JPS60135880A - Light wave distance measuring apparatus - Google Patents

Light wave distance measuring apparatus

Info

Publication number
JPS60135880A
JPS60135880A JP24909783A JP24909783A JPS60135880A JP S60135880 A JPS60135880 A JP S60135880A JP 24909783 A JP24909783 A JP 24909783A JP 24909783 A JP24909783 A JP 24909783A JP S60135880 A JPS60135880 A JP S60135880A
Authority
JP
Japan
Prior art keywords
light
lens
optical path
reflecting member
objective lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24909783A
Other languages
Japanese (ja)
Other versions
JPH0330115B2 (en
Inventor
Yuji Kadomatsu
門松 雄次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Nippon Kogaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp, Nippon Kogaku KK filed Critical Nikon Corp
Priority to JP24909783A priority Critical patent/JPS60135880A/en
Priority to US06/684,580 priority patent/US4611911A/en
Publication of JPS60135880A publication Critical patent/JPS60135880A/en
Publication of JPH0330115B2 publication Critical patent/JPH0330115B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/04Adaptation of rangefinders for combination with telescopes or binoculars
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • G01S7/4812Constructional features, e.g. arrangements of optical elements common to transmitter and receiver transmitted and received beams following a coaxial path

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PURPOSE:To attain to enhance distance measuring accuracy by facilitating assembling adjustment, by such simple constitution that an auxiliary lens is arranged between a light path divider and integrally arranged transmitted and received light reflective members and reflective surfaces of both reflective parts are mutually crossed at right angles. CONSTITUTION:A light path divider 6 having a dichroic mirror surface D reflecting infrared rays but transmitting visible light is arranged between an objective lens 1 and a focusing lens 2 and infrared rays used in measuring a distance are totally reflected by an incident surface 6a and transmit an emitting surface 6c while visible light for collimation transmits an emitting surface 6b. A negative lens 7 is provided between the light path divider 6 and integrally arranged transmitted and received light reflective members 8, 9 to form an afocal system and transmitting and receiving light paths due to both reflective members 8, 9 together cross the optical axis of the objective lens 1 at right angles and arranged on the same straight line. Therefore, because the element groups of each optical system are made independent so as to interpose parallel luminous flux being a boundary therebetween and easy assembling adjustment is enabled, distance measuring accuracy can be enhanced by simple constitution.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は規準光学系の対物レンズを光波測距光学系に兼
用した光波測距装置、特に、対物レンズ開口の一方の半
円側を送信光用に、他方の半円側を受信光用に用いた同
軸型の光波測距装置に関する。
Detailed Description of the Invention (Technical Field of the Invention) The present invention relates to a light wave distance measuring device in which the objective lens of a reference optical system is also used as a light wave distance measuring optical system. The present invention relates to a coaxial type optical distance measuring device in which the other semicircular side is used for receiving light.

(発明の背景) 従来、規準光学系の対物レンズを光波測距光学系に兼用
した光波測距装置は種々知られており、光波測距光学系
の構成については様々なタイプが実用化されている。測
距精度を高く維持するためには、受信光にノイズ光を混
入しないようにすることは勿論であるが、送信光路及び
受信光路とをそれぞれ精密に位置合わせする必要があり
、設計上のみならず製造、組立並びに調整においては多
大の困難を伴うものであった。また、調整を容易にする
ためには各光学系に専用の部月を設けることも可能であ
るが、複雑な構成にならぜるを得す、装置全体の構成も
大きくなりがちであった。
(Background of the Invention) Conventionally, various types of light wave distance measuring devices have been known in which the objective lens of the reference optical system is also used as a light wave distance measurement optical system, and various types of light wave distance measurement optical system configurations have been put into practical use. There is. In order to maintain high distance measurement accuracy, it is of course necessary to prevent noise light from being mixed into the received light, but it is also necessary to precisely align the transmitting optical path and the receiving optical path. The manufacturing, assembly, and adjustment involved great difficulties. Further, in order to facilitate adjustment, it is possible to provide a dedicated section for each optical system, but this tends to result in a complicated configuration and the overall configuration of the device to become large.

