JPS6013734A - Oxidation of phenol compound - Google Patents

Oxidation of phenol compound

Info

Publication number
JPS6013734A
JPS6013734A JP58120978A JP12097883A JPS6013734A JP S6013734 A JPS6013734 A JP S6013734A JP 58120978 A JP58120978 A JP 58120978A JP 12097883 A JP12097883 A JP 12097883A JP S6013734 A JPS6013734 A JP S6013734A
Authority
JP
Japan
Prior art keywords
silica
reaction
benzoquinone
oxidation
phenol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58120978A
Other languages
Japanese (ja)
Inventor
Hiroshi Uchida
博 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP58120978A priority Critical patent/JPS6013734A/en
Publication of JPS6013734A publication Critical patent/JPS6013734A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To produce p-benzoquinone, by the liquid-phase oxidation of phenol or an alkylphenol free from the substituent group at the p-position of the OH group with O2-containing gas in the presence of active clay, silica gel or silica-alumina in the reaction liquid. CONSTITUTION:p-Benzophenone is produced by the liquid-phase oxidation of phenol or an alkylphenol compound free from substituent group at the p-position of the OH group with an oxygen-containing gas. The oxidation is carried out in a solvent such as acetonitrile, methanol, etc. in the presence of a copper catalyst and 0.2-2pts.wt. of powdery active clay, silica gel or silica-alumina based on 1pt.wt. of the phenolic compound. Benzoquinone can be produced in high yield when the reaction is carried out at about 10-20 deg.C and an oxygen partial pressure of about 10kg/cm<2>. USE:Antioxidant, an intermediate of hydroquinone derivative, etc.

Description

【発明の詳細な説明】 本発明は、フェノール化合物を酸素含有ガスによってベ
ンゾキノンに液相酸化する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for the liquid phase oxidation of phenolic compounds to benzoquinone with an oxygen-containing gas.

ベンゾキノン誘導体は、それ自身も酸化防止剤として有
用な化合物であるばかシでなく、還元することにより容
易に対応するハイドロキノン誘導体を得ることが出来る
Benzoquinone derivatives are themselves useful compounds as antioxidants, and the corresponding hydroquinone derivatives can be easily obtained by reduction.

ベンゾキノン誘導体を対応するアルキルフェノール化合
物から得ようとする試みが各種酸化剤を用いて種々実施
されているが、経済的な方法として満足のいく結果が得
られているものは少ない。
Various attempts have been made to obtain benzoquinone derivatives from the corresponding alkylphenol compounds using various oxidizing agents, but few economical methods have yielded satisfactory results.

銅触媒存在下に酸素によってフェノール化合物を酸化す
る方法として、例えば、特開昭52−17432号公報
に示されているようにニトリル溶媒中で銅触媒と溶媒と
からつくられる錯体を使用する方法が行なわれているが
、キノン生成物の収率は、酸素分圧の増加とともに上昇
し、p〜ベンゾキノンの場合、満足のいく収率を得るた
めには約100気圧よりも高い圧力が必要である。この
後も種々の改良法が示されているが、C−0又はC−C
カップリングした重合物の生成が避けられず、いづれも
収率が低かった9、依然として高い酸素圧が必要とされ
るままである。米国特許第4,257,968号には、
アセトニトリルとメタノールとの混合溶媒にて銅触媒の
存在下、フェノールを酸素酸化してp−ベンゾキノンを
製造する方法が開示されているが、この方法はアルキル
置換フェノールの酸化に適用しても、対応するアルキル
置換キノンの選択率および収率においてまだ十分ではな
い。
As a method for oxidizing a phenol compound with oxygen in the presence of a copper catalyst, for example, there is a method using a complex made from a copper catalyst and a solvent in a nitrile solvent as shown in JP-A-52-17432. However, the yield of quinone product increases with increasing oxygen partial pressure, and in the case of p~benzoquinone, pressures higher than about 100 atm are required to obtain a satisfactory yield. . Various improvement methods have been shown since then, but C-0 or C-C
Although the production of coupled polymers was unavoidable and the yields were low in both cases9, high oxygen pressure remains required. U.S. Patent No. 4,257,968 states:
A method for producing p-benzoquinone by oxidizing phenol with oxygen in a mixed solvent of acetonitrile and methanol in the presence of a copper catalyst has been disclosed, but this method cannot be applied to the oxidation of alkyl-substituted phenols. The selectivity and yield of alkyl-substituted quinones are still insufficient.

