JPS60135834A - Surface pressure measuring apparatus - Google Patents

Surface pressure measuring apparatus

Info

Publication number
JPS60135834A
JPS60135834A JP24698283A JP24698283A JPS60135834A JP S60135834 A JPS60135834 A JP S60135834A JP 24698283 A JP24698283 A JP 24698283A JP 24698283 A JP24698283 A JP 24698283A JP S60135834 A JPS60135834 A JP S60135834A
Authority
JP
Japan
Prior art keywords
pressure
light
load
protrusion
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24698283A
Other languages
Japanese (ja)
Inventor
Yuji Noda
野田 雄二
Yasushi Niitsu
靖 新津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tamagawa Gakuen
Original Assignee
Tamagawa Gakuen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tamagawa Gakuen filed Critical Tamagawa Gakuen
Priority to JP24698283A priority Critical patent/JPS60135834A/en
Publication of JPS60135834A publication Critical patent/JPS60135834A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • G01L1/247Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet using distributed sensing elements, e.g. microcapsules

Abstract

PURPOSE:To enable the detection of parts subject to pressure accurately by a method wherein a surface pressure to be measured is received with a pressure receiving matt made of an elastic material with conical projections distributed evenly to convert a load received on each projection into an electrical signal from a light pattern. CONSTITUTION:A pressure receiving matt 12 has conical projections 15 distributed evenly with tips thereof point contacts a transparent board 13 and a light source 16 is provided at one end face of the transparent board 13. When a surface pressure P to be measured is applied on the pressure receiving matt 12, the projection 15 squeezes significantly at the part receiving the surface pressure intensely to make the contact area form a large circle. Light propagating incident on the transparent board 13 from the light source 16 forms a circular light pattern in the size corresponding to a load and reflected with a reflector 19 entering a video camera 20, with which a circular image 22 of the light pattern is formed in a square region of a unit area. The quantity of light of the light pattern is converted into an electrical signal for each pixel with the area smaller than the area of each projection and then, into a load signal.

Description

【発明の詳細な説明】 この発明は医学、す・・ビリチー/ヨン2体育学。[Detailed description of the invention] This invention is medical science...Bilichy/Yon 2 Physical Education.

機械的振動系など各種の方面において用いられ、血圧を
測定する装置に関する。
The present invention relates to a device for measuring blood pressure, which is used in various fields such as mechanical vibration systems.

〈従来技術〉 従来、例えば運動を行っている時の足が接している地面
に加わる力を測定することによってその運動と人体との
関係を分析し、これにより医学や体育学の分野において
各種の利用をすることが研究されていた。そのための測
定として従来においては運動にもとづく足jり大地に加
わる力を受圧板で受け、その全体の力を測定するものが
あった。
<Prior art> Conventionally, for example, the relationship between exercise and the human body has been analyzed by measuring the force exerted on the ground that the feet are in contact with during exercise, and this has led to various studies in the fields of medicine and physical education. Research has been conducted on its use. Conventionally, this has been measured by using a pressure receiving plate to receive the force exerted by the foot on the ground due to movement, and measuring the total force.

このようなものにおいては足の底積の各部にどのような
圧力が作用したかを測定することはできない。
In such devices, it is not possible to measure what kind of pressure is applied to each part of the plantar area of the foot.

このような点から足の各部より受けた圧力を検出するよ
うに感圧素子を均一に分布した特殊な靴をはいてその各
感圧素子から受ける圧力を検出するものも提案されてい
る。、これば多数の感圧素子を均一に分布させることが
困難であって分解能が悪いものであった。
From this point of view, it has been proposed to wear special shoes in which pressure-sensitive elements are evenly distributed so as to detect the pressure received from each part of the foot, and to detect the pressure received from each pressure-sensitive element. In this case, it is difficult to uniformly distribute a large number of pressure sensitive elements, resulting in poor resolution.