(発明の目的) 本発明の目的は、優れた測距精度を有しつつも、組立、
調整が容易で、しかも簡単な構成からなる□光波測距装
置を提供することにある。
(Objective of the Invention) The object of the present invention is to provide excellent distance measurement accuracy while also providing easy assembly and
An object of the present invention is to provide a light wave distance measuring device that is easy to adjust and has a simple configuration.

(発明の概要) 本発明は、対物レンズ、合焦レンズ、接眼レンズを順次
配置した規準光学系を有し、前記対物レンズと前記合焦
レンズとの間に配置された光路分割器、そして該光路分
割器で分岐された光路にて前記対物レンズの光軸上に一
体的に配置された送信光反射部材と受信光反射部材、及
び前記送信光反射部材へ送信光を供給する光源と前記受
信光反射部材からの光束を受光する受光部材とを有する
同軸型光波準1距装置において、前記光路分割器と、前
記一体的に配置された送信光反射部材と受信光反射部材
との間に、補助レンズを配置することによって前記対物
レンズと該補助レンズとでアフォーカル系を形成し、前
記送信光反射部材と前記受信光反射部材との両度射面が
互いに直交する構成としたものである。
(Summary of the Invention) The present invention has a reference optical system in which an objective lens, a focusing lens, and an eyepiece are arranged in sequence, an optical path splitter arranged between the objective lens and the focusing lens, and an optical path splitter arranged between the objective lens and the focusing lens. A transmitted light reflecting member and a received light reflecting member are integrally arranged on the optical axis of the objective lens in an optical path branched by an optical path splitter, and a light source that supplies transmitted light to the transmitted light reflecting member and the receiving unit. In a coaxial optical wave quasi-single-range device having a light receiving member that receives a light beam from a light reflecting member, between the optical path splitter and the transmitted light reflecting member and the received light reflecting member that are integrally arranged, By arranging an auxiliary lens, the objective lens and the auxiliary lens form an afocal system, and the incident surfaces of the transmitted light reflecting member and the received light reflecting member are orthogonal to each other. .

(実施例) 以下、実施例に基づいて本発明を説明する。(Example) Hereinafter, the present invention will be explained based on Examples.

第1図は本発明による光波測距装置の一実施例の構成を
示す光路図である。対物レンズ(1)、合焦レンズ(2
)、正立プリズム(3)、焦点板(4)及び接眼レンズ
(5)が順次配置されて規準光学系が構成されている。
FIG. 1 is an optical path diagram showing the configuration of an embodiment of a light wave distance measuring device according to the present invention. Objective lens (1), focusing lens (2)
), an erecting prism (3), a focusing plate (4), and an eyepiece (5) are arranged in this order to constitute a reference optical system.

対物レンズ(1)と合焦レンズ(2)との間には、赤外
光を反射し可視光を透過するためのダイクロイックミラ
ー面を有する光路分割器(6)が配置されている。
An optical path splitter (6) having a dichroic mirror surface for reflecting infrared light and transmitting visible light is arranged between the objective lens (1) and the focusing lens (2).

光路分割器(6)はダイクロイックミラー面としての斜
面りで貼合わされた直角プリズムP1と台形プリズムP
2とから成り、対物レンズ(,1)の光軸Aに対して垂
直な入射面(62)、これと平行な第1射出面(6b)
を有している。半透過鏡面としてのダイクロインクミラ
ー面りは、赤外光を反射し同時に可視光を透過する機能
を持ち、ここで反射された赤外光は入射面(6a)で全
反射された後、台形状プリズムP2の斜面に相当する第
2射出面(6c)を透過する。従って、第1射出面(6
b)からは規準用の可視光が射出し、第2射出面(6c
)からは測距用の赤外光が射出する。
The optical path splitter (6) consists of a rectangular prism P1 and a trapezoidal prism P that are bonded together with an inclined surface serving as a dichroic mirror surface.
2, an entrance surface (62) perpendicular to the optical axis A of the objective lens (, 1), and a first exit surface (6b) parallel to this.
have. The dichroic ink mirror surface, which serves as a semi-transparent mirror surface, has the function of reflecting infrared light and transmitting visible light at the same time.The infrared light reflected here is totally reflected on the incident surface (6a), and then passes through the table. The light passes through the second exit surface (6c) corresponding to the slope of the shape prism P2. Therefore, the first exit surface (6
Visible light for reference is emitted from b), and the second exit surface (6c
) emits infrared light for distance measurement.