本発明者は、ノクラ位が置換していないアルキルフェノ
ール化合物からp−ベンゾキノン誘導体へ酸化する反応
の研究を進め、先に〇−ターシャリーグチルフェノール
をニトリル又はニトリルと低級脂肪族アルコール若しく
は低級脂肪酸エステルとの混合溶媒中の希薄溶液にて塩
化第−銅又は臭化第一銅触媒の存在下に酸素酸化するこ
とを特徴とするターシャリ−グチル−p−ベンゾキノン
の製造方法を発明した(%願昭58−69215号)が
、この発明においては反応液中のフェノール化合物を2
0φ以下の希薄溶液に保つ必要があるために生成物の生
産性に難があり、工業的実施の経済性を保つだめの工夫
が必要であった。又、フェノールや他のアルキルフェノ
ール化合物に対しては選択率が十分ではなかった。
The present inventor has conducted research on the reaction of oxidizing an alkylphenol compound that is not substituted at the nocra position to a p-benzoquinone derivative, and first converted 〇-tertiary glycylphenol into a nitrile or a nitrile and a lower aliphatic alcohol or a lower fatty acid ester. invented a method for producing tertiary-glutyl-p-benzoquinone, which is characterized by oxygen oxidation in the presence of a cuprous chloride or cuprous bromide catalyst in a dilute solution in a mixed solvent of -69215), but in this invention, the phenol compound in the reaction solution is
Since it is necessary to maintain a dilute solution with a diameter of 0 φ or less, the productivity of the product is difficult, and it is necessary to devise ways to maintain the economic efficiency of industrial implementation. Furthermore, the selectivity was not sufficient for phenol and other alkylphenol compounds.

本発明者は、更にこの研究を進めた結果、反応液に活性
白土、シリカゲル又はシリカ−アルミナを存在させれば
前記したこれまでのアルキルフェノール化合物の酸化方
法の欠点が改良されることを見出し、本発明に到達した
ものである。即ち、本発明は、フェノール又は水酸基に
対して/4’う位に置換基を有しないアルキルフェノー
ル化合物を酸素含有ガスによってp−ベンゾキノンに液
相酸化する方法において、銅触媒とともに活性白土、シ
リカゲル又はシリカ−アルミナを存在させて酸化を行な
うことを特徴とするフェノール化合物の酸化方法を提供
せんとするものであり、以下に更に詳しく本発明を説明
する。
As a result of further research, the present inventor discovered that the above-described drawbacks of the conventional oxidation methods for alkylphenol compounds can be improved by adding activated clay, silica gel, or silica-alumina to the reaction solution. This invention has been achieved. That is, the present invention provides a method for liquid-phase oxidation of phenol or an alkylphenol compound having no substituent at the /4' position relative to the hydroxyl group to p-benzoquinone using an oxygen-containing gas, in which active clay, silica gel, or silica is used together with a copper catalyst. - It is an object of the present invention to provide a method for oxidizing a phenol compound, which is characterized in that the oxidation is carried out in the presence of alumina.The present invention will be explained in more detail below.

本発明に使用できるフェノール化合物は、フェノール、
0又はm−クレゾール、0又はm−ターシャリ−ジチル
フェノール、2.6−シータージヤリーノチルフエノー
ル、0又はm−イングロビルフェノール等のフェノール
又は水酸基に対してパラ位に置換基を有しないアルキル
フェノール化合物である・これらのフェノール化合物は
、下記の溶媒中に10〜300数好しくは5o〜100
φの濃度に溶かして使用される。10φ以下では生産性
に難を生じ、一方、300v1以上では目的反応生成物
の選択率が低下し、工業的実施を困難にする。
Phenol compounds that can be used in the present invention include phenol,
0 or m-cresol, 0 or m-tert-ditylphenol, 2.6-theta-diarynotylphenol, 0 or m-inglovirphenol, etc. or an alkylphenol compound having no substituent at the para position relative to the hydroxyl group・These phenol compounds are contained in the following solvent in an amount of 10 to 300, preferably 5 to 100.
It is used by dissolving it at a concentration of φ. If it is less than 10φ, productivity will be difficult, while if it is more than 300v1, the selectivity of the desired reaction product will decrease, making industrial implementation difficult.

