JPS60136249A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS60136249A
JPS60136249A JP58243533A JP24353383A JPS60136249A JP S60136249 A JPS60136249 A JP S60136249A JP 58243533 A JP58243533 A JP 58243533A JP 24353383 A JP24353383 A JP 24353383A JP S60136249 A JPS60136249 A JP S60136249A
Authority
JP
Japan
Prior art keywords
transistor
potential
collector
vertical
vertical transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58243533A
Other languages
Japanese (ja)
Other versions
JPH0556019B2 (en
Inventor
Hiroshi Tanimoto
谷本 洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58243533A priority Critical patent/JPS60136249A/en
Publication of JPS60136249A publication Critical patent/JPS60136249A/en
Publication of JPH0556019B2 publication Critical patent/JPH0556019B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/082Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including bipolar components only
    • H01L27/0823Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including bipolar components only including vertical bipolar transistors only
    • H01L27/0825Combination of vertical direct transistors of the same conductivity type having different characteristics,(e.g. Darlington transistors)

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Bipolar Integrated Circuits (AREA)

Abstract

PURPOSE:To contrive to improve the high frequency characteristic by a method wherein the potential of a inversely conductive semiconductor layer interelement- isolating a vertical transistor is kept almost at the same as the collector potential of the vertical transistor. CONSTITUTION:A substrate P-N-P transistor 12 is formed on a semiconductor substrate 1 made by formation of the vertical transistor 8. The transistor 12 is used as an emitter follower circuit by electrically connecting the base 15 to the collector 5 of the transistor 8, and by connecting the emitter 16 to an N-well 2; thereby providing an amplifier 11 having an amplification degree whereby the collector potential of the transistor 8 is inputted is 1. The potential of the N-well 2 becomes equal to the collector potential of the transistor 8, and a parasitic diode 10 formed between the N-well 2 and a P-layer 3 is not present in appearance. As a rlesult, there is no deterioration of the high frequency characteristics due to the adverse effects of the parasitic capacitance of the diode 10 on the transistor 8.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は高周波特性の向上を図った半導体装置に関する
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a semiconductor device with improved high frequency characteristics.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

バイポーラトランジスタにあっては、電子と正孔の易動
度の大小等によシ、一般に同一寸法の素子にあってはP
NP型のトランジスタに比して、NPN型トランジスタ
の方が優れた高周波特性を示す。この為、PNP型トラ
ンジスタとNPN型トランジスタが混在する回路にあっ
ては、主としてPNPNPNトランジスタ周波特性によ
り回路全体の高周波特性が支配される。
In bipolar transistors, depending on the mobility of electrons and holes, P
NPN transistors exhibit better high frequency characteristics than NP transistors. Therefore, in a circuit in which PNP type transistors and NPN type transistors coexist, the high frequency characteristics of the entire circuit are mainly dominated by the frequency characteristics of the PNPNPN transistors.

この為、従来より専ら、高周波特性の優れたNPN型の
トランジスタのみを用いて回路を構成することが試みら
れているが、設計自由度が失われ、また回路構成が複雑
化する等の不具合があった。そこで最近では、ラテラル
PNP型トランジスタに比して優れた高周波特性を示す
バーチカルPNP )ランジスタを用い、その寄生容量
等による高周波特性劣化要素をできる限り避けて、NP
1’J l−ランノスタと共に所望の回路を構成するこ
とが行われている。
For this reason, attempts have been made to construct circuits exclusively using NPN transistors with excellent high frequency characteristics, but this has resulted in problems such as loss of design freedom and complication of circuit configuration. there were. Therefore, in recent years, vertical PNP (vertical PNP) transistors, which have superior high frequency characteristics compared to lateral PNP transistors, have been used, and by avoiding as much as possible the deterioration of high frequency characteristics due to parasitic capacitance,
1'J l-Lannostar is used to construct a desired circuit.