ここで、ダイクロインクミラー面りの入射角θ即ち、対
物レンズ(1)の光軸Aとダイクロイックミラー面りの
法線とのなす角度は、以下のようにして定められる。
Here, the incident angle θ of the dichroic ink mirror surface, that is, the angle between the optical axis A of the objective lens (1) and the normal to the dichroic mirror surface is determined as follows.

まずθの下限についてみるに、■光路分割器を小型にけ
るために、光路分割器の入射面(6a)では、対物レン
ズ(1)からの入射光束とダイクロイックミラー面りか
らの反射光束とを重畳させなければならず、このために
入射面は鏡面ではなく透明な全反射面でなければならな
い。従って、入射面(6a)での臨界角の制約を受け、
プリズムP2の屈折率をnとするとき、 ■ θが小さくなると、光路分割器(6)を射出する測
距光の光路が規準光学系の光軸と平行に近くなるため、
送信光反射部材(8)、受信光反射部材(9)や送信用
レンズ(11) 、受信用レンズ(12)等を有する測
距光学素子群の配置が難しくなる。
First, regarding the lower limit of θ, in order to make the optical path splitter compact, the incident surface (6a) of the optical path splitter separates the incident light flux from the objective lens (1) and the reflected light flux from the dichroic mirror surface. They must be superimposed, and for this purpose the entrance surface must be a transparent total reflection surface rather than a mirror surface. Therefore, subject to the restriction of the critical angle at the entrance plane (6a),
When the refractive index of the prism P2 is n, as θ becomes smaller, the optical path of the ranging light exiting the optical path splitter (6) becomes nearly parallel to the optical axis of the reference optical system;
This makes it difficult to arrange the distance measuring optical element group including the transmitted light reflecting member (8), the received light reflecting member (9), the transmitting lens (11), the receiving lens (12), and the like.

他方、θの上限についてみれば、■ θが大きくなるほ
ど規準光学系の光路から測距光学系の光路を分岐させる
ための光路分割器の光軸方向の厚さ、即ち入射面(6a
)と第1射出面(6b)との間隔が大きくなり、規準光
学系を長大化してしまう。また、■ ダイクロイックミ
ラー面りで反射された測距光学系の光軸が全反射面とし
ての入射面(6a)と交わる点Qは、θが大きくなって
45度に近づくほど規準光学系の光軸から遠くなるため
、第2プリズムP2が大きくなり装置全体が大型化して
しまう。さらに、■ 薄[4技術において周知のよう1
に、入射角θが大き(なるとグイクロイックミラーの特
性が悪化するためあまり大きな入射角とすることができ
ず、また製造も難しくなる。
On the other hand, regarding the upper limit of θ, ■ The larger θ is, the thickness in the optical axis direction of the optical path splitter for branching the optical path of the ranging optical system from the optical path of the reference optical system, that is, the thickness of the incident surface (6a
) and the first exit surface (6b) becomes large, making the reference optical system elongated. Also, ■ Point Q, where the optical axis of the distance measuring optical system reflected by the dichroic mirror surface intersects the entrance surface (6a) as a total reflection surface, is the point Q where the optical axis of the distance measuring optical system reflected by the dichroic mirror surface intersects with the incident surface (6a), which is the total reflection surface. Since it is far from the axis, the second prism P2 becomes large and the entire device becomes large. Furthermore, ■ Thin [1 as well known in 4 technologies]
Furthermore, if the incident angle θ is large (the characteristics of the guichroic mirror will deteriorate, the incident angle cannot be made very large, and manufacturing becomes difficult).

上記のごとき観点より、ダイクロイックミラー面りはそ
の法線が対物レンズの光軸に対してなす角度θは、具体
的には、 15°〈θく45゜ の範囲に設定することが望ましく、本実施例ではθが3
0度の構成を採用した。
From the above point of view, it is desirable that the angle θ between the normal line of the dichroic mirror surface and the optical axis of the objective lens be set in the range of 15° <θ ~ 45°; In the example, θ is 3
A 0 degree configuration was adopted.