更に従来においてほぼ同一の大きさの円筒状の突起を密
接させて均一に分布したゴム製の受圧マットを用い、こ
れをガラス板上にその突起側を接して配置し、その受圧
マット上に人間が乗った時に足によってマットの各部の
突起が押しつぶされ、ガラス板の側面よシ入射した光が
マットのつぶれた突起面で乱反射することを利用して各
突起の潰れ状態を円形光パタンに変換し、つまり強い圧
力を受けた部分は突起が大きくつぶされてそのガラス板
と接している円形接触面積が広くなって明るい光源とな
り、全熱力が加わらないところは突起の先端のみがガラ
ス板に接触してお9実質的にはそこから光が反射されず
、圧力に応じた面積を持った光パタンの分布を得、これ
より、等圧領域、即ちほぼ一様な圧力の領域を表示する
ため、小さな光円形パタンの分布を焦点をぼかしてビデ
才力区別がつかないようにして連続的に変化する光の強
度分布バタン変換し、その強度分布バタンを表示するこ
とが提案されている。この場合は焦点をポカした撮映に
よシ小さな接触圧が区別することができなくなり、大き
な圧力部分しか表示できす、しかもその圧力の大きな部
分も、その光強度と圧力との関係を十分高い精度で検出
することができなく、更に連続光強度バタンは小さな足
の輪郭となシ、接地面積や接地面形状を正しく知ること
はできない。
Furthermore, in the past, a rubber pressure-receiving mat in which cylindrical protrusions of approximately the same size were closely spaced and evenly distributed was used, and this was placed on a glass plate with the protrusion side touching, and a human being was placed on the pressure-receiving mat. When the mat is stepped on, the protrusions on each part of the mat are crushed by the foot, and the light incident from the side of the glass plate is diffusely reflected on the crushed protrusion surface of the mat, which converts the crushed state of each protrusion into a circular light pattern. In other words, in the areas that receive strong pressure, the protrusions are crushed to a large extent and the circular contact area in contact with the glass plate becomes wider, creating a brighter light source, while in areas where the full heat is not applied, only the tips of the protrusions make contact with the glass plate. 9 In order to obtain a distribution of light patterns whose area corresponds to the pressure without substantially reflecting light from them, and from this, to display an isobaric region, that is, a region of almost uniform pressure. It has been proposed to defocus the distribution of a small circular pattern of light to make it indistinguishable from the continuous changing light intensity distribution, and to display the intensity distribution. In this case, small contact pressures cannot be distinguished due to out-of-focus photography, and only large pressure areas can be displayed.Moreover, the relationship between light intensity and pressure is sufficiently high for the large pressure areas. It is not possible to detect accurately, and furthermore, continuous light intensity slams cannot accurately determine the contact area or shape of the ground surface, since it is difficult to detect the outline of a small foot.

〈発明の概要〉 この発明の目的は受圧している各部を正しく検出するこ
とができ、かつその受圧面の輪郭も正しく知ることがで
きる血圧測定装置を提供することにある。
<Summary of the Invention> An object of the present invention is to provide a blood pressure measuring device that can accurately detect each part receiving pressure and also accurately know the outline of the pressure receiving surface.

この発明によれば錐状突起が均一に分布した弾性材の受
圧マットによって被測定面圧を受けて、その各突起ごと
に受けた荷重を、その大きさに応じた面積を持つ光パタ
ンに変換する。その変換された光バタンを各突起の面積
よシも小さい面積を持つ画゛素ごとにその光量を電気信
号に変換し、その変換した各画素ごとの電気信号を記憶
する。その記憶された電気信号から各突起ごとの受光量
を演算し、その演算した受光量から各突起ごとに受けた
荷重を得る。そのよってして各窓起が受けている荷重を
その受圧マットの突起か光りの単位面積が受けた荷重分
布が得られ、この荷重分布を陰極線管表示器やプリンタ
などに表示させる。また必要に応じてその被測定面圧の
荷重中心、例えば重心を各突起の荷重から演算し、或は
接地面積、つまり所定値以上の荷重を受けた突起の面積
を演算し、更には被測定受圧面を複数に分割し、その各
分割領域ごとの荷重中心を演算するようにすることもで
きる。
According to this invention, the surface pressure to be measured is received by a pressure-receiving mat made of an elastic material in which conical projections are uniformly distributed, and the load received by each projection is converted into a light pattern having an area corresponding to the size of the projection. do. The converted light beam is converted into an electric signal for each pixel having an area smaller than the area of each protrusion, and the converted electric signal for each pixel is stored. The amount of light received by each protrusion is calculated from the stored electrical signal, and the load received by each protrusion is obtained from the calculated amount of light received. As a result, the load distribution of the load applied to each window riser by the unit area of the protrusion or light of the pressure receiving mat is obtained, and this load distribution is displayed on a cathode ray tube display, a printer, etc. In addition, if necessary, the load center of the surface pressure to be measured, for example, the center of gravity, is calculated from the load of each protrusion, or the ground contact area, that is, the area of the protrusion that has received a load of a predetermined value or more, is calculated. It is also possible to divide the pressure receiving surface into a plurality of regions and calculate the load center for each divided region.