ところで、この種のバーチカルPNP トランジスタは
、例えば第1図に示すようにP型半導体基板1上にNu
半導体層(N−ウェル)2を素子間分離層として形成し
、このN−ウェル2によって素子間分離された領域に2
層3、N層4およびP+層5、耐層6、P+層7を形成
して構成される。同、ここで上日己pusおよび2層5
はコレクタ、NI藝4および耐層6はペース、P+層7
はエミッタとしてそれぞれ機能する0しかして、このよ
うな構造のPNP )ランジスタ(半導体装置)Kあっ
ては、通常、素子間分離用のN−ウェル2を回路中の正
の最大電位点に接続してその機能を働かせるようにして
いる。
By the way, this type of vertical PNP transistor is constructed by forming Nu
A semiconductor layer (N-well) 2 is formed as an element isolation layer, and 2 layers are formed in a region separated between elements by this N-well 2.
It is constructed by forming a layer 3, an N layer 4, a P+ layer 5, a resistance layer 6, and a P+ layer 7. Same, here Kaminichi pus and 2 layers 5
is the collector, NI technology 4 and resistance layer 6 are the pace, P+ layer 7
However, in a PNP transistor (semiconductor device) K with such a structure, the N-well 2 for isolation between elements is usually connected to the maximum positive potential point in the circuit. I'm trying to make that function work.

この為、上記N−ウェル2とP型半導体基板1との間、
およびN−ウェル2とバーチカルトランジスタ8のコレ
クタである2層3との間にそれぞれ寄生ダイオード9,
1Oが形成され、その等価回路が第2図に示すようにな
る。この結果、上記各寄生ダイオード9.IOが有する
静電容量成分が、前記バーチカルトランジスタ8のコレ
クタと回路の接地点との間に対する寄生容量として働き
、その高周波特性劣化の要因となっていた。
Therefore, between the N-well 2 and the P-type semiconductor substrate 1,
A parasitic diode 9,
1O is formed, and its equivalent circuit is shown in FIG. As a result, each of the parasitic diodes 9. The capacitance component of the IO acts as a parasitic capacitance between the collector of the vertical transistor 8 and the ground point of the circuit, and is a factor in deteriorating its high frequency characteristics.

〔発明の目的〕[Purpose of the invention]

本発明はこのような事情を考慮してなされたもので、そ
の目的とするところは、バーチカルトランジスタの素子
間分離用として形成される逆導電性半導体層に起因する
寄生容量による悪影響を抑えて高周波特性の向」二を図
った半導体装置を提供する仁とにある。
The present invention has been made in consideration of these circumstances, and its purpose is to suppress the adverse effects of parasitic capacitance caused by the reverse conductive semiconductor layer formed for isolation between elements of vertical transistors, and to improve high frequency performance. We are committed to providing semiconductor devices with improved characteristics.

〔発明の概要〕[Summary of the invention]

本発明は一導電性半導体基板上に形成されたバーチカル
トランジスタを素子間分離する逆導電性半導体層の電位
を、上記バーチカルトランジスタのコレクタ電位と略同
電位に保つようにしたものである。
In the present invention, the potential of a reverse conductive semiconductor layer that separates vertical transistors formed on a single conductive semiconductor substrate is maintained at approximately the same potential as the collector potential of the vertical transistor.

〔発明の効果〕〔Effect of the invention〕

かくして本発明によれば、逆導電性半導体層の電位がバ
ーチカルトランジスタのコレクタ電位と略同電位なので
、その半導体層間に形成される寄生ダイオードにおける
電荷移動を殆んど無くすことができ、見掛上、上記寄生
ダイオードおよびそこに生じる寄生容量を無くして、そ
の高周波特性の向上を図ることが可能となる。
Thus, according to the present invention, since the potential of the reverse conductive semiconductor layer is approximately the same potential as the collector potential of the vertical transistor, charge transfer in the parasitic diode formed between the semiconductor layers can be almost eliminated, and the apparent By eliminating the parasitic diode and the parasitic capacitance generated therein, it is possible to improve its high frequency characteristics.