さて、上記の如きグイクロイックミラー面を有するプリ
ズムから成る光路分割器(6)によって分岐された測距
光学系の光路上には、補助レンズとしての負レンズ(7
)が設けられており、対物レンズ(1)とこの負レンズ
とでいわゆるガリレオ型アフォーカル系が形成されてい
る。従って、対物レンズ(1)に入射する無限遠物体か
らの光束は負レンズ(7)の射出後に平行光束となる。
Now, on the optical path of the ranging optical system branched by the optical path splitter (6) consisting of a prism having a gicchroic mirror surface as described above, there is a negative lens (7) as an auxiliary lens.
), and the objective lens (1) and this negative lens form a so-called Galilean afocal system. Therefore, a beam of light from an object at infinity that enters the objective lens (1) becomes a parallel beam of light after exiting from the negative lens (7).

このような平行光束中の光路上には、光軸Aを境界とし
て送信光を反射するための送信光反射部材(8)と受信
光を反射するための受信光反射部材(9)とが設けられ
ている。送信光反射部材(8)は互いに直交する入射面
(8a)と射出面(8b)を有し、さらに45度の斜面
(8C)は赤外領域及び可視域において高い反射率を有
する銀蒸着された裏面鏡となっている。この反射面は光
波測距のためには赤外領域のみ反射すれば十分であるが
、製造上の調整においては可視光で行う方が便利である
ので、調整の容易さのために可視域での反射率も高めて
おくのが有効である。そして、送信光反射部材(8)は
斜面(8C)によって、受信光反射部材(9)に形成さ
れた45度の第1斜面(9a)に接合支持されている。
On the optical path of such a parallel light beam, a transmitted light reflecting member (8) for reflecting the transmitted light and a received light reflecting member (9) for reflecting the received light with the optical axis A as a boundary are provided. It is being The transmitted light reflecting member (8) has an entrance surface (8a) and an exit surface (8b) that are orthogonal to each other, and the 45-degree slope (8C) is coated with silver which has high reflectance in the infrared region and visible region. It has a mirror on the back. It is sufficient for this reflective surface to reflect only the infrared region for light wave distance measurement, but it is more convenient to make adjustments in the visible range for manufacturing adjustments. It is also effective to increase the reflectance of The transmitted light reflecting member (8) is joined and supported by a slope (8C) to a 45-degree first slope (9a) formed on the received light reflecting member (9).

受信光反射部材(9)は第1斜面(9a)と逆向きの4
5度で表面反射面に形成された第2の斜面(9b)を有
し、この第2斜面(9b)は測距用赤外光の反射率が最
大になるような薄膜を蒸着した表面鏡として形成されて
いる。両反射部材による送信光光路と受信光光路とが対
物トンズ(1)及び負レンズ(7)の光軸に対して共に
直交し、同一直線上に位置する如く構成されている。
The received light reflecting member (9) is arranged in a direction opposite to the first slope (9a).
It has a second slope (9b) formed on the surface reflective surface at an angle of 5 degrees, and this second slope (9b) is a surface mirror on which a thin film is deposited to maximize the reflectance of infrared light for distance measurement. It is formed as. The optical path of the transmitted light and the optical path of the received light by both reflecting members are arranged so that they are perpendicular to the optical axes of the objective lens (1) and the negative lens (7) and are located on the same straight line.

