながら造粒を行なってその平均粒径が1次造
粒物の平均粒径の4倍までの球状造粒物とすることを特
徴とする球状造粒物の製造法。 2 コアーとして、中心部にほぼ水平に回転する皿状部
、皿状部の周囲に設けられた減速部および減速部に連な
る円筒状部から構成される系内へ乾燥粉末および結合剤
を供給して皿状部を回転せしめて遠心流動させることに
よって得られる球状粒子を用いる特許請求の範囲1記載
の方法。
[Scope of Claims] 1. A core is housed in a system consisting of a dish-shaped part that rotates approximately horizontally at the center, a reduction part provided around the dish part, and a cylindrical part connected to the reduction part, Dry powder and binder are fed into the system while the core is centrifugally flowed by rotation of the dish-shaped part to produce a primary granule, and the primary granule obtained here is transferred to a rolling granulator. A spherical granule, characterized in that granulation is carried out while supplying a dry powder and a binder to obtain a spherical granule having an average particle diameter of up to four times the average particle diameter of the primary granule. Manufacturing method. 2. The dry powder and binder are supplied into a system that serves as a core and consists of a dish-shaped part that rotates almost horizontally at the center, a deceleration part provided around the dish-shaped part, and a cylindrical part connected to the deceleration part. 2. The method according to claim 1, which uses spherical particles obtained by rotating a dish-shaped part to cause centrifugal flow.
JP12852776A 1976-10-25 1976-10-25 Manufacturing method for spherical granules Expired JPS6013736B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12852776A JPS6013736B2 (en) 1976-10-25 1976-10-25 Manufacturing method for spherical granules

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12852776A JPS6013736B2 (en) 1976-10-25 1976-10-25 Manufacturing method for spherical granules

Publications (2)

Publication Number Publication Date
JPS5353585A JPS5353585A (en) 1978-05-16
JPS6013736B2 true JPS6013736B2 (en) 1985-04-09

Family

ID=14986942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12852776A Expired JPS6013736B2 (en) 1976-10-25 1976-10-25 Manufacturing method for spherical granules

Country Status (1)

Country Link
JP (1) JPS6013736B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5583050A (en) * 1978-12-20 1980-06-23 Tomoegawa Paper Co Ltd Preparation of spherical toner for electrostatic copying
CA2794692C (en) * 2010-03-26 2017-12-12 Nara Machinery Co., Ltd. Method for granulating powder and granulation device

Also Published As

Publication number Publication date
JPS5353585A (en) 1978-05-16

Similar Documents

Publication Publication Date Title
US3903333A (en) Production of slow release nitrogen fertilizers by improved method of coating urea with sulfur
CA2881403C (en) Synthetic gypsum fertilizer product and method of making
US2938233A (en) Pellet formation
CS268520B2 (en) Method of solid particles or viscous droplets coating and encapsulation
JPH09225285A (en) Uniform aggregate of fibrous organic material and mineral and these production
CN106135644A (en) The feedstuff production method of composite particles carrier
JPH09506035A (en) Consolidation granulator
US3308171A (en) Method for producing granular or powdery sorbitol from sorbitol solution
JPH0727476A (en) Treatment apparatus of moistened granular material
US4428973A (en) Method for the homogeneous complete encapsulation of individual grains of pourable material and apparatus for its production
US3092489A (en) Process for production of fertilizer pellets and the like
HRP980619A2 (en) Soot in granules and a process for the preparation thereof
JPS6013736B2 (en) Manufacturing method for spherical granules
US2627457A (en) Pelletizing process
NO166761B (en) Granulator.
US3227789A (en) Process of pelletizing a water soluble material
RU2515293C1 (en) Method of granulating particulates
US3317307A (en) Method of granulating fertilizer
JP2002028466A (en) Granular particles treatment device and producing method for coated fertilizer
US3192290A (en) Method for producing rounded clay granules
Watano et al. Computer simulation of agitation fluidized bed granulation by a two-dimensional random addition model
JPS632212B2 (en)
CN103071472A (en) Flash-evaporation-dried molecular sieve pelletizing method
RU2410152C1 (en) Procedure for granulating dispersed mediums on plate granulator
US4425865A (en) Method for the homogeneous complete encapsulation of individual grains of pourable material and apparatus for its production