その上、寄生ダイオードの非線形特性による歪要因も抑
えることが可能となる等の実用上多大なる効果が奏せら
れる。
Furthermore, it is possible to suppress distortion factors due to the nonlinear characteristics of parasitic diodes, which provides great practical effects.

〔発明の実施例〕[Embodiments of the invention]

以下、図面を参照して本発明の実施例につき説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第3図は実施例装置の基本的な構成を示す等価回路で、
第4図はその具体的な構成例を示す図である。尚、従来
装置と同一部分例は同一符号を伺して示しである。
FIG. 3 is an equivalent circuit showing the basic configuration of the embodiment device.
FIG. 4 is a diagram showing a specific example of the configuration. Incidentally, parts that are the same as those of the conventional device are indicated by the same reference numerals.

本装置は、基本的にはバーチカルトランジスタ8のコレ
クタ電位を入力とする増幅度が1(’0dB)の増幅器
11を設け、その出力電圧をN−ウェル2に印加して、
その電位を上記コレクタ電位と略同電位に保つようにし
たものである。
This device basically includes an amplifier 11 with an amplification factor of 1 ('0 dB) that receives the collector potential of the vertical transistor 8 as input, and applies its output voltage to the N-well 2.
The potential is kept at approximately the same potential as the collector potential.

この増幅器11は、例えば前0己バーチカルトランジス
タ8を形成してなる半導体基板1上にサブストレートP
NPトランジスタ12を形成し、該トランジスタ12を
エミッタ・ホロア回路として用いることによ多構成され
る。上記サブストレートPNPトランジメタ12は、そ
の基板1にP+層13を形成してコレクタとし、1だ該
基板1上に8層14、耐層15を形成してペースとし、
更に上記N層14上にV層16を形成し、これをエミッ
タとすること等によって形成される。そして、このトラ
ンジスタ12のペースを前記バーチカルトランジスタ8
のコレクタに電気的接続し、またエミッタを前記N−ウ
ェル2に接続し、コレクタ・エミッタ間に所定の電圧を
印加することによシ、エミッタ・ホロア回路として機能
させる。
This amplifier 11 is constructed by disposing a substrate P on a semiconductor substrate 1 on which vertical transistors 8 are formed, for example.
It is constructed by forming an NP transistor 12 and using the transistor 12 as an emitter-follower circuit. The substrate PNP transistor 12 has a P+ layer 13 formed on the substrate 1 as a collector, and 8 layers 14 and a resistive layer 15 formed on the substrate 1 as a paste,
Further, a V layer 16 is formed on the N layer 14, and this is used as an emitter. Then, the pace of this transistor 12 is set to the vertical transistor 8.
By electrically connecting the collector to the N-well 2, and connecting the emitter to the N-well 2, and applying a predetermined voltage between the collector and the emitter, it functions as an emitter-follower circuit.

かくしてこのように構成された装置によれば、増幅器1
ノの増幅度が1(OdB)に設定された場合、N−ウェ
ル2の電位は常にバーチカルトランジスタ8のコレクタ
電位に等しくなる。この為、N−ウェル2と2層3との
間に形成される寄生ダイオード1Oの両端電位差は常に
O(零)となシ、見掛上、ダイオード1Oが在存しない
ものと等価となる。従って、ダイオード1Qの寄生容量
がバーチカルトランジスタ8に悪影響を及はし、その高
周波特性が劣化することがなく な る。
According to the device configured in this manner, the amplifier 1
When the amplification degree of N is set to 1 (OdB), the potential of the N-well 2 is always equal to the collector potential of the vertical transistor 8. Therefore, the potential difference across the parasitic diode 1O formed between the N-well 2 and the second layer 3 is always O (zero), and is apparently equivalent to the case where the diode 1O does not exist. Therefore, the parasitic capacitance of the diode 1Q does not adversely affect the vertical transistor 8 and its high frequency characteristics are prevented from deteriorating.