送信光反射部材(8)及び受信光反射部材(9)とによ
り互いに分岐された送信光光路と受信光光路とは、依然
として平行光束が維持されており、送信光光路中には送
信用正レンズ(11)が、受信光光路中には受信用正レ
ンズ(12)がそれぞれ配置されている。そして、送信
用正レンズ(1■)の焦点上には光源としての発光ダイ
゛オード(10)が設けられ、受信用正レンズ(12)
の焦点上には受光部材としてのフォトダイオード(13
)が設けられている。ここで、光源(10)、送信レン
ズ(11) 、送信光反射部材(8)、負レンズ(7)
、光路分割器(6)、対物レンズ(1)で測距光学系の
送信光路が形成され、対物レンズ(1)、光路分割器(
6)、負レンズ(7)、受信光反射部材(9)、受信レ
ンズ(12)受光部材(13)で測距光学系の受信光路
が形成されている。また、光源(10)から送信レンズ
(11)、受信レンズ(12)を介して受光部材(13
)へ直接達する光路により基準光光路が形成されている
。本実施例では、送信光反射部材(8)と受信光反射部
材(9)との各反射面の傾斜角を各入射面に対して共に
45度としたが、この角度に限定されるものではなく、
両反射部材の反射面が互いに直交しさえすれば、送信レ
ンズ(11)と受信レンズ(12)との光軸を同一直線
上に合致させることができるため、基準光光学系を送受
信先光学系の一部と完全に共用できて基準光光路として
の専用部材を何等設ける必要がなく、極めて簡単な構成
にすることができる。
The transmitting light optical path and the receiving light optical path, which are branched from each other by the transmitting light reflecting member (8) and the receiving light reflecting member (9), still maintain a parallel light flux, and there is a positive transmitting lens in the transmitting light optical path. (11), a receiving positive lens (12) is arranged in each receiving light optical path. A light emitting diode (10) as a light source is provided on the focal point of the positive lens for transmission (1), and a positive lens for reception (12)
A photodiode (13) is placed on the focal point as a light receiving member.
) is provided. Here, a light source (10), a transmitting lens (11), a transmitting light reflecting member (8), a negative lens (7)
, the optical path splitter (6), and the objective lens (1) form the transmission optical path of the ranging optical system.
6), a negative lens (7), a received light reflecting member (9), a receiving lens (12), and a light receiving member (13) form a receiving optical path of the ranging optical system. Further, the light receiving member (13) is connected from the light source (10) to the transmitting lens (11) and the receiving lens (12).
) forms a reference light path. In this embodiment, the inclination angles of the reflective surfaces of the transmitted light reflecting member (8) and the received light reflecting member (9) were both 45 degrees with respect to each incident surface, but the angle is not limited to this angle. Without,
As long as the reflective surfaces of both reflective members are perpendicular to each other, the optical axes of the transmitting lens (11) and receiving lens (12) can be aligned on the same straight line, so that the reference light optical system can be connected to the transmitting and receiving destination optical system. It can be completely shared with a part of the reference light optical path, and there is no need to provide any dedicated member as the reference light optical path, resulting in an extremely simple configuration.

このような測距光学系の基本構成において、受信光反射
部材(9)と受信レンズ(12)との間には、ノイズと
して入射してくる受信光以外の波長の光をカットするた
めの背景光カットフィルター(14)が配置されている
。そして、送信光と基準光とを切り換えるために、送信
レンズの光軸から偏心した回転軸を中心として回転可能
な光路切換器(15)が、光源(10)と送信レンズ(
11)との間に設けられ、受信光と基準光との強度を揃
えるための回転フィルター(16)が受信レンズ(12
)と受光部材(13)との間に設けられている。また、
送信光が直接に受信光路又は基準光路へ入らないように
、且つ基準光が受信光路へ入らないように、対物レンズ
(1)及び負レンズ(7)の光軸に沿って配置された遮
光板(17)が設けられている。遮光板(17)は、第
2図(A)の側面図及び第2図(B)の平面図に示す如
く、中心部に基準光を通過するための開口部(17a)
を有し、負レンズ(7)側の端部の光軸近傍の部分(1
7b)は光軸近傍の光束が受信光路に混入しないように
屈曲部に形成されている。
In the basic configuration of such a distance measuring optical system, there is a background between the received light reflecting member (9) and the receiving lens (12) for cutting light of wavelengths other than the received light that enters as noise. A light cut filter (14) is arranged. In order to switch between the transmission light and the reference light, an optical path switcher (15) rotatable about a rotation axis eccentric from the optical axis of the transmission lens connects the light source (10) and the transmission lens (
A rotating filter (16) is provided between the receiving lens (11) and the receiving lens (12) to equalize the intensity of the received light and the reference light.
) and the light receiving member (13). Also,
A light shielding plate arranged along the optical axis of the objective lens (1) and the negative lens (7) so that the transmitted light does not directly enter the receiving optical path or the reference optical path, and the reference light does not enter the receiving optical path. (17) is provided. As shown in the side view of FIG. 2(A) and the plan view of FIG. 2(B), the light shielding plate (17) has an opening (17a) in the center for passing the reference light.
, and a portion (1) near the optical axis at the end on the negative lens (7) side.
7b) is formed at a bent portion to prevent the light beam near the optical axis from entering the receiving optical path.

