JPS60136315A - Micro-ion beam processing method and equipment thereof - Google Patents

Micro-ion beam processing method and equipment thereof

Info

Publication number
JPS60136315A
JPS60136315A JP24384883A JP24384883A JPS60136315A JP S60136315 A JPS60136315 A JP S60136315A JP 24384883 A JP24384883 A JP 24384883A JP 24384883 A JP24384883 A JP 24384883A JP S60136315 A JPS60136315 A JP S60136315A
Authority
JP
Japan
Prior art keywords
ion beam
processing
sample
ion
micro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24384883A
Other languages
Japanese (ja)
Other versions
JPH0510822B2 (en
Inventor
Hiroshi Yamaguchi
博司 山口
Akira Shimase
朗 嶋瀬
Satoshi Haraichi
原市 聰
Takeoki Miyauchi
宮内 建興
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP24384883A priority Critical patent/JPS60136315A/en
Publication of JPS60136315A publication Critical patent/JPS60136315A/en
Publication of JPH0510822B2 publication Critical patent/JPH0510822B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Welding Or Cutting Using Electron Beams (AREA)
  • Drying Of Semiconductors (AREA)
  • Feedback Control In General (AREA)

Abstract

PURPOSE:To prevent ununiform processing and enable obtaining a desired shape of processing by varying parameters which affect quantity of processing such as scanning repetition frequency, scanning speed, ion beam current, acceleration voltage in accordance with the shape of a processed portion, the shape after processed and the processed position. CONSTITUTION:In such a case as processing the Al wiring 30 on an SiO2 film 29, the intensity of beam current is varied in accordance with a position. In this case, in either method of scanning along the direction of wiring and gradually moving to the vertical direction or scanning conversely, ion beam current is made greater when the center of the wiring is irradiated by the ion beam. This makes near the end where easily removed by spattering on the side of a pattern is irradiated with smaller ion beam current and the center where not easily removed is irradiated with greater ion beam current whereby only Al is uniformly removed.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、液体金属イオン源等の高輝度なイオン源から
のイオンビームを細いスポットに集束して試料に照射し
て加工するマイクロイオンビーム加工方法に関するもの
である。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to micro ion beam processing in which a sample is processed by focusing an ion beam from a high-brightness ion source such as a liquid metal ion source into a narrow spot and irradiating it onto a sample. It is about the method.

〔発明の背景〕[Background of the invention]

vfJ1図に高輝度なイオン源を用いて試料の微細加工
を行なう装置の構成図を示す。第1図に示した部分はす
べて真空容器内に納められている。高輝度なイオン源と
しては、Gaなどの液体金属イオン源や極低温にチップ
を冷却する驚界亀離形・イオン源が考えられる。今、前
者を例にして軌明する。
Figure vfJ1 shows a configuration diagram of an apparatus that performs microfabrication of a sample using a high-intensity ion source. All parts shown in FIG. 1 are housed in a vacuum container. Possible high-brightness ion sources include liquid metal ion sources such as Ga and ion sources with a capacitive structure that cools the chip to an extremely low temperature. I will now use the former as an example.

液体金属イオン源1から引出し、電極2に印加された・
石、圧により引き出されたイオンビーム3は、4,5.
6に示した電極から成る静電レンズの集束作用を受け、
偏向電極10により偏向されつつ、試料台13上の試料
に照射され、これを加工する。ここで11はステイクメ
ータ電極であり、イオンビームの非点収痒を補止・除去
する%極である。また8はフランキンク電極であってビ
ニムを数MHz程度の高速の立上りで偏向し、アバーナ
ヤ9の外へ移動させて試料上へ到達しないようにするこ
とによりビームのスイッチング(オン・オフ動作)を行
なうものである。
extracted from the liquid metal ion source 1 and applied to the electrode 2.
The ion beam 3 extracted by stone and pressure is 4,5.
Under the focusing action of an electrostatic lens consisting of the electrodes shown in 6,
While being deflected by the deflection electrode 10, the beam is irradiated onto the sample on the sample stage 13 and processed. Here, 11 is a stake meter electrode, which is a % pole for correcting and eliminating astigmatism of the ion beam. Further, reference numeral 8 denotes a flank electrode, which deflects the vinyl at a high speed of several MHz and moves it out of the aberration 9 so that it does not reach the sample, thereby performing beam switching (on/off operation). It is something.

第2図はこのマイクロ・イオンビームにより試料を加工
する方法を示すものである。今、試料表面のABCDか
ら成る矩形領域の加工を行なうものとする。イオンビー
ムを第1図に示した靜′亀しンズ糸7により18で示さ
れる微細なスポットに集束し、A→Bの方向に偏向電極
を用いて走査する。これにより加工溝14か形成される
。同様に偏向電極を用いて少し下方に加工溝14と部分
的に1.なるように加工溝を形成1−る。
FIG. 2 shows a method for processing a sample using this micro-ion beam. Now, assume that a rectangular region consisting of ABCD on the surface of the sample is to be processed. The ion beam is focused onto a minute spot 18 by the ion beam 7 shown in FIG. 1, and scanned in the direction of A→B using a deflection electrode. As a result, a processed groove 14 is formed. Similarly, using a deflection electrode, slightly downwardly machine the groove 14 and partially 1. 1- Form the processing groove so that it becomes the same.

以下16.17・・・と加工を行ない、領域AHCDを
加工する。
The following steps 16, 17, etc. are performed to process the area AHCD.