また仮に、上記増幅器11の増幅度が0.9であった場
合には、N−ウェル2の電位はバーチカルトランジスタ
8のコレクタ電位の90%の値に保たれることになる。
Furthermore, if the amplification degree of the amplifier 11 is 0.9, the potential of the N-well 2 will be maintained at 90% of the collector potential of the vertical transistor 8.

このときには、寄生ダイオードIOの両端電位差は、上
dピコレクタ電位の10%の電位に抑えられることにな
シ、その結果、寄生ダイオード10の見掛上の接合容量
(寄生容量)は、増幅器11が存在しない場合に比して
、約1/10に低減されることになる@従って、N−ウ
ェル2の電位を、バーチカルトランジスタ8のコレクタ
電位と略同電位にするだけで、従来に比して高周波特性
の向上を図ることが可能となる。
At this time, the potential difference across the parasitic diode IO is suppressed to 10% of the upper d pico collector potential, and as a result, the apparent junction capacitance (parasitic capacitance) of the parasitic diode 10 is It will be reduced to about 1/10 compared to the case where it does not exist @ Therefore, by simply making the potential of the N-well 2 approximately the same as the collector potential of the vertical transistor 8, the potential will be reduced compared to the conventional case. It becomes possible to improve high frequency characteristics.

このように、増幅器11の増幅度をμ(〉0)に設定し
たとき、寄生ダイオード10の容量を等測的に(1−μ
)倍に抑えることができ、上記増幅度μを1に漸近させ
ることによって、上記寄生ダイオード1Oによる容量成
分を、実際上無視できる程度に小さくシ、バーチカルト
ランジスタ8の高周波特性の向上を図ることが可能とな
る。
In this way, when the amplification degree of the amplifier 11 is set to μ (>0), the capacitance of the parasitic diode 10 is isometrically expressed as (1 − μ
), and by bringing the amplification degree μ asymptotic to 1, the capacitance component due to the parasitic diode 1O can be reduced to a practically negligible level, and the high frequency characteristics of the vertical transistor 8 can be improved. It becomes possible.

また寄生ダイオード1Oの接合、容量は一般に非線形に
変化し、これが為に従来装置にあっては、バーチカルト
ランジスタ8のコレクタ電位の変化によって歪が発生し
ていた。然し乍ら、本装置によれば、上述したように接
合容量自体を打消すので、歪発生の問題が生じることが
ない。これ故、バーチカルトランジスタ8を用いて構成
される回路の歪率、ダイナミックレンジに関する特性に
関しても極めて有利である。
Further, the junction and capacitance of the parasitic diode 1O generally change nonlinearly, and for this reason, in the conventional device, distortion occurs due to a change in the collector potential of the vertical transistor 8. However, according to the present device, since the junction capacitance itself is canceled as described above, the problem of distortion does not occur. Therefore, the circuit configured using the vertical transistor 8 is extremely advantageous in terms of distortion rate and dynamic range characteristics.

陶、増幅器11の増幅度μに関しては、七の値が1以上
又は負にならない限シ、ダイオード1Oが常に逆バイア
ス状態に保たれるので、素子間分離について、その機能
に支障を招くことがない。
Regarding the amplification degree μ of the amplifier 11, as long as the value of 7 is not greater than 1 or negative, the diode 1O is always kept in a reverse bias state, so there is no possibility of interfering with the function of the isolation between elements. do not have.

第5図(−) 、 (b)は、本装置を用いて構成され
た定電流源回路の構成例をそれぞれ示すものであシ、先
の実施例装置部分には、同一符号を付して示しである。
Figures 5(-) and 5(b) respectively show configuration examples of constant current source circuits constructed using this device. This is an indication.