送信レンズ(11)と負レンズ(7)との間、負レンズ
(7)と受信レンズ(12)との間、及び送信レンズ(
11)と受信レンズ(12)との間がそれぞれ平行系で
あることにより、次のような利点がある。
between the transmitting lens (11) and the negative lens (7), between the negative lens (7) and the receiving lens (12), and between the transmitting lens (
11) and the receiving lens (12) are parallel systems, which has the following advantages.

まず、一般に送信光学系については、光源の大きさが一
定であるとすれば、送信光学系全体としての焦点距離は
短い方が送信角度を大きくすることができ、測距可能な
許容範囲を広くできる傾向にあり、本発明の構成におい
ては送信レンズ(11)の焦点距離を変えることによっ
て、送信光学系の全長を大きく変更することな(送信光
学系全体としての焦点距離を短くすることができ、基本
構成上の設計自由度が高い。第2に、測距光は赤外光で
あるため、測距光学系の調整時には背景光カントフィル
ター(14)を外して調整を行う必要があるが、平行光
束中に背景光カットフィルターが配置されているため、
このフィルターの挿脱による焦点ズレ及び光軸ズレを生
ずることがなく、可視光観察によって赤外光に対しても
十分な調整を行うことが可能である。しかも、背景光カ
ットフィルターに入射する光束が収斂や発散光束ではな
いため、このフィルターを形成する多層薄膜の角度特性
による悪影響を受ける恐れがない。第3には、基準光学
系の光路が送信光学系の一部及び受信光学系の一部で共
用されて形成されるため、基準光学系としての専用部材
を必要とせず簡単な構成であると共に、光源(10)と
受光部材(13)とが同一光軸上に配置されているため
、調整も極めて容易且つ正確になされ得る。
First, in general, regarding transmission optical systems, assuming that the size of the light source is constant, the shorter the focal length of the transmission optical system as a whole, the larger the transmission angle, which widens the allowable range for distance measurement. However, in the configuration of the present invention, by changing the focal length of the transmitting lens (11), it is possible to shorten the focal length of the transmitting optical system as a whole without significantly changing the total length of the transmitting optical system. , there is a high degree of freedom in designing the basic configuration.Secondly, since the ranging light is infrared light, it is necessary to remove the background light cant filter (14) when adjusting the ranging optical system. , because a background light cut filter is placed in the parallel light beam,
There is no focus shift or optical axis shift due to the insertion and removal of this filter, and it is possible to perform sufficient adjustment for infrared light through visible light observation. Moreover, since the light beam incident on the background light cut filter is neither convergent nor diverging, there is no risk of being adversely affected by the angular characteristics of the multilayer thin film forming this filter. Thirdly, since the optical path of the reference optical system is shared by a part of the transmitting optical system and a part of the receiving optical system, the structure is simple and does not require a dedicated member as the reference optical system. Since the light source (10) and the light receiving member (13) are arranged on the same optical axis, adjustment can be made extremely easily and accurately.

そして、光源と受光部材とを同一直線上に配置し、且つ
これらを規準光学系の光軸を含む平面と同一平面上に配
置する構成とすれば、規準光学系と測距光学系とを一体
的に構成しても規準望遠鏡鏡筒の幅方向を大きくするこ
とがなく、一般的上オドライドと同様に規準望遠鏡を装
置本体に対して鉛直面、内で回転自在に構成するについ
ては同等制約とならない。
If the light source and the light receiving member are arranged on the same straight line, and also on the same plane as the plane containing the optical axis of the reference optical system, the reference optical system and the distance measuring optical system can be integrated. Even if the reference telescope is configured in a vertical direction, the width of the reference telescope barrel will not be increased, and the same restrictions apply to configuring the reference telescope to be rotatable in the vertical plane relative to the main body of the device, similar to the general Odoride. No.