〈実施例〉 以下この発明による面圧測定装置の実施例を□□□面を
参照して説明しよう。第1図において測定台11が設け
られ、測定台11の上面に受圧マット12が配されてい
る。受圧マット12は第2図に示すように、例えば5■
四方の単位面積ごとに高さ3wn直径5mlの円錐突起
15が隣接して均一に分布形成され、弾性拐例えばゴム
製のもので、その突起15側が測定台11側として配さ
れる。測定台11の受圧マット12が配されている部分
、つまり上面は例えばガラス板のような透明板13とさ
れている0この受圧マツ1−12上に被測定面圧を印加
する、例えば受圧マット12の上に人間が立って足14
によって受圧マット12に面圧が加えられる。
<Example> Hereinafter, an example of the surface pressure measuring device according to the present invention will be described with reference to the surface □□□. In FIG. 1, a measuring table 11 is provided, and a pressure receiving mat 12 is arranged on the upper surface of the measuring table 11. As shown in FIG. As shown in FIG. 2, the pressure receiving mat 12 has, for example,
Conical protrusions 15 having a height of 3wn and a diameter of 5ml are uniformly distributed adjacent to each other for each unit area on four sides, and are made of elastic material, for example, rubber, and the protrusions 15 side are arranged as the measuring table 11 side. The part of the measuring table 11 where the pressure receiving mat 12 is arranged, that is, the upper surface, is made of a transparent plate 13 such as a glass plate. A human stands on 12 with feet 14
Surface pressure is applied to the pressure receiving mat 12 by the pressure receiving mat 12.

第2図に示すように受圧マット12は円錐状突起15が
均一に分布されており、その先端が透明板13に点接触
して配置されている。この透明板13の一端面に光源1
6が配され、光源16よりの光は透明板13内に入射し
点線のように全反射しながら透明板13内を伝搬する。
As shown in FIG. 2, the pressure-receiving mat 12 has conical protrusions 15 evenly distributed, and their tips are placed in point contact with the transparent plate 13. A light source 1 is provided on one end surface of this transparent plate 13.
6 is arranged, and the light from the light source 16 enters the transparent plate 13 and propagates within the transparent plate 13 while being totally reflected as shown by the dotted line.

受圧マット12に被測定面圧Pが印加され、この面圧を
強く受けた部分は突起15が大きくつぶされ、因では突
起15t h 152 + 153゜’54+ 155
がつぶされ、透明板13と接触する円形接触面が第3図
に示すように各突起と対応して円形接触面N71+ 1
72 + 17a + 174 + 17sとなり、強
い荷重を受けた突起153の接触面積が大きな円形17
3となっている。空気と透明板13、例えばガラス板と
の屈折率の比で決められた臨界角以内の角度でその境界
面に入射した光は受圧マット12、つまシ突起15と接
触してない部分では全反射しながら透明板13内を伝搬
するが、突起15とある面積をもって接触している部分
では前記臨界角の制約を受けず、受圧マット12の成分
であるゴムの屈折率の値で決められた反射率で、図にお
いて実線矢印18で示すように乱反射する。従ってこれ
が光バタンとしてつ捷シ第3図に示した各荷重に応じた
円形の光バタンか分布して得られることに々る。
A surface pressure P to be measured is applied to the pressure-receiving mat 12, and the projections 15 are greatly crushed in the portions that receive this surface pressure strongly.
is crushed, and the circular contact surface that contacts the transparent plate 13 is a circular contact surface N71+1 corresponding to each protrusion as shown in FIG.
72 + 17a + 174 + 17s, and the contact area of the protrusion 153 that received a strong load is a large circle 17
It is 3. Light that enters the interface at an angle within the critical angle determined by the ratio of refractive index between air and the transparent plate 13, such as a glass plate, is totally reflected in areas that are not in contact with the pressure-receiving mat 12 and the tab projections 15. However, in the portion where a certain area is in contact with the protrusion 15, the reflection is not restricted by the critical angle and is determined by the refractive index value of the rubber that is a component of the pressure receiving mat 12. At a certain rate, the light is diffusely reflected as shown by the solid arrow 18 in the figure. Therefore, when this is done as a light batt, the circular light batts distributed according to each load shown in FIG. 3 can be obtained.

足により得られた光バタンの分布例を第4図に示す0 このようにして被測定面圧はその各突起ごとに受けた圧
力に応じた面積を持つ光バタンのこの例では円形パタン
の分布に変換され、この光パタンを突起が形成されてい
る単位面積よりも小さな面積の画素ごとに各部の光量を
電気信号に変換する。
Figure 4 shows an example of the distribution of the light bumps obtained by the foot.In this way, the surface pressure to be measured is a circular pattern distribution of the light bumps, which have an area corresponding to the pressure received by each protrusion. This light pattern is converted into an electric signal for each pixel having an area smaller than the unit area in which the protrusion is formed.