これらの回路例に示されるように、バーチカルトランジ
スタ8を以って構成される電流制御用トランジスタの高
周波特性を改善することにより、負荷RLに安定な定電
流を供給することが可能となシ、その実用的利点は絶大
である。
As shown in these circuit examples, by improving the high frequency characteristics of the current control transistor configured with the vertical transistor 8, it is possible to supply a stable constant current to the load RL. Its practical advantages are enormous.

陶、本発明は上記実施例にのみ限定されるものではない
。ここではバーチカルPNP )ランジスタを例に説明
したが、これと逆導電型のバーチカルNPN型トランジ
スタについても、その逆性方向が逆になるだけで同様に
実施可能なことは云うまでもない。この場合、高周波特
性に優れたバーチカルNPN トランジスタの高周波特
性を更に向上させることができる。また増幅器1ノとし
ては、トランジスタ1段のエミッタ・ホロア回路に代え
て、増幅度が1に設定された他の回路を用いるようにし
てもよい。またこの増幅器1ノをバーチカルトランジス
タ8を°形成した半導体基板上以外に形成することも勿
論可能である。要するに本発明はその要旨を逸脱しない
範囲で種々変形して実施することができる。
However, the present invention is not limited to the above embodiments. Although a vertical PNP transistor has been explained here as an example, it goes without saying that the same implementation is possible with a vertical NPN transistor of the opposite conductivity type, just by reversing the direction of its reversibility. In this case, the high frequency characteristics of the vertical NPN transistor, which has excellent high frequency characteristics, can be further improved. Further, as the amplifier 1, another circuit whose amplification degree is set to 1 may be used instead of the emitter follower circuit with one stage of transistors. Furthermore, it is of course possible to form the amplifier 1 on a substrate other than the semiconductor substrate on which the vertical transistor 8 is formed. In short, the present invention can be implemented with various modifications without departing from the gist thereof.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はバーチカルトランジスタの構造を示す図、第2
図はバーチカルトランジスタの電気的な等価回路を示す
図、第3図は本発明に係る装置の基本構成図、第4図は
実施例装置の構造を示す図、第5図(、) 、、 (b
)は本発明の応用回路例を示す図である。 1・・・半導体基板、2・・・)コーラエル、0・バー
チカルトランジスタ、1O・・・寄生ダイオード、11
・・・増幅器、12・・・サブストレートトランジスタ
Figure 1 shows the structure of a vertical transistor, Figure 2 shows the structure of a vertical transistor.
The figure shows an electrical equivalent circuit of a vertical transistor, FIG. 3 is a basic configuration diagram of a device according to the present invention, FIG. 4 is a diagram showing the structure of an embodiment device, and FIG. 5 (, ), ( b
) is a diagram showing an example of an applied circuit of the present invention. DESCRIPTION OF SYMBOLS 1...Semiconductor substrate, 2...) Coral El, 0. Vertical transistor, 1O... Parasitic diode, 11
...Amplifier, 12...Substrate transistor.

Claims (1)