ここで以下のような問題を生じる。マイクロイオンビー
ム加工に8いては、加工はスパッタリンク過程により行
なわれる。すなわち、イオンビームか試料に入射すると
、仄々と試料内部の原子と衝突を起こして(カスケード
散乱)最終的にい(つかの原子か試料表面からはねと(
Jされて飛び出し、除去される。この場@例えは第3図
に断面を示すようなVL、S Lの5i(Jz杷縁縁膜
上AI配線を除去する場合、あるいはX輪糸光用マスク
の支持体上のAu薄膜を加工する場合に以下の様な問題
を生じる。すなイつち、第31ヌ1において絶縁膜(支
持体)19の上に台形の困1而を有する。AI配線(A
ug膜)か形成されているこれをマイクロイオンビーム
で除去する場合において、1次入射イオンビームが21
のようにAI配線(Au薄膜)の中央付近にある場合Q
こは、スパッタリンク原子か試料の上面からのみ22の
ように飛び出して除去される。しかしながら、1次入射
イオンビームが23のようにAS配線、 (Au薄膜)
の側面に存在する場合には、散乱カスケ−ドが試料の9
1.lj面伺近にもできるので、試料の側面1から25
のようにスパッタ原子がフ1にひ出す。もちろん上方か
らも24のようにスパッタ原子か飛ひ出す。
Here, the following problem arises. In micro ion beam processing, processing is performed by a sputter link process. In other words, when an ion beam is incident on a sample, it slightly collides with atoms inside the sample (cascade scattering) and finally (some atoms are repelled from the sample surface).
It gets hit by a J and pops out, and is eliminated. In this case, for example, the cross section of VL and SL is shown in Figure 3. In this case, the following problem occurs.In other words, the 31st element 1 has a trapezoidal shape on the insulating film (supporting body) 19.
When removing a formed ug film with a micro ion beam, the primary incident ion beam is
If it is near the center of the AI wiring (Au thin film) as in Q
The sputter link atoms fly out only from the upper surface of the sample as shown in 22 and are removed. However, as shown in 23, the primary incident ion beam is
If present on the sides of the sample, the scattering cascade
1. Since it can be done close to the lj plane, it is possible to
Sputtered atoms protrude to the surface 1 as shown in the figure. Of course, sputtered atoms fly out from above as shown in 24.

以上のように、1IIlJ方からも加工か進むため、加
工の速さは、中央部はど遅くなり、一定時りのくり返′
し走査加工後は、絹4陳1のような除去形状となり、中
央部に除去残り26が発生する。
As mentioned above, since the machining progresses from the 1II1J direction, the machining speed becomes slower in the center and repeats at a certain time.
After the scanning process, the removed shape resembles that of silk 4 and 1, with an unremoved portion 26 occurring in the center.

またこれを除くため、更に(り返し加工を行なえは、俄
貿していた26の部分は除去されるか、第5図に示すよ
うに、それ9外の部分の支持体27.28か必要以上に
深く加工され、悪影響を及ぼすことになる。今のXiマ
スクのAu薄膜の加工の場合には、ポリイミドII!i
I!を必要以上に加工することによる支持体の機械的@
度の低下かある。才たSi基根上に形成された5iU2
絶縁膜上のA1配線の加工などの場合においては、下部
の加工による短絡、下部配線、下部の接合1偕、ゲート
部への影響などの問題が生じる。以上のごと〈従来のマ
イクロイオンビーム加工法においては側面からのスパッ
タリンクのため所望の加工形状か得られないという問題
か存在した。
In addition, in order to remove this, if further processing is performed (repeat processing is performed), the part 26 that was in transit will be removed, or as shown in Fig. This results in a deeper processing than described above, which has an adverse effect.In the case of processing the Au thin film of the current Xi mask, polyimide II!i
I! Mechanical improvement of the support by processing it more than necessary
There is a decline in the degree. 5iU2 formed on a mature Si base
In the case of processing the A1 wiring on the insulating film, problems such as short circuits due to the processing of the lower part, effects on the lower wiring, the lower junction, and the gate part occur. As mentioned above, in the conventional micro ion beam processing method, there was a problem that a desired processed shape could not be obtained due to sputter linking from the side.

この他俵数個の材料からなる加工試料においては材質に
よりスパッタ本か異なるため、特定の材料のみ加工か進
行するなどの結果から一様な加工か行われず、上記と同
様の間訊か生じるという問題もあった。これは第10図
(a)に示すようにイオンビームに対してスパッタリン
ク率の高い材料A48の部分と、スパッタリンク率の低
い材質B49の部分とからなる複合林料をカロエする場
合、上方から一様にイオンビームを照射するとき、Bは
加工されに< < 、A oB7.、分は急速に加工か
進むため、第10図(bl、第10図(C)のように不
均一な加工が行われるという問題である。
In addition, in a processed sample consisting of several bales of material, sputtering differs depending on the material, and as a result, only certain materials are processed, resulting in uneven processing, resulting in intermittent processing similar to the above. There were also problems. As shown in Fig. 10(a), when caroeing a composite forest material consisting of a portion of material A48 with a high sputter link rate and a portion of material B49 with a low sputter link rate with respect to the ion beam, this is done from above. When irradiating the ion beam uniformly, B is processed and becomes <<, A oB7. , the problem is that the machining progresses rapidly, resulting in uneven machining as shown in FIG. 10 (bl) and FIG. 10 (C).