尚、上記の実施例では光源を送信し、ンズ(11)の焦
点位置に、また受光部材を受信レンズ(12)の焦点位
置に設けたが、光源及び受光部材を各焦点位置に直接配
置せずに、オプティカルファイバーでそれぞれの光束を
導くように構成し得ることはいうまでもない。
In the above embodiment, the light source was transmitted and the light receiving member was placed at the focal position of the lens (11), and the light receiving member was placed at the focal position of the receiving lens (12), but the light source and the light receiving member could not be placed directly at each focal position. Needless to say, it is possible to configure the optical fiber to guide each light beam without using an optical fiber.

(発明の効果) 以上の如く、本発明によれば、光源、受光部材、送信光
反射部材、受信光反射部材等測距光学系の重要な素子群
が補助レンズによる平行光路上にて一体的に配置される
ため、これらの素子群を平行光束を境界として分離独立
して組立調整を行うことができる。そしてその後、別途
に組立間゛整された対物レンズ、合焦レンズ等を含む規
準光学系と光路分割器、補助レンズとを有する本体に対
して、これらの重要素子群を取りつければ良いため、各
部材の高精度な組立調整を簡単に行うことが可能である
。しかも、光波測距用の基準光光路とじての専用部材を
設ける必要がないため、構成を複雑化することなく装置
全体を小型に構成することが可能となる。
(Effects of the Invention) As described above, according to the present invention, the important elements of the distance measuring optical system, such as the light source, the light receiving member, the transmitted light reflecting member, and the received light reflecting member, are integrated on the parallel optical path by the auxiliary lens. Since these element groups are arranged in parallel, it is possible to separate and independently assemble and adjust these element groups using the parallel light beam as a boundary. After that, these important elements can be attached to the main body, which has a reference optical system including an objective lens, focusing lens, etc., an optical path splitter, and an auxiliary lens, which have been assembled separately. It is possible to easily assemble and adjust each member with high precision. Moreover, since there is no need to provide a dedicated member such as a reference light optical path for light wave distance measurement, the entire apparatus can be made compact without complicating the structure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による光波測距装置の一実施例の構成を
示す光路図、第2図(A)及び(B)は測距光学系に設
けられる遮光板の側面図及び平面図である。 〔主要部分の符号の説明〕 1・・・対物レンズ 2・・・合焦レンズ5・・・接眼
レンズ 6・・・光路分割器7・・・負レンズ 8・・
・送信光反射部材9・・・受信光反射部材 10・・・
光源11・・・送信レンズ 12・・・受信レンズ13
・・・受光部材 出願人 日本光学工業株式会社 代理人 渡 辺 隆 男
FIG. 1 is an optical path diagram showing the configuration of an embodiment of a light wave distance measuring device according to the present invention, and FIGS. 2 (A) and (B) are a side view and a plan view of a light shielding plate provided in the distance measuring optical system. . [Explanation of symbols of main parts] 1... Objective lens 2... Focusing lens 5... Eyepiece lens 6... Optical path splitter 7... Negative lens 8...
- Transmitted light reflecting member 9... Received light reflecting member 10...
Light source 11... Transmission lens 12... Receiving lens 13
... Light-receiving material applicant Takashi Watanabe, agent of Nippon Kogaku Kogyo Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 対物レンズ、合焦レンズ、接眼レンズを順次配置した規
準光学系を有し、前記対物レンズと前記合焦レンズとの
間に配置された光路分割器、該光路分割器で分岐された
光路中にて前記対物レンズの光軸上に一体的に配置され
た送信光反射部+4と受信光反射部材、及び前記送信光
反射部材へ送信光を供給する光源と前記受信光反射部材
からの光束を受光する受光部材とを有する同軸型光波測
距装置において、前記光路分割器と、前記一体的に配置
された送信光反射部材と受信光反射部材との間に、補助
レンズを配置することによって1):J記対物レンズと
該補助レンズとでアフォーカル系を形成し、前記送信光
反射部材と前記受信光反射部材との両反射面が互いに直
交する構成としたことを特徴とする光波測距装置。
It has a reference optical system in which an objective lens, a focusing lens, and an eyepiece are arranged in sequence, and an optical path splitter is arranged between the objective lens and the focusing lens, and an optical path split by the optical path splitter is a transmitted light reflecting section +4 and a received light reflecting member which are integrally arranged on the optical axis of the objective lens, and a light source that supplies transmitted light to the transmitted light reflecting member and receives a luminous flux from the received light reflecting member. In the coaxial light wave ranging device having a light receiving member, an auxiliary lens is disposed between the optical path splitter and the integrally arranged transmitting light reflecting member and receiving light reflecting member. : A light wave ranging device characterized in that an afocal system is formed by the J objective lens and the auxiliary lens, and the reflecting surfaces of the transmitted light reflecting member and the received light reflecting member are orthogonal to each other. .
JP24909783A 1983-12-26 1983-12-26 Light wave distance measuring apparatus Granted JPS60135880A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP24909783A JPS60135880A (en) 1983-12-26 1983-12-26 Light wave distance measuring apparatus
US06/684,580 US4611911A (en) 1983-12-26 1984-12-21 Electro-optical distance measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24909783A JPS60135880A (en) 1983-12-26 1983-12-26 Light wave distance measuring apparatus