即ち例えは第1図に示すように測定台11内に透明板1
3と斜めに対向して反射鏡19が配され、その反射鏡1
9に、映った光パタンを測定台11の側部に設けられた
ビデオカメラ2Oで撮影する0 先に述べたように一つの突起15は例えは5×5間の方
形面積内に直径511111の底面を持った円錐状突起
として形成しており、その突起形成単位面積当りについ
て受けた荷重に応じた接触面積17が得られ、ビデオカ
メラ20には第5図に示すようにその単位面積の方形領
域21知光パタンの円形像22が形成され、この単位面
積の方形領域21は例えば4×5の20個の画素23に
分解され、その各画素における光量をビデオカメラ20
で検出する。つまりビデオカメラ20の走査線間隔は第
5図において画素23の縦方向における間隔と対応し、
各走査線における分解能は画素23の横方向における画
素間隔と対応している。この一つの画素23が円形光パ
タン像22内に完全に入ってしまう場合は、最も強い光
量が検出され、バタン像22が全く重なら斤い画素の光
量はセロであり、1つの画素23内に占めるバタン像2
2の率からその画素における光電が得られる。
For example, as shown in FIG.
A reflecting mirror 19 is disposed diagonally opposite to the reflecting mirror 1.
9, the reflected light pattern is photographed with the video camera 2O installed on the side of the measurement table 11. As mentioned earlier, one protrusion 15 has a diameter of 511111 within a rectangular area of 5 x 5. It is formed as a conical projection with a bottom surface, and a contact area 17 corresponding to the load received per unit area of the projection formation is obtained, and the video camera 20 has a rectangular shape of the unit area as shown in FIG. A circular image 22 of a light pattern is formed in the area 21, and this rectangular area 21 of unit area is divided into, for example, 20 pixels 23 of 4×5, and the amount of light in each pixel is measured by the video camera 20.
Detect with. In other words, the scanning line spacing of the video camera 20 corresponds to the spacing of the pixels 23 in the vertical direction in FIG.
The resolution in each scanning line corresponds to the pixel interval in the horizontal direction of the pixels 23. If this one pixel 23 completely falls within the circular light pattern image 22, the strongest light amount is detected, and if the batten images 22 overlap completely, the light amount of the pixel 23 is zero, and the light amount within one pixel 23 is zero. Batan statue 2
A ratio of 2 gives the photoelectric charge at that pixel.

各画素ごとの光量は16通りのレベルの電気信号に変換
される。
The amount of light for each pixel is converted into electrical signals of 16 levels.

第1図においてビデオカメラ20で先に述べたような関
係で光パタンの分布を撮影してその出力はAD変換器2
4に入力される。AD変換器24においてはコンピュー
タ25から取込み指令が与えられるとその直後のビデオ
カメラ20の垂直同期信号からビデオカメラ20の出力
を高速度でサンフリンクシ、この各ザンブリングlid
を4ビツトのデジタル値に変換してビデオメモリ26に
記憶する0このAD変換器24におけるザンプリングは
第5図における各画素23の電気信号をサンプルするよ
うな速度で行われる。このようにして1画面分、つまり
受圧マット12の全廟効面で生じた光バタン分布の1画
面を撮D Pl、る七メモリ26への取込み操作は中止
される。
In FIG. 1, the distribution of the light pattern is photographed using the video camera 20 according to the relationship described above, and the output is sent to the AD converter 2.
4 is input. In the AD converter 24, when a capture command is given from the computer 25, the output of the video camera 20 is converted at high speed from the vertical synchronization signal of the video camera 20 immediately after the capture command is given, and the output of the video camera 20 is sent to the digital camera at high speed.
This sampling in the AD converter 24 is performed at such a speed as to sample the electrical signal of each pixel 23 in FIG. 5. In this way, the operation of capturing one screen, that is, one screen of the light bombardment distribution generated on the entire effective surface of the pressure receiving mat 12, into the memory 26 is stopped.

その後コンピュータ25は各突起15ことにこの例でI
″i20個の画素の各光量を示す電気信号をメモリ26
から読み出してその単位面積の光量の和を演咎−し、光
量と荷重との関係を示す対称表(第6図)27を参照し
て光量信号を荷重信号に変換する。即ちこの各一つの突
起15に与えられた荷重とその接触面積、つ1リバタン
像22のIm稙で決まる光量との関係が対称表27に予
め記憶されており、例えは光量を示す信号が0.04の
場合の荷重は0.02 K9、光量信号が005の場合
の荷重は0.025に、というように51の精度で対応
付けし、最大荷重に対応してその受光量の信号は200
乃至250とした対称表27をコンピュータ25内のメ
モリに予め記1怠しておく。
The computer 25 then selects each protrusion 15 to
``I store electrical signals indicating the amount of light of each of the 20 pixels in the memory 26.
The light quantity signal is read out from the area, the sum of the light quantities per unit area is calculated, and the light quantity signal is converted into a load signal with reference to the symmetry table (FIG. 6) 27 showing the relationship between the light quantity and the load. That is, the relationship between the load applied to each protrusion 15, its contact area, and the amount of light determined by the Im angle of the Libertan image 22 is stored in advance in the symmetry table 27, and for example, if the signal indicating the amount of light is 0. When the load is 0.04, the load is 0.02 K9, when the light amount signal is 005, the load is 0.025, and so on, with an accuracy of 51. Corresponding to the maximum load, the received light amount signal is 200.
A symmetrical table 27 containing numbers from 250 to 250 is recorded in advance in the memory of the computer 25.