本発明に使用できる溶媒は、アセトニトリル、炭素数4
以下のアルコール若しくはこれらの混合溶媒、又は有機
ニトリル類と炭素数4以下のアルコールの酢酸エステル
との混合溶媒が好しいが、ジメチルスルホキシド、ジメ
チルホルムアミドなどの極性溶媒も使用できる。
Solvents that can be used in the present invention include acetonitrile, carbon number 4
The following alcohols or mixed solvents thereof, or mixed solvents of organic nitriles and acetic esters of alcohols having 4 or less carbon atoms are preferred, but polar solvents such as dimethyl sulfoxide and dimethyl formamide can also be used.

本発明の銅触媒とともに用いる活性白土、シリカゲル又
はシリカ−アルミナは、粉末のものをフェノール化合物
に対して0.2〜2重量部を使用する。活性白土、シリ
カゲル又はシリカ−アルミナがこの範囲よフも少ないと
その効果は小さく、多すぎても反応上は特に支障はない
が、それに見合う効果は上がらず不経済である。
The activated clay, silica gel, or silica-alumina to be used together with the copper catalyst of the present invention is powdered and used in an amount of 0.2 to 2 parts by weight based on the phenol compound. If the amount of activated clay, silica gel, or silica-alumina is less than this range, the effect will be small, and if it is too much, there will be no particular problem in the reaction, but the effect will not be commensurate with that and it will be uneconomical.

銅触媒としては、通常、塩化第一銅、臭化第一銅などの
一価のハロゲン化銅をフェノール化合物に対し0.01
〜0.51量部用いる。なお銅塩の形態は、−価の銅イ
オンに等モルの7・ロダンイオンが存在しておればよく
、第二銅塩と金属鋼を等モル用いて処理しても良いし、
金属銅と/41 o )fン化水素とを等モル処理した
ものでもよい。また、この反応中に金属銅や塩化第二銅
、臭化第二銅、更には鉄、塩化第一鉄、塩化第二鉄等が
混入し共存しても目的物の選択率には特に悪い影響はな
い。
As a copper catalyst, a monovalent copper halide such as cuprous chloride or cuprous bromide is usually used at a rate of 0.01% relative to the phenolic compound.
~0.51 part by weight is used. The form of the copper salt may be such that equimolar 7-rhodan ions are present in negative copper ions, and the treatment may be performed using equimolar amounts of cupric salt and metal steel.
It may also be one in which metallic copper and /41 o ) hydrogen fluoride are treated in equimolar amounts. In addition, if metallic copper, cupric chloride, cupric bromide, iron, ferrous chloride, ferric chloride, etc. are mixed and coexisted during this reaction, it is particularly bad for the selectivity of the target product. There is no effect.

尚、触媒としてのハロゲン化銅の濃度は適当な範囲であ
ればベンゾキノンの選択率には殆んど影響を与えないが
、余シ多量に用いることは経済的に不利となるうえ反応
液中に不溶となるため好ましくない。一方、余り少量で
杜実用上充分な反応速度が得られないため、本発明の方
法に於いては通常0.5〜5011/11好1 L、(
は5〜2011/l (D範囲で用いることが適当であ
る。
Note that if the concentration of copper halide as a catalyst is within an appropriate range, it will have almost no effect on the selectivity of benzoquinone, but using a large amount of copper halide will be economically disadvantageous and may not be present in the reaction solution. It is not preferable because it becomes insoluble. On the other hand, in the method of the present invention, the reaction rate is usually 0.5 to 5011/11, (
is 5 to 2011/l (it is appropriate to use it in the D range).

反応温度は一般に高いほど選択率が低くなるが反応速度
は増加する傾向にある。それ故、好ましい温度範囲とし
ては0〜100℃がよく、特に、反応速度と選択性を考
慮すれば10〜20℃付近が好ましい。
Generally, the higher the reaction temperature, the lower the selectivity, but the reaction rate tends to increase. Therefore, the preferred temperature range is 0 to 100°C, and in particular, around 10 to 20°C is preferred in consideration of reaction rate and selectivity.