〔発明の目的〕[Purpose of the invention]

本発明の目的は、従来技術の問題点をなくし側面へのス
パッタリンクの彫物や刷°負によるスパッタリンク率の
差などの原因による不均一加工を抑えて、所望の加工形
状8−得ることができるマイクロイオンビーム加工方法
及びその装置−を提供するにある。
The purpose of the present invention is to eliminate the problems of the prior art, to suppress uneven machining caused by engraving of sputter links on the side surfaces, and differences in sputter link ratio due to negative printing, and to obtain a desired machined shape. An object of the present invention is to provide a micro ion beam processing method and an apparatus therefor.

〔発明の概要〕[Summary of the invention]

即ち本発明は、加工される部分の形状と、加工後の形状
に応じてイオンビームの走査の方法、走査の繰返し回数
、走置繰返し回数、走査速度、イオンビーム電流、加速
電圧なと加工量に影会するパラメータを試料の場所によ
り変化させて照射し、これによって所望の形状か得られ
るようにするマイクロイオンビーム加工方法であるらま
た本発明は、上記マイクロイオンビーム加工方法を実現
するため、試料の市さや材質8−測定する手段も併用し
、その御1定結果に応じて上記の各パラメータを変化さ
せつつイオンビームを照射して所望の形状をつる。
In other words, the present invention adjusts the ion beam scanning method, the number of scanning repetitions, the number of scanning repetitions, the scanning speed, the ion beam current, the accelerating voltage, and the amount of processing depending on the shape of the part to be processed and the shape after processing. The present invention is a micro ion beam processing method in which a desired shape can be obtained by irradiating a sample while changing its parameters depending on the location of the sample. A means for measuring the quality of the material of the sample is also used, and the desired shape is obtained by irradiating the ion beam while changing each of the above parameters according to the determined results.

〔発明の実施例〕[Embodiments of the invention]

第6図は本発明の一実施例である。第6図(a)に示す
ような断面の8 i0z膜29上のAI配線3oを加工
する場合において、ビーム1流の強度を第6し](b)
に示すように場所に応じて変化させる。この場合、試料
を上方からみたとき、第6図(C)のごとく配線に沿う
方向に走査しつつ、これと垂直な方向に順次移動させて
ゆ(やり方と、第6図(d)のごとくその逆に走査する
やり方とか省えられるが、とちらり場合でも配線の中央
filsをイオンビームか照射するときに、イオンビー
ム電流が大きくなるよっにする。これにより紀4図で説
明したようにパターンの111」而へのスパッタリンク
により除去され易い。端に近い部分には小さいイオンビ
ーム電流か、また除去されに(い中央部には大きいイオ
ンビーム′亀流か照射されることになり、第6図(C)
に示したようにAIのみが一様に除去されるという結果
をうることができる。
FIG. 6 shows an embodiment of the present invention. When processing the AI wiring 3o on the 8I0z film 29 with a cross section as shown in FIG. 6(a), the intensity of the first beam stream is set to 6](b)
Change depending on the location as shown in . In this case, when the sample is viewed from above, the sample is scanned in the direction along the wiring as shown in Figure 6(C), and then sequentially moved in the direction perpendicular to this (see Figure 6(d)). On the other hand, it is possible to omit the method of scanning in the opposite direction, but even if the central fils of the wiring is irradiated with the ion beam, the ion beam current becomes large. The parts near the edges are irradiated with a small ion beam current, while the center part is irradiated with a large ion beam current, Figure 6 (C)
As shown in Figure 3, it is possible to obtain the result that only AI is uniformly removed.

第7図も同様なAI配線の除去の実/lil+例である
FIG. 7 also shows a similar example of removing AI wiring.

第7区1(a)にボしたような第6図(a)と同様な5
i(J2)JQ 29 上cvh】配線3oをマイクロ
イオンビームlこより除去する場合において、イオンビ
ームの走査くり返し数を第7図(b)に示すごとく配線
の中央はど大きく、両端はど小さくする、これは例えは
第7図(C)のごとく、配線に沿う方1町に走漬を行な
いつつ、これに垂直な方向にゆるやかに移動させて除去
を行なう場合において、才す第7図(C)のごとく全体
を走査加工し、次に第7図(d)のごとく、両娼は走査
せずにやや内側のみを走l:加工し、次に第7図(e)
のごとく、より中央部のみを走査加工し、・・・という
形で実現できよう。
5 similar to Figure 6 (a), which is similar to Section 7 Section 1 (a)
i(J2)JQ 29 Upper cvh] When removing the wiring 3o using a micro ion beam, the number of ion beam scans is set to be large at the center of the wiring and small at both ends, as shown in Figure 7(b). For example, as shown in Fig. 7(C), when the immersion is carried out in one direction along the wiring and the removal is carried out by gently moving it in the direction perpendicular to this, this is true. The entire area is scanned and processed as shown in C). Next, as shown in Fig. 7(d), only the inside part is scanned and processed without scanning both sides, and then processed as shown in Fig. 7(e).
It could be realized by scanning and processing only the central part, as shown in the figure below.