Publications (2)

Publication Number Publication Date
JPS60135880A true JPS60135880A (en) 1985-07-19
JPH0330115B2 JPH0330115B2 (en) 1991-04-26

Family

ID=17187923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24909783A Granted JPS60135880A (en) 1983-12-26 1983-12-26 Light wave distance measuring apparatus

Country Status (1)

Country Link
JP (1) JPS60135880A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0333390U (en) * 1989-08-07 1991-04-02
WO2020059568A1 (en) * 2018-09-21 2020-03-26 本田技研工業株式会社 Simulator device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0333390U (en) * 1989-08-07 1991-04-02
WO2020059568A1 (en) * 2018-09-21 2020-03-26 本田技研工業株式会社 Simulator device
CN112752985A (en) * 2018-09-21 2021-05-04 本田技研工业株式会社 Simulator device
JPWO2020059568A1 (en) * 2018-09-21 2021-08-30 本田技研工業株式会社 Simulator device
CN112752985B (en) * 2018-09-21 2024-05-10 本田技研工业株式会社 Simulator device

Also Published As

Publication number Publication date
JPH0330115B2 (en) 1991-04-26

Similar Documents

Publication Publication Date Title
US4671613A (en) Optical beam splitter prism
JP3151595B2 (en) Coaxial lightwave distance meter
JPH09105625A (en) Distance-measuring apparatus
WO2008099939A1 (en) Light-dividing element and distance measuring device
US6654518B1 (en) Tap output collimator
US4611911A (en) Electro-optical distance measuring device
US4444503A (en) Ring interferometer with a mode diaphragm
JP2001324327A (en) Af surveying instrument using branched optical system
JPH071344B2 (en) Light splitting device
JPS60135880A (en) Light wave distance measuring apparatus
JP3548282B2 (en) Optical branching optical system
KR19990024008A (en) Optical Disc Device
JPH0735856A (en) Optical range finder
JP2003511739A (en) Optical imaging system
JP3713185B2 (en) AF surveying machine
JPH11218638A (en) Optical constituent element
JP3252401B2 (en) Distance measuring device
JPS60135879A (en) Light wave distance measuring apparatus
JP2936825B2 (en) Distance measuring device
JP2000338359A (en) Optical monitor module
CN218995714U (en) Composite prism and laser ranging telescope thereof
JP2641111B2 (en) Lightwave rangefinder
JPH0769413B2 (en) Lightwave rangefinder
CN117441115A (en) Composite prism with right angle formed by two reflecting surfaces and laser ranging telescope thereof
JPH0271205A (en) Optical multiplexer/demultiplexer