酸素源としては酸素ガスの他に空気等の酸素含有ガスも
用いられるが、反応に際しての酸素分圧としては高いほ
ど選択性はよくなり 2 kgAtn2以上の酸素分圧
から、良好な結果を与える。酸素分圧の上限については
反応上の制約はないがあまフ高すぎると装置上の制約が
出てくるので、100匈〆一までが適当である6 10
kg/crIt2程度の酸素分圧でも高収率でベンゾキ
ノンを得ることが出来るので、この付近の反応圧力が、
もっとも好ましい。
In addition to oxygen gas, an oxygen-containing gas such as air is also used as the oxygen source, but the higher the oxygen partial pressure during the reaction, the better the selectivity, and good results can be obtained from an oxygen partial pressure of 2 kgAtn2 or more. Regarding the upper limit of the oxygen partial pressure, there are no restrictions on the reaction, but if it is too high, there will be restrictions on the equipment, so up to 100 liters is appropriate6 10
Since benzoquinone can be obtained in high yield even with an oxygen partial pressure of around kg/crIt2, the reaction pressure around this point is
most preferred.

一般的に活性白土、シリカグル又はシリカ−アルミナを
使用しない場合に比べて低くすることができる。また、
攪拌効率も選択性に影響を与えるので有効な撹拌を行な
う必要がある。
In general, it can be lower than when activated clay, silica glue, or silica-alumina is not used. Also,
Stirring efficiency also affects selectivity, so it is necessary to carry out effective stirring.

次に実施例をあげて本発明を具体的に説明する。Next, the present invention will be specifically explained with reference to Examples.

実施例1 1/の〃ラスオートクレーブに、フェノール10.01
 (0,106mol )とアセトニトリル100−、
メタノール1001d1塩化第一銅2.0Ii、粉末状
活性白土(水沢化学展、ガレオンアースN)10、Og
を入れ、60℃に保ち、酸素圧6.0 kg/crlG
で激しく攪拌しながら5.0時間反応させた。
Example 1 Phenol 10.01 was added to a 1/2 glass autoclave.
(0,106 mol) and acetonitrile 100-,
Methanol 1001d1 Cuprous chloride 2.0Ii, Powdered activated clay (Mizusawa Chemical Exhibition, Galleon Earth N) 10, Og
and maintained at 60℃, oxygen pressure 6.0 kg/crlG.
The mixture was reacted for 5.0 hours with vigorous stirring.

反応終了後反応液をガスクロマトグラフィーにより定量
し、フェノールの転化率、p−ベンゾキノンの選択率、
収率をめた。結果を第1表に示した。
After the reaction was completed, the reaction solution was quantified by gas chromatography to determine the conversion rate of phenol, selectivity of p-benzoquinone,
The yield was estimated. The results are shown in Table 1.

実施例2〜7 実施例1と同じ手法で種々のアルキルフェノール化合物
について第1表に記載の反応条件にて、第1表に記載の
とおシの結果を得た。
Examples 2 to 7 Using the same method as in Example 1, the results shown in Table 1 were obtained for various alkylphenol compounds under the reaction conditions shown in Table 1.

実施例8〜13 活性白土を粉末状シリカダル(メルク社製シリカrル6
0 、、70〜230メツシユ)に変えたほかは、実施
例1〜12と同じ手法で種々のフェノールについて第2
表に記載の反応条件にて第2表に記載のとお9の結果を
得た。
Examples 8 to 13 Activated clay was mixed with powdered silica dal (Merck Silica Dull 6)
0, 70 to 230 meshes) were used for various phenols in the same manner as in Examples 1 to 12.
Nine results as listed in Table 2 were obtained under the reaction conditions listed in the table.

実施例14 11のfラスオートクレーブに、o−t−ブチルフェノ
ールを10.0.9とアセトニトリルZo。
Example 14 In a 11 f glass autoclave, add 10.0.9 o-t-butylphenol and Zo acetonitrile.

d1メタノール100FILl、塩化第一銅1.OII
、シリカ−アルミナ粉末(触媒化成工業製l5−13 
)lO009を入れ、10℃ニ保チ、酸素圧5.0kg
#Gで激しく攪拌しながら5.0時間反応させた。反応
終了後、反応液をガスクロマトグラフィーによシ分析し
たところ、o−t−ブチルフェノールの転化率98%、
t−グチルベンゾキノンの選択率82%、収率80%で
あった。
d1 methanol 100 FILl, cuprous chloride 1. OII
, silica-alumina powder (catalyst chemical industry l5-13
) Add lO009, keep at 10℃, oxygen pressure 5.0kg
The reaction was carried out for 5.0 hours while stirring vigorously with #G. After the reaction was completed, the reaction solution was analyzed by gas chromatography, and the conversion rate of o-t-butylphenol was 98%.
The selectivity of t-butylbenzoquinone was 82% and the yield was 80%.