第8図は同様な加工を行なう」助合の別の実施例であり
、第8図(a)のごとき同6にの断面を廟するS t 
(J2絶縁膜29上のA1配陸30を加工する場合にお
いてイオンビームの走査による二次゛電子像等のイ央出
(あるいは別途設けた電子ビーム走査による二次電子1
家等の検出1jいしは別途設けたし一すビームによる0
1す長)等の手段により、第8図(a)に示した試料の
断面形状のプロファイルを祷る。次に、これに対応する
イオンビーム・電比の分布か第8図(b)となるように
、イオンビームを走査して、これを加工″1−る。この
場合、=r而面状aに相似とlよるようにビーム強度分
布第8図(b)8−決めてもよいし、何らかの111i
lば関係を用いて第8図(a)から第8図(b) ):
i:決y)でもよい。このイオンビーム照射により第8
図(C1のようなAI配線の除去残りが発生するので、
これ+iひイオンビーム走査による2次奄子像の検出手
段により、断面形状を測定する。これより同様の方法で
ビーム強度分布第8図(d)を決定し、これによりイオ
ンビーム加工を行なう。これにより第8図(e)の断面
形状を得て、これを測定し第8図(f)のごときビーム
強度分布の照射を行なう。この過程をくり返すことによ
って、最終的に第8図(g)のようなAIのみが良好に
除去された加工断面形状かえられる。本方法の長P9t
は、スパッタリンク特性などの加工特性が未知の材料や
試料とくに複数個の材質からなる複合材料に対しても、
漸時くり返して加工・測定を行なうことにより良好な加
工を行なうことができる点にある。
Fig. 8 shows another embodiment of the "association" in which similar processing is performed, and the cross section of the same 6 as shown in Fig. 8 (a) is S t.
(When processing the A1 distribution 30 on the J2 insulating film 29, a secondary electron image etc. is imaged by scanning an ion beam (or a secondary electron image etc. is imaged by a separately provided electron beam scanning)
Detection of houses, etc. is performed using a separately installed beam.
The profile of the cross-sectional shape of the sample shown in FIG. Next, the ion beam is scanned and processed so that the distribution of the ion beam/electric ratio corresponding to this is shown in FIG. 8(b). In this case, = r The beam intensity distribution (Fig. 8(b) 8-) may be determined so that it is similar to
Figures 8(a) to 8(b) using the relationship:
i: decided y) is also acceptable. This ion beam irradiation causes the eighth
Figure (C1) There will be unremoved AI wiring, so
The cross-sectional shape is measured by a means for detecting a secondary image by scanning the ion beam. From this, the beam intensity distribution (FIG. 8(d)) is determined in a similar manner, and ion beam processing is performed based on this. As a result, a cross-sectional shape as shown in FIG. 8(e) is obtained, which is measured and irradiation is performed with a beam intensity distribution as shown in FIG. 8(f). By repeating this process, the machined cross-sectional shape is finally changed as shown in FIG. 8(g) in which only AI has been successfully removed. Head of this method P9t
It is also suitable for materials and samples with unknown processing characteristics such as sputter link characteristics, especially composite materials made of multiple materials.
The advantage is that good machining can be achieved by repeatedly performing machining and measurement over time.

本実施例においては、第8図(bl 、 (dl 、 
(flは、ビーム強度分布を示しているものとしたか、
くり返し走査回数の分布を示すものとして、同様のプロ
セスを行なうこともできる。今糠での実施例においては
、加工試料としてS i0z絶縁膜上のA1配線のみに
ついて述べてきたが、X線露光用マスクのポリイミドあ
るいはBN支持体上のAuパターンなど他の材料につい
ても同じように適用できる。
In this example, FIG. 8 (bl, (dl,
(fl indicates the beam intensity distribution,
A similar process can also be performed to show the distribution of the number of repeated scans. In the examples at Imanuka, we have only described the A1 wiring on the Si0z insulating film as a processed sample, but the same can be said of other materials such as polyimide of an X-ray exposure mask or Au pattern on a BN support. Applicable to

才た加工パラメータさしてくり返し加工回数や、イオン
ビーム強度の他、イオンビームの加速′6圧を変化させ
ても同様の結末をうろことかできる。
Similar results can be obtained by changing the processing parameters such as the number of repeated processing, the ion beam intensity, and the ion beam acceleration pressure.

化9図に以上の実施例を実現する装置を示す。Figure 9 shows an apparatus for realizing the above embodiment.

イオンビーム光字系と試料台は点線で示した真空容器3
1の中へ納められている。液体金属イオン源32はヒー
タ電源により加熱せられ、引出し電源34との間の電位
差によりイオンビーム42か引出される。コントロール
1iVf、33はコントロール電源33aにより電圧を
印加し、引出し′…、圧が一定の場合でもこのコントロ
ール電圧を変化させることにより、イオンビーム電流を
変化させることかできる。レンズ作用を有する3枚の電
極34,35.36に対し中間の電極35にレンズ電源
35aにより与える′電圧を変化させてイオンビームの
スポット径、焦点距耐を変化させることができる。フラ
ンキンク電極37、フランキンクTL源37a1 ブラ
ンキンク用アパーチャ38やステイクメータ電極40、
ステイクメータ寛#、408等の役割は前に述べたのと
同様である。ヒータ′屯#t32a 、コントロール亀
# 33a %引出し′電源34aから成るイオン・ガ
ン部は加速′電源45によりアース−1位に対して浮か
されており、これがイオンビームの加速電圧となる。加
速され集束をうけたイオンビームは試料台44上の試料
43に照射される。ここで、偏向−4源39aはX方向
およびY方向のきよ歯状波の電圧を出して偏向電極39
に印加しビームをX、Yに偏向する。そして、2次電子
ディテクター41への入力と偏向”lH%j39aから
のきよ歯状波によりディスプレー上に試料の2次篭子像
が表示される。
The ion beam optical system and sample stage are in vacuum vessel 3 shown by dotted lines.
It is stored in 1. The liquid metal ion source 32 is heated by a heater power source, and the ion beam 42 is extracted by a potential difference between the liquid metal ion source 32 and the extraction power source 34 . A voltage is applied to the control 1iVf, 33 by the control power supply 33a, and by changing this control voltage, the ion beam current can be changed even when the extraction pressure is constant. The spot diameter and focal length of the ion beam can be changed by changing the voltage applied by the lens power source 35a to the middle electrode 35 of the three electrodes 34, 35, and 36 having a lens function. flanking electrode 37, flanking TL source 37a1, blanking aperture 38, stake meter electrode 40,
The role of stakemeter Hiroshi #, 408, etc. is the same as described above. The ion gun section consisting of a heater #t32a, a control #33a, and an extraction power source 34a is floated with respect to ground -1 by an acceleration power source 45, which serves as an acceleration voltage for the ion beam. The accelerated and focused ion beam is irradiated onto a sample 43 on a sample stage 44 . Here, the deflection-4 source 39a outputs a voltage of a toothed wave in the X direction and the Y direction, and the deflection electrode 39a
is applied to deflect the beam in X and Y directions. Then, a secondary cage image of the sample is displayed on the display by the input to the secondary electron detector 41 and the sharp tooth wave from the deflection "lH%j39a."