【特許請求の範囲】 (1ン −導電性半導体基板上に逆導電性半導体層によ
シ素子間分離して形成されたバーチカルトランジスタと
、このバーチカルトランジスタを素子間分離する上記逆
導電性半導体層の電位を前記バーチカルトランジスタの
コレクタ電位と略同電位に保つ手段とを具備したことを
特徴とする半導体装置。 (2)逆導電性半導体層の電位をバーチカルトランジス
タのコレクタ電位と略同電位に保つ手段は、該コレクタ
電位を入力とするエミッタ・ホロア回路からなるもので
ある特許請求の範囲第1項記載の半導体装置。 (3) エミッタ・ホロア回路は、素子間分離してバー
チカルトランジスタを形成した一導電性半導体基板上に
形成された、サブストレートトランジスタにより構成さ
れるものである特許請求の範囲第2項記載の半導体装置
[Claims] (1) A vertical transistor formed on a conductive semiconductor substrate with elements separated by a reverse conductive semiconductor layer, and the reverse conductive semiconductor layer separating the vertical transistors between elements. A semiconductor device comprising means for maintaining the potential of the semiconductor layer at approximately the same potential as the collector potential of the vertical transistor. (2) Maintaining the potential of the opposite conductive semiconductor layer at approximately the same potential as the collector potential of the vertical transistor. The semiconductor device according to claim 1, wherein the means comprises an emitter follower circuit that receives the collector potential as an input. (3) The emitter follower circuit is formed by separating elements to form a vertical transistor. 3. The semiconductor device according to claim 2, which comprises a substrate transistor formed on a conductive semiconductor substrate.
JP58243533A 1983-12-23 1983-12-23 Semiconductor device Granted JPS60136249A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58243533A JPS60136249A (en) 1983-12-23 1983-12-23 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58243533A JPS60136249A (en) 1983-12-23 1983-12-23 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS60136249A true JPS60136249A (en) 1985-07-19
JPH0556019B2 JPH0556019B2 (en) 1993-08-18

Family

ID=17105304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58243533A Granted JPS60136249A (en) 1983-12-23 1983-12-23 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS60136249A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62126704A (en) * 1985-11-20 1987-06-09 エスジ−エス マイクロエレツトロニカ ソチエタ ペル アツイオニ Apparatus for minimize parasitic junction capacitor of insulated collector vertical pnp transistor
JPS62206911A (en) * 1986-02-28 1987-09-11 エス ジ− エス ミクロエレトロニカ エス ピ− エ− Wide-band amplifier

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62126704A (en) * 1985-11-20 1987-06-09 エスジ−エス マイクロエレツトロニカ ソチエタ ペル アツイオニ Apparatus for minimize parasitic junction capacitor of insulated collector vertical pnp transistor
JPH073933B2 (en) * 1985-11-20 1995-01-18 エスジ−エス マイクロエレツトロニカ ソチエタ ペル アツイオニ Device for minimizing parasitic junction capacitance of insulated collector vertical PNP transistor
JPS62206911A (en) * 1986-02-28 1987-09-11 エス ジ− エス ミクロエレトロニカ エス ピ− エ− Wide-band amplifier

Also Published As

Publication number Publication date
JPH0556019B2 (en) 1993-08-18

Similar Documents

Publication Publication Date Title
US4211941A (en) Integrated circuitry including low-leakage capacitance
US4095252A (en) Composite jfet-bipolar transistor structure
US4059808A (en) Differential amplifier
US3701032A (en) Electronic signal amplifier
US4027271A (en) Capacitor structure and circuit facilitating increased frequency stability of integrated circuits
US3681623A (en) Geometric current amplifier
US3378780A (en) Transistor amplifier
JPS5968028A (en) Signal converter and electronic circuit
US2851542A (en) Transistor signal amplifier circuits
EP1181773B1 (en) Overvoltage protection
JPS60136249A (en) Semiconductor device
US5515007A (en) Triple buffered amplifier output stage
US4245231A (en) Combination capacitor and transistor structure for use in monolithic circuits
GB2136652A (en) Differential amplifier with bipolar transistors
US3482177A (en) Transistor differential operational amplifier
US5451908A (en) Circuit arrangement with controlled pinch resistors
JPS6229158A (en) Integrated circuit device containing voltage clamp circuit
US4994694A (en) Complementary composite PNP transistor
KR890003415B1 (en) Semiconductor intergrated circuit
US3725754A (en) Transistor circuit of compound connection
JP6859168B2 (en) Differential amplifier circuit
US3624426A (en) Current source for semiconductor circuits
US4123723A (en) Transistor amplifier circuit
JPS58207672A (en) Semiconductor device
US4019152A (en) Bias circuit for junction diodes