各突起ごとの各画素の光量信号の和をめ、その和を対称
表27を参照して一つの突起か受けた荷重をめ、これを
第6図内の荷1分布メモリ28内に記憶する。このよう
にして受圧マット12の全突起についてそれが受けた荷
重を浜鏝−して旬東分布メモリ28内に記憶し終ると、
この得られた荷重分布をメモリ28から脱出して表示器
であるクラフィックティスプレィ29(第1図)に表示
さセ−1或はグラフインクプリンタ31ニプリントシて
表示させる。そのプリント表示の例を第7図に示す。濃
い部分和、大きい等荷車領域を示す。タラフィックディ
スプレイ29に表示する場合は異なる等荷重領域を異な
る色で区別して表示して見易くすることもできる。
Calculate the sum of the light intensity signals of each pixel for each protrusion, refer to the symmetry table 27, calculate the load applied to one protrusion, and store this in the load 1 distribution memory 28 in FIG. . In this way, when the loads applied to all the protrusions of the pressure-receiving mat 12 are completely stored in the Shunto distribution memory 28,
The obtained load distribution is extracted from the memory 28 and displayed on the graphic display 29 (FIG. 1), which is a display device, or on the graph ink printer 31. An example of the print display is shown in FIG. Dark partial sums indicate large isocart areas. When displaying on the graphic display 29, different equal load areas can be displayed in different colors to make them easier to see.

更に必要に応じて被測定面圧の中心、人体の場合−、重
心を演算する。この演算は例えば基準座標を受圧マット
に与えておき、例えは第8図に示すようにX軸座標をX
I l x2. x3 、 X4”””とし・ y@[
座標を’11r 3’2 + y3+ y4・・ とし
、座標(XI 、 Yl)で位置指定された突起15の
受けた荷重をf1+ (X2 +y+)の突起の受けだ
荷重をfe2・・・とすると、面圧の中心座標のXの値
は y座標は の演算によりそれぞれ得られる。受圧マット上に乗った
場合の足の接地面積をめるにはある値以上の荷重の突起
の数とその単位面積、この例では5×5mとを掛算すれ
ばよい。更にこの装置において便利なことには例えば両
足で受圧マットに乗った状態においてその得られたデー
タから各片足ずつの受ける重心をそれぞれ先と同様にし
てその片足部分の各突起の受けた荷重から計算すること
ができ、勿論接地面積も計算することができる。
Furthermore, if necessary, the center of the surface pressure to be measured, in the case of a human body, the center of gravity is calculated. For this calculation, for example, the reference coordinates are given to the pressure receiving mat, and the X-axis coordinates are set to
I l x2. x3, X4""" and y@[
If the coordinates are '11r 3'2 + y3+ y4..., and the load received by the protrusion 15 whose position is specified by the coordinates (XI, Yl) is f1+, and the load received by the protrusion is fe2... , the X value of the center coordinate of the surface pressure is obtained by calculating the y coordinate, respectively. To calculate the ground contact area of the foot when stepping on the pressure-receiving mat, it is sufficient to multiply the number of protrusions with a load greater than a certain value by their unit area, which in this example is 5 x 5 m. Furthermore, what is convenient about this device is that, for example, when you are standing on a pressure-receiving mat with both feet, from the data obtained, the center of gravity of each foot can be calculated from the load received by each protrusion of that one foot in the same way as before. Of course, the ground contact area can also be calculated.

史に細くは親指の部分というような部分的なlお荷重中
心を、又は被測定面圧の面積を例えば6等分し、その各
分割された部分ておける部分的な荷重の中心と接地面積
とを同様に演算させることができる。例えば第7図はあ
る人が受圧マット上に立った状態の圧力分布を測定した
場合でプリンタにその結果を打出した場合であり、その
重心位置はGとして表示し、各片足ずつの重心位置をU
及びLとして表示し、またその表示の下に数値で、との
面圧を6等分した場合のその上側の三つの分割領域の荷
重が4.7 t<g、 5.1 Kg 、 17.7 
Kgであり、その上側片足の荷重が27.5Kfと演算
された結果が表示され、更に接地面積がそれぞれ1..
9.2 、20.0 、25.0 。
In history, the partial load center such as the thumb area, or the area of the surface pressure to be measured is divided into six equal parts, and the partial load center and ground contact area of each divided part are calculated. can be similarly calculated. For example, Figure 7 shows a case where a person measures the pressure distribution while standing on a pressure-receiving mat and prints out the results on a printer.The center of gravity position is displayed as G, and the center of gravity position of each foot is U
and L, and the numerical value below the display shows that when the surface pressure of and is divided into six equal parts, the load of the upper three divided areas is 4.7 t<g, 5.1 Kg, 17. 7
Kg, the load on the upper leg is 27.5 Kf, and the result is displayed, and the ground contact area is 1.5 Kg. ..
9.2, 20.0, 25.0.