以上は通常のイオンビーム装置、構成であるが本実施例
の特徴はこれらを制御するCPU46を備えているとこ
ろにある。すなわち第8図に示した実施例を夾りする場
合につき述べると、第8図(a)の試料に対するイオン
ビームの走査によりディスプレイ39bに得られる2次
電子像の信号よりCPU1′!第8図(C)の信号をつ
くり出しこれに従ってイオンビーム電流を変化させるよ
うにコントロール′曳源33aあるいは、引出し電源3
4aに指令を出しつつ、偏向′亀諒39aによりイオン
ビームを偏向して走査加工を行なう。再び加工結果第8
図(C)の2次を予備の4m号によりイ8号第8図(d
)をCPU46はつくり出す。以下これを(り返す。
The above is a typical ion beam device and configuration, but the feature of this embodiment is that it is equipped with a CPU 46 that controls them. That is, to describe the case in which the embodiment shown in FIG. 8 is included, the CPU 1'! The control source 33a or extraction power source 3 generates the signal shown in FIG. 8(C) and changes the ion beam current accordingly.
While issuing a command to the ion beam 4a, the ion beam is deflected by the deflection point 39a to perform scanning processing. Machining result No. 8 again
The secondary of Figure (C) is made by spare No. 4m, No. 8 (D).
) is generated by the CPU 46. This is repeated below.

上記の例では、イオンビームの電流を変化させる場合に
つき述べたか、走査の繰り返し回数を変化させる場合に
は、CPU46は偏向電源39a・にその指令を与えて
、走査くり返し数を照射箇所により変化させるようにす
る。また加速電圧(イオンビームのエネルギー)を変化
させる場合においては、CPU46は加速電源45に指
令を送り、その出力電圧をビームの走査とともに変化さ
せる。ただしこの場合、加速電圧を変化させるとビーム
の焦点位置か変化するので同時にレンズ電源35Hにも
指令を送って、そのレンズ電圧を変化させて焦点位置を
不要に保つ必要がある。
In the above example, when changing the current of the ion beam or changing the number of repetitions of scanning, the CPU 46 gives the command to the deflection power supply 39a, and changes the number of repetitions of scanning depending on the irradiation location. Do it like this. When changing the accelerating voltage (the energy of the ion beam), the CPU 46 sends a command to the accelerating power source 45 to change its output voltage as the beam scans. However, in this case, since changing the accelerating voltage changes the focal position of the beam, it is necessary to simultaneously send a command to the lens power source 35H and change the lens voltage to maintain the focal position unnecessarily.

上記の場合、必要に応じてCPU46は、記憶゛装置4
7とデータのやりとりを行なう。 −゛第9図に示した
装置により第6図、第7図の・夾施秒1」も同様に実施
しつることは明らかである6また上記は形状の画定をイ
オンビームの走査に。
In the above case, the CPU 46 stores the storage device 4 as necessary.
7 and exchange data. It is clear that the apparatus shown in FIG. 9 can be used in the same manner to perform the operations shown in FIGS. 6 and 7 in the same manner.

よる2次電子像の検出によるものとしているがζ必要に
応じてレーザビームや゛1子ヒームを真壁トノ容器31
の中へ導入できるようにして、これによる検出を行って
もよい。
Although this is based on the detection of secondary electron images by
Detection may also be performed by making it possible to introduce it into the .