比較例 活性白土、シリカダル又はシリカ−アルミナを使用しな
い外は、実施例と同様の手法で第3表に記載の反応条件
にて第3表に記載のとおフの結果を得た。
Comparative Example The results shown in Table 3 were obtained under the reaction conditions shown in Table 3 in the same manner as in the Examples except that activated clay, silica dal, or silica-alumina were not used.

以上の実施例と比較例かられかるよりに、本発明による
と、フェノール化合物の濃度を高く、又反応温度を高く
保つような生産性向上の手段をとっても目的反応生成物
の選択率を格段に高く維持することができ、従って、p
−ベンゾキノンの生産性、収率共に高いフェノール化合
物の酸化方法を達成することができる。
As can be seen from the above Examples and Comparative Examples, according to the present invention, the selectivity of the target reaction product can be significantly improved even when productivity improvement measures such as keeping the concentration of the phenol compound high and the reaction temperature high are taken. can be kept high, thus p
- A method for oxidizing a phenol compound with high productivity and yield of benzoquinone can be achieved.

特許出願人 昭和電工株式会社Patent applicant: Showa Denko Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] m フェノール又は水酸基に対してノぐう位に置換基を
有しないアルキルフェノール化合物を酸素含有ガスによ
ってp−ベンゾキノンに液相酸化する方法において、銅
触媒とともに活性白土、シリカダル又はクリカーアルミ
ナを存在させて酸化を行なうことを特徴とするフェノー
ル化合物を酸化する方法
m In a method of liquid-phase oxidation of phenol or an alkylphenol compound that does not have a substituent at the position opposite to the hydroxyl group to p-benzoquinone using an oxygen-containing gas, oxidation is performed in the presence of activated clay, silica dal, or clicar alumina together with a copper catalyst. A method for oxidizing a phenolic compound, characterized by carrying out
JP58120978A 1983-07-05 1983-07-05 Oxidation of phenol compound Pending JPS6013734A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58120978A JPS6013734A (en) 1983-07-05 1983-07-05 Oxidation of phenol compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58120978A JPS6013734A (en) 1983-07-05 1983-07-05 Oxidation of phenol compound

Publications (1)

Publication Number Publication Date
JPS6013734A true JPS6013734A (en) 1985-01-24

Family

ID=14799746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58120978A Pending JPS6013734A (en) 1983-07-05 1983-07-05 Oxidation of phenol compound

Country Status (1)

Country Link
JP (1) JPS6013734A (en)

Similar Documents

Publication Publication Date Title
US4208339A (en) Process for the preparation of para-benzoquinone
US6077979A (en) Manufacture of 3,3&#39;,5,5&#39;-tetramethyl-2,2&#39;-biphenol
JP4101346B2 (en) Oxidation catalyst system and oxidation method using the same
EP0019483B1 (en) Method of producing biphenyltetracarboxylic esters
JPS6013734A (en) Oxidation of phenol compound
JP2001151721A (en) Method for producing 2,3,5-trimethyl-p-benzoquinone
JPS5865241A (en) Carbonylation of secondary benzylhalide
JPS63264431A (en) Manufacture of hydroxybiphenyl
EP0105067B1 (en) Process for oxidizing phenol to p-benzoquinone
JPS6013733A (en) Oxidation of phenol compound
JP3027162B2 (en) Method for producing biphenylcarboxylic acid
JPS6232740B2 (en)
EP0186349B1 (en) Process for the preparation of cinnamate ester
JPH10231266A (en) Production of 2-methyl-1,4-benzoquinone
JPS62148446A (en) Production of quinone compound
US4683346A (en) Selective preparation of monohalohydroquinones
JP2611232B2 (en) Method for producing 2,6-naphthalenedicarboxylic acid
JPS6023658B2 (en) Method for producing 1,4-quinones
EP0330203B1 (en) Catalytic process for preparing ethylene-tetracarboxylic esters
US20100228048A1 (en) Process for preparing substituted aromatic carboxylic acids
JPH0338537A (en) Synthesis of biphenyl-4,4&#39;-diol
JPS58128335A (en) Oxidation of phenol to p-benzoquinone
JPS625413B2 (en)
EP0635468A1 (en) Method of obtaining alpha-substituted omega-hydroperfluoroalkanes
JP2002533433A (en) Method for preparing aromatic diphenylthioether