642と表示される。下側の三つの領域について6.5
Ky 、 5.7Kf 、 18.3Kg、 30.6
Ky、18.5 、20.7 、27.0 。
642 is displayed. 6.5 Regarding the lower three areas
Ky, 5.7Kf, 18.3Kg, 30.6
Ky, 18.5, 20.7, 27.0.

66.2が表示される。接地面積としては例えば一つの
突起が受けた荷重が0.02 Ky以上のものとして表
わされる。
66.2 is displayed. The ground contact area is expressed as, for example, a load received by one protrusion of 0.02 Ky or more.

く効 果〉 以上述べたようにこの発明にょる面圧渥ノ定装置におい
ては一つ当シの突起の単位面積部分を複数の画素に分解
してその画素の各画素ごとに光パタンの光量を検出し、
その単位面積ごとの和を演算し、これを予め校正した荷
重に変換してその単位面積当シの荷重を得てその突起の
受けた荷重とすることによって正確に単位面積当りの荷
重を知ることができ、この場合におけるその荷重と円形
バタンとの関係は例えば第9図に示すように荷重が大き
くなるに従って光バタンの直径が犬となると七が実験に
よシ確められ、更に荷重を変化させたときのこのように
して得られた光量と一つの突起当シに得られた荷重光音
の関係はその荷重を増加した場合と減少した場合とで殆
んど差かなく、第10図に増加した場合を黒丸で示し、
荷重を減らした場合を白丸で示す。またゴム製の受圧マ
ットは荷重変化眞対する追従性が非常に速いものであり
、従って例えばその受圧マット上で運動している状態に
おけるその足の受けた圧力分布を瞬時々々測測定ること
も可能である。この場合にコンピュータの処理速度を適
当に早くすれば運動による光バタン分布の変化状態をビ
デオカメラで連続的に撮影した後に演算処理を行うこと
なく、実時間で処理できる。なお第1図においてビデオ
カメラ20でとったビデオ信号をVTR33に録画して
おき、このVTR33を再生してその再生出力をAD変
換器24を通じてビデオメモリ26に取込むようにして
もよい。
Effect> As described above, in the surface pressure measuring device according to the present invention, the unit area portion of one protrusion is divided into a plurality of pixels, and the light intensity of the light pattern is calculated for each pixel of the pixel. detect,
Accurately know the load per unit area by calculating the sum for each unit area and converting it to a pre-calibrated load to obtain the load per unit area and use it as the load received by the protrusion. In this case, the relationship between the load and the circular bang was confirmed by experiment, for example, as shown in Figure 9, as the load increases, the diameter of the light bang becomes smaller. The relationship between the amount of light obtained in this way and the applied light sound obtained for one protrusion abutment is almost the same when the load is increased and when it is decreased, as shown in Figure 10. The black circle indicates the case where the increase in
The case where the load is reduced is shown by a white circle. In addition, rubber pressure mats have a very fast ability to follow changes in load, so for example, it is possible to measure the pressure distribution applied to a foot instantaneously while moving on the mat. It is possible. In this case, if the processing speed of the computer is increased appropriately, it is possible to process in real time without having to carry out arithmetic processing after continuously photographing the state of change in the light batten distribution due to movement with a video camera. In FIG. 1, the video signal taken by the video camera 20 may be recorded on the VTR 33, the VTR 33 may be played back, and the playback output may be taken into the video memory 26 through the AD converter 24.