以上の実施例では配線の切断等試料の断面形状の影#を
主に述べたが、複合材料の場合の不均一な加工でも同様
の手段で所望の加工結果かえられることは明らかである
。また、検出器として、41極算量分析管や分散型X線
検出器を用いれは、場所による材質の変化も検出でき、
複合材料の場合に有用である。
In the above embodiments, the shadow # of the cross-sectional shape of the sample, such as the cutting of wiring, was mainly described, but it is clear that the desired processing result can be changed by the same means even in the case of non-uniform processing of composite materials. In addition, if a 41-pole computational analysis tube or a distributed X-ray detector is used as a detector, changes in material depending on location can be detected.
Useful for composite materials.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれは、試料をマイクロ・
イオンビームで加工する場合において、側面へのスパッ
タリンクの影響や材質の不均一性の影響をなくLQt望
の加工形状をうることができる効果を奏する。
As explained above, according to the present invention, the sample can be
When processing with an ion beam, it is possible to obtain a desired processed shape with LQt without the influence of sputter links on the side surfaces or the influence of non-uniformity of the material.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のマイクロイオンビームによる加工装置の
説明図(断面図)、第2図はマイクロイオンビームによ
る走査加工を示す説明図(上面図)、第3図、第4図、
及び第5図は従来のマイクロイオンビームによる加工方
法とその結果を示す断面図、第6図、第7図、及び第8
図は本発明にかかる加工方法を示す説明図(断面図)、
第9図は本発明にかかるマイクロイオンビームによる加
工装置を示す構成図、第10図は健来法における仮台材
料等の場合におけるイオンビームの加工の不均一な進行
を示す説明図31・・・真空容器 32・・・液体金輪
イオン源32a・・・ヒータ′…、諒 33・・・コン
トロール電極:33a・・・コントロールを源 34 、35 、36・・・電極 34a川引出し′電
源35a・・・レンズ電源37・・・フランキンク電極
37a・・・ブランキンク′電源 38・・・ブランキンク用アパーチャ 39・・・偏向電極 39a・・・偏向′電源39b・
・・ディスプレー 40・・・ステイクメーター極 40a・・・ステイクメータ電源 41・・・2次翫子ディテクター 43・・・試料 44・・・試料台 45・・・加速′#、諒 46・・・CPU47・・・
記憶装機 代理人弁理士 高 橋 明 夫 第1図 第2図 !3 図 第千図 1 箪げ図 葛2図 (C) (d) 第7図 T7777デ 薯6図 (C) (j) (f) 雷2図 第2 ( (t (C
Fig. 1 is an explanatory diagram (cross-sectional view) of a conventional processing device using a micro ion beam, Fig. 2 is an explanatory diagram (top view) showing scanning processing using a micro ion beam, Figs.
and Fig. 5 are cross-sectional views showing the conventional processing method using a micro ion beam and its results, Fig. 6, Fig. 7, and Fig. 8.
The figure is an explanatory diagram (cross-sectional view) showing the processing method according to the present invention,
Fig. 9 is a configuration diagram showing a processing device using a micro ion beam according to the present invention, and Fig. 10 is an explanatory diagram 31 showing the uneven progress of ion beam processing in the case of a temporary stand material, etc. in the conventional method.・Vacuum container 32...Liquid ring ion source 32a...Heater'..., Ryo 33...Control electrode: 33a...Control source 34, 35, 36...Electrode 34a River drawer' Power source 35a... ...Lens power supply 37...Flanking electrode 37a...Blanking' power supply 38...Blanking aperture 39...Deflection electrode 39a...Deflection' power supply 39b...
...Display 40...Stake meter pole 40a...Stake meter power supply 41...Secondary rod detector 43...Sample 44...Sample stage 45...Acceleration'#, Ryo 46... CPU47...
Akio Takahashi, Patent Attorney for Memory Devices Figure 1 Figure 2! 3 Figure 1000 Figure 1 Hangezu Figure 2 (C) (d) Figure 7 T7777D 6 Figure (C) (j) (f) Lightning 2 Figure 2 ( (t (C

Claims (1)

【特許請求の範囲】 1、 液体金ハイオン源等の高l14度イオン源からの
イオンビームを静電光学A、等により、微細なスポット
に集束し″′C試刺に照射し、これを加工する。鴨合に
おいて、試料の側面へのスパッタリンクや判質によるス
パッタリンク率の差等加工されにくい1科の箇所に対し
てはより多くが杓われ、加工され易い位雪に対して目よ
り少なく加工か行われるように、イオンビームを流や加
速電圧、くり返し走査回数を照射jM n+に応じて変
化させて照射することにより、L1望の加工形状を得る
ことを特徴とするマイクロイオンビーム加工方法。 2、上記イオンビームを照射してその2次電子f8+(
走査イオン像)から試別の断面プロファイルを得て、こ
れによりイオンビーム電流や加速箱;圧、くり返し走査
回数の試料上の箇所による大きさを決め、これに応じて
イオンビームを照射して加工を行ない再び2次電子像か
ら試料のプロファイルを得る、という過程をくり返すこ
とにより最終的に所望の加工形状を得ること8%像とす
る特許請求の範囲比1項記載のイオンビーム加工方法。 3、上記断面プロファイルや拐質の測定手段として、電
子ビーム、レーザ、通當の光の照射とこれによる2次電
子、反射電子、吸収電子反射光、散乱光、X線、2次イ
オンなどを受けることにより測定する方法を用いること
を特徴とする特許請求の範囲第2項記載のマイクロイオ
ンビーム加工方法。 46 真空容器中に液体金属イオン源等の高輝度イオン
源、イオンビームを引出すための引出し電極、ビーム電
流を制御するためのコントロール電極、イオンビームを
集束するためのレンズ電極、イオンビームを偏向するた
めの偏向電極、試料台を備え、またこれらを駆動するた
めの電源やイオンビームを加速するための加速電源を備
えて、これらを動作させて試料にイオンビームを照射し
て加工するマイクロイオンビーム加工装置において、ミ
ニコンピユータ等のCPtJ(中央処理装置)を備えて
、イオンビームの走査イオン像等による試料プロファイ
ルの測定結果を処理することにより試料の各部に照射す
べきイオンビームのIli!を度分布、くり返し走査回
数分布、イオン加速電圧分布などのパラメータの分布を
昇出し、これに応じてコントロール電源、引出し′電源
、偏向電源、加速電源、レンズ電源の出力電圧を偏向位
置とともに変化させるようにし、必要に応じて試料のプ
ロファイル測定、パラメータの分布の決定、イオンビー
ム照射加工を(り返すよう瘉こしたことを特徴とするマ
イクロイオンビーム加工装置。 5、上記断面プロファイルの測定手段として、電子ビー
ムレーザ、通常の光の照射と、これによる2次寛子、反
躬寛子、吸収電子、反射光、散乱光、2次イオン、X線
などの検出器を備えてこれらを受けて測定するようにし
たことを特徴とする特許請求の範囲第4項記載のマイク
ロイオンビーム加工装置。
[Claims] 1. An ion beam from a high l 14 degree ion source such as a liquid gold high ion source is focused into a minute spot using electrostatic optics A, etc., and irradiated onto a test piece ''C, which is then processed. In Kamoai, more parts are scooped out for areas that are difficult to process, such as sputter links to the side of the sample and differences in sputter link rate depending on the quality, and the easier it is to process, the easier it is to see the snow. Micro ion beam processing is characterized in that the desired processed shape of L1 is obtained by irradiating the ion beam while changing the current, acceleration voltage, and number of repeated scans according to the irradiation jM n+ so that less processing is performed. Method. 2. Irradiate the above ion beam to generate secondary electrons f8+(
A trial cross-sectional profile is obtained from the scanned ion image), and this determines the ion beam current, acceleration chamber pressure, and number of repeated scans depending on the location on the sample, and the ion beam is irradiated and processed accordingly. The ion beam processing method according to claim 1, wherein a desired processed shape is finally obtained by repeating the process of obtaining a profile of the sample from the secondary electron image. 3. As a means of measuring the above-mentioned cross-sectional profile and particle size, irradiation with an electron beam, laser, or ordinary light and the resulting secondary electrons, reflected electrons, absorbed electron reflected light, scattered light, X-rays, secondary ions, etc. The micro ion beam processing method according to claim 2, characterized in that a method of measuring by receiving is used. 46 A high-intensity ion source such as a liquid metal ion source in a vacuum container, an extraction electrode for extracting the ion beam, a control electrode for controlling the beam current, a lens electrode for focusing the ion beam, and a lens electrode for deflecting the ion beam. A micro ion beam that is equipped with a deflection electrode and a sample stage, as well as a power source to drive these and an acceleration power source to accelerate the ion beam, and operates these to irradiate the sample with the ion beam and process it. The processing equipment is equipped with a CPtJ (Central Processing Unit) such as a mini-computer, and processes the measurement results of the sample profile based on the scanning ion image of the ion beam, etc. to determine the Ili! of the ion beam to be irradiated to each part of the sample. The distribution of parameters such as the degree distribution, the number of repeated scans distribution, and the ion acceleration voltage distribution is increased, and the output voltages of the control power supply, extraction power supply, deflection power supply, acceleration power supply, and lens power supply are changed accordingly with the deflection position. A micro ion beam processing device characterized in that it measures the sample profile, determines the parameter distribution, and performs ion beam irradiation processing (repeatedly) as necessary. 5. As a means for measuring the cross-sectional profile. , electron beam laser, irradiation with normal light, and a detector that receives and measures secondary radiation, reflected radiation, absorbed electrons, reflected light, scattered light, secondary ions, X-rays, etc. A micro ion beam processing apparatus according to claim 4, characterized in that the micro ion beam processing apparatus is configured as follows.
JP24384883A 1983-12-26 1983-12-26 Micro-ion beam processing method and equipment thereof Granted JPS60136315A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24384883A JPS60136315A (en) 1983-12-26 1983-12-26 Micro-ion beam processing method and equipment thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24384883A JPS60136315A (en) 1983-12-26 1983-12-26 Micro-ion beam processing method and equipment thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP4154732A Division JP2529057B2 (en) 1992-06-15 1992-06-15 Micro ion beam processing method

Publications (2)

Publication Number Publication Date
JPS60136315A true JPS60136315A (en) 1985-07-19
JPH0510822B2 JPH0510822B2 (en) 1993-02-10

Family

ID=17109848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24384883A Granted JPS60136315A (en) 1983-12-26 1983-12-26 Micro-ion beam processing method and equipment thereof

Country Status (1)

Country Link
JP (1) JPS60136315A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60193341A (en) * 1984-03-15 1985-10-01 Mitsubishi Electric Corp Etching method
JPS62174918A (en) * 1986-01-29 1987-07-31 Hitachi Ltd Ion beam irradiation device
JPS63228720A (en) * 1987-03-18 1988-09-22 Jeol Ltd Ion beam equipment
JPH01168881A (en) * 1987-12-23 1989-07-04 Anelva Corp Ion beam projecting method and device provided with scanning system
JPH0258328A (en) * 1988-08-24 1990-02-27 Hitachi Ltd Method and apparatus for ion beam working
JPH05182932A (en) * 1992-06-15 1993-07-23 Hitachi Ltd Micro-ion beam processing method
JP2006344931A (en) * 2005-04-15 2006-12-21 Leibniz-Inst Fuer Oberflaechenmodifizierung Ev Partial etching for surface modification or controlling of deposition by pulse ion beam
JP2009270245A (en) * 2008-05-08 2009-11-19 Sound Team Enterprise Co Ltd Headwear functioning as neck cover at the same time
JP2010507782A (en) * 2006-10-20 2010-03-11 エフ・イ−・アイ・カンパニー Method and sample structure for creating S / TEM sample
JP2010194546A (en) * 2009-02-23 2010-09-09 Canon Inc Charged-particle beam processing method
JP2010279974A (en) * 2009-06-05 2010-12-16 Canon Inc Optical element processing method
US8357913B2 (en) 2006-10-20 2013-01-22 Fei Company Method and apparatus for sample extraction and handling
US9555499B2 (en) 2012-08-23 2017-01-31 Element Six Technologies Limited Method of cutting super-hard materials using an electron beam and a range of beam scanning velocities