このようにして高い精度の分布荷重を測定することがで
き、かつその接触面積もはつきシつかむことができ、し
かも高速度に処理することが可能である。先の例のよう
に荷重ダラム単位で測定することも可能である。またこ
の発明は足圧荷重のみならずその他背中、尻など人体に
関係した部分による血圧のみならず、一般の物体などに
よって受ける面圧、特に振動している物体による受ける
面圧の振動による変化状態などを測定することも可能で
ある。
In this way, the distributed load can be measured with high precision, and the contact area can also be determined, and processing can be performed at high speed. It is also possible to measure in units of load durams as in the previous example. In addition, this invention applies not only to foot pressure loads but also to blood pressure from other parts of the human body such as the back and buttocks, as well as changes in surface pressure due to vibrations, such as surface pressures received from general objects, especially surface pressures received from vibrating objects. It is also possible to measure the following.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明による血圧」1]定装置の一例を示す
ブロック図、第2図はその受圧マット12と透明板13
とそのマットの荷重を受けた状態とを示す図、第3図は
受圧マットの突起の荷車による接触面積の変化状態を示
す図、第4図は面圧による光バタン分布の例を示す図、
第5図はその各単位面積における画素と光バタン像との
関係を示す図、−第6図はコンピュータ内に用いられる
メモリにおける対称表と荷重分布メモリとを示す図、第
7図は裏側した面圧の測定値をプリンタで打出した例を
示す図、第8図は荷重分布と位置座標との関係を示す図
、第9図は荷重と光パタンの直径との関係の実験結果を
示す図、第10図は荷重と演算して得られた一つの突起
の光量との関係の実験結果を示す図である。 11:測定台、12:受圧マット、13:透明板、15
:突起、16:光源、19:ミラー、20:ビデオカメ
ラ、22:光バタン像、25:コンピュータ、24 :
 AD変換器、26:ビデオメモリ、29ニゲラフイツ
クデイスプレイ、31ニゲラフイツクプリンタ0 特許出願人 学校法人 土用学園 71 図 □□□づ 1E オ 3 図 7I75 図 第4 図 −ooooooooooo os − ’ OOOOOo O。 o 00 ○ OOo o 。 0 00 Q OOOO。 、000000000 − ooooooOQ ’ ” OOOOOOo a l ooO00○Q Q 6 ・ 000o○000 ・ 、ooO○OOOO オ9図 荷重に9/突起 荷重に9/突起
Fig. 1 is a block diagram showing an example of a blood pressure control device according to the present invention, and Fig. 2 shows its pressure receiving mat 12 and transparent plate 13.
FIG. 3 is a diagram showing changes in the contact area of the protrusion of the pressure-receiving mat with the cart, and FIG. 4 is a diagram showing an example of the light slam distribution due to surface pressure.
Figure 5 is a diagram showing the relationship between pixels and light baton images in each unit area, - Figure 6 is a diagram showing the symmetry table and load distribution memory in the memory used in the computer, and Figure 7 is the back side. Figure 8 shows an example of surface pressure measured values printed out using a printer, Figure 8 shows the relationship between load distribution and position coordinates, and Figure 9 shows the experimental results of the relationship between load and optical pattern diameter. , FIG. 10 is a diagram showing the experimental results of the relationship between the load and the calculated light amount of one protrusion. 11: Measuring table, 12: Pressure mat, 13: Transparent plate, 15
: Protrusion, 16: Light source, 19: Mirror, 20: Video camera, 22: Light slam image, 25: Computer, 24:
AD converter, 26: video memory, 29 Nigella quick display, 31 Nigella quick printer 0 Patent applicant Educational corporation Doyo Gakuen 71 O. o 00 ○ OOo o. 0 00 QOOOO. , 000000000 - oooooooOQ ''' OOOOOOOo a looO00○Q Q 6 ・ 000o○000 ・ , ooO○OOOO

Claims (1)

【特許請求の範囲】[Claims] (1)錐状突起がほぼ均一に分布した受圧マツ)[被測
定面圧を印加して単位面積ことえ受けた荷重に応じた面
積を持つ光パタンの分布に被測定面圧を変換する手段と
、その変換された光パタンをその各突起よりも小さい面
積の画素ごとにその光量を電気信号に変換する手段と、
その変換された各画素ごとの市1気信号を記憶する手段
と、その記憶された電気信号から各突起ごとの受光量を
演算する手段と、その各突起ごとの受光量を荷重に変換
する手段と、その得られた荷重の分布を表示する手段と
を具備する面圧測定装置。
(1) Pressure-receiving pine with almost uniformly distributed conical projections) [Means for applying surface pressure to be measured and converting the surface pressure to be measured into a distribution of an optical pattern having an area corresponding to the load received over a unit area and a means for converting the converted light pattern into an electrical signal for each pixel having an area smaller than each protrusion;
Means for storing the converted signal for each pixel, means for calculating the amount of light received for each protrusion from the stored electric signal, and means for converting the amount of light received for each protrusion into a load. and means for displaying the obtained load distribution.
JP24698283A 1983-12-26 1983-12-26 Surface pressure measuring apparatus Pending JPS60135834A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24698283A JPS60135834A (en) 1983-12-26 1983-12-26 Surface pressure measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24698283A JPS60135834A (en) 1983-12-26 1983-12-26 Surface pressure measuring apparatus

Publications (1)

Publication Number Publication Date
JPS60135834A true JPS60135834A (en) 1985-07-19

Family

ID=17156605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24698283A Pending JPS60135834A (en) 1983-12-26 1983-12-26 Surface pressure measuring apparatus

Country Status (1)