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5086794A (en) * 1973-12-06 1975-07-12
JPS5680131A (en) * 1979-12-05 1981-07-01 Nec Corp Method and device for ion beam etching
JPS58106750A (en) * 1981-12-18 1983-06-25 Toshiba Corp Focus ion beam processing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5086794A (en) * 1973-12-06 1975-07-12
JPS5680131A (en) * 1979-12-05 1981-07-01 Nec Corp Method and device for ion beam etching
JPS58106750A (en) * 1981-12-18 1983-06-25 Toshiba Corp Focus ion beam processing

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60193341A (en) * 1984-03-15 1985-10-01 Mitsubishi Electric Corp Etching method
JPH0457093B2 (en) * 1984-03-15 1992-09-10 Mitsubishi Electric Corp
JPS62174918A (en) * 1986-01-29 1987-07-31 Hitachi Ltd Ion beam irradiation device
JPS63228720A (en) * 1987-03-18 1988-09-22 Jeol Ltd Ion beam equipment
JPH01168881A (en) * 1987-12-23 1989-07-04 Anelva Corp Ion beam projecting method and device provided with scanning system
JPH0258328A (en) * 1988-08-24 1990-02-27 Hitachi Ltd Method and apparatus for ion beam working
JPH05182932A (en) * 1992-06-15 1993-07-23 Hitachi Ltd Micro-ion beam processing method
JP2006344931A (en) * 2005-04-15 2006-12-21 Leibniz-Inst Fuer Oberflaechenmodifizierung Ev Partial etching for surface modification or controlling of deposition by pulse ion beam
US9275831B2 (en) 2006-10-20 2016-03-01 Fei Company Method for S/TEM sample analysis
JP2010507782A (en) * 2006-10-20 2010-03-11 エフ・イ−・アイ・カンパニー Method and sample structure for creating S / TEM sample
US8357913B2 (en) 2006-10-20 2013-01-22 Fei Company Method and apparatus for sample extraction and handling
US8525137B2 (en) 2006-10-20 2013-09-03 Fei Company Method for creating S/TEM sample and sample structure
US8993962B2 (en) 2006-10-20 2015-03-31 Fei Company Method and apparatus for sample extraction and handling
US9336985B2 (en) 2006-10-20 2016-05-10 Fei Company Method for creating S/TEM sample and sample structure
US9349570B2 (en) 2006-10-20 2016-05-24 Fei Company Method and apparatus for sample extraction and handling
US9581526B2 (en) 2006-10-20 2017-02-28 Fei Company Method for S/TEM sample analysis
JP2009270245A (en) * 2008-05-08 2009-11-19 Sound Team Enterprise Co Ltd Headwear functioning as neck cover at the same time
JP2010194546A (en) * 2009-02-23 2010-09-09 Canon Inc Charged-particle beam processing method
JP2010279974A (en) * 2009-06-05 2010-12-16 Canon Inc Optical element processing method
US9555499B2 (en) 2012-08-23 2017-01-31 Element Six Technologies Limited Method of cutting super-hard materials using an electron beam and a range of beam scanning velocities

Also Published As

Publication number Publication date
JPH0510822B2 (en) 1993-02-10

Similar Documents

Publication Publication Date Title
KR930007369B1 (en) Focused ion beam processing
JP4215282B2 (en) SEM equipped with electrostatic objective lens and electrical scanning device
JPS60136315A (en) Micro-ion beam processing method and equipment thereof
US6137110A (en) Focused ion beam source method and apparatus
JP3333533B2 (en) Charged particle extraction device
JP2810797B2 (en) Reflection electron microscope
JP2004513477A (en) SEM with adjustable final electrode for electrostatic objective
JPH0619546B2 (en) Ion beam device and method for modifying a substrate using the ion beam device
NL8000524A (en) LITHOGRAPHING THROUGH AN ELECTRON BEAM.
JPS61284041A (en) High speed resolution electron microscope
JPS6334844A (en) Method and apparatus for ion analysis of insulating material
US6642512B2 (en) Focused ion beam apparatus
EP0035556A1 (en) Electron beam system.
JPH0378739B2 (en)
JP3060613B2 (en) Focused ion beam apparatus and cross-section processing method using focused ion beam
JPS60126834A (en) Ion beam processing method and device thereof
JP4178003B2 (en) Semiconductor circuit pattern inspection system
JP2672808B2 (en) Ion beam processing equipment
JP2529057B2 (en) Micro ion beam processing method
JP2834466B2 (en) Ion beam device and control method thereof
JPH06134583A (en) Ion beam machine
JP2730229B2 (en) Charged particle beam irradiation type analyzer
JPH0135340B2 (en)
JPH07312198A (en) Focusing ion beam device
Schäfer et al. Time‐resolved thermal‐emission electron microscopy of laser‐pulsed metal surfaces

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term