Country Link
JP (1) JPS60135834A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01122704U (en) * 1988-02-17 1989-08-21
JPH01276034A (en) * 1988-04-27 1989-11-06 Sony Corp Detector for minute pressure distribution
JPH03146809A (en) * 1989-11-02 1991-06-21 Sumitomo Rubber Ind Ltd Method and instrument for observing grounding face of tire
JPH03226636A (en) * 1990-02-01 1991-10-07 Sumitomo Rubber Ind Ltd Measuring apparatus for ground-contacting shape and grounding pressure of tire and sheet body for measuring grounding pressure of tire
JPH0448232A (en) * 1990-06-18 1992-02-18 Rikagaku Kenkyusho Measuring method for contact surface pressure distribution
JPH05172666A (en) * 1991-12-26 1993-07-09 Toppan Printing Co Ltd Handy contact pressure measuring sheet
JP2009232942A (en) * 2008-03-26 2009-10-15 Asahi Corp Method for analyzing gravity center position
DE102010047460A1 (en) * 2010-10-06 2012-04-12 Esbo Gmbh Detecting individual body statics of person using measurement data, by determining position values of predefined body points depending on position of both feet, and optionally determining height differences of measured position values
US8707802B2 (en) 2010-10-22 2014-04-29 Seiko Epson Corporation Detection device, electronic apparatus, and robot
US8800385B2 (en) 2010-12-08 2014-08-12 Seiko Epson Corporation Detection device, electronic apparatus, and robot
US8904885B2 (en) 2010-07-26 2014-12-09 Seiko Epson Corporation Detection device, electronic device, and robot
US9074955B2 (en) 2010-09-21 2015-07-07 Seiko Epson Corporation Detection device, electronic apparatus, and robot
US9205561B2 (en) 2013-02-26 2015-12-08 Seiko Epson Corporation Force detector and robot
US9459712B2 (en) 2010-07-26 2016-10-04 Seiko Epson Corporation Detection device, electronic apparatus, and robot

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50143379A (en) * 1974-04-17 1975-11-18
JPS5278480A (en) * 1975-12-25 1977-07-01 Takei Kiki Kogyo Kk Method of measuring load distribution

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50143379A (en) * 1974-04-17 1975-11-18
JPS5278480A (en) * 1975-12-25 1977-07-01 Takei Kiki Kogyo Kk Method of measuring load distribution

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0451771Y2 (en) * 1988-02-17 1992-12-07
JPH01122704U (en) * 1988-02-17 1989-08-21
JPH01276034A (en) * 1988-04-27 1989-11-06 Sony Corp Detector for minute pressure distribution
JPH03146809A (en) * 1989-11-02 1991-06-21 Sumitomo Rubber Ind Ltd Method and instrument for observing grounding face of tire
JPH03226636A (en) * 1990-02-01 1991-10-07 Sumitomo Rubber Ind Ltd Measuring apparatus for ground-contacting shape and grounding pressure of tire and sheet body for measuring grounding pressure of tire
JPH0448232A (en) * 1990-06-18 1992-02-18 Rikagaku Kenkyusho Measuring method for contact surface pressure distribution
JPH05172666A (en) * 1991-12-26 1993-07-09 Toppan Printing Co Ltd Handy contact pressure measuring sheet
JP2009232942A (en) * 2008-03-26 2009-10-15 Asahi Corp Method for analyzing gravity center position
US8904885B2 (en) 2010-07-26 2014-12-09 Seiko Epson Corporation Detection device, electronic device, and robot
US9459712B2 (en) 2010-07-26 2016-10-04 Seiko Epson Corporation Detection device, electronic apparatus, and robot
US9074955B2 (en) 2010-09-21 2015-07-07 Seiko Epson Corporation Detection device, electronic apparatus, and robot
DE102010047460A1 (en) * 2010-10-06 2012-04-12 Esbo Gmbh Detecting individual body statics of person using measurement data, by determining position values of predefined body points depending on position of both feet, and optionally determining height differences of measured position values
US8707802B2 (en) 2010-10-22 2014-04-29 Seiko Epson Corporation Detection device, electronic apparatus, and robot
US9121782B2 (en) 2010-10-22 2015-09-01 Seiko Epson Corporation Detection device, electronic apparatus, and robot
US8800385B2 (en) 2010-12-08 2014-08-12 Seiko Epson Corporation Detection device, electronic apparatus, and robot
US9097597B2 (en) 2010-12-08 2015-08-04 Seiko Epson Corporation Detection device, electronic apparatus, and robot
US9205561B2 (en) 2013-02-26 2015-12-08 Seiko Epson Corporation Force detector and robot

Similar Documents

Publication Publication Date Title
JPS60135834A (en) Surface pressure measuring apparatus
US6906702B1 (en) Coordinate input device and its control method, and computer readable memory
KR100936816B1 (en) Pointing device using camera and outputting mark
US5159322A (en) Apparatus to digitize graphic and scenic information and to determine the position of a stylus for input into a computer or the like
CN106954058A (en) Depth image obtains system and method
CA2090484A1 (en) Method and apparatus for capturing skin print images
JP2001075736A (en) Coordinate input device
JPH07128163A (en) Touch sensor
US6731271B1 (en) Coordinate input device and its control method, and computer readable memory
JP2001022520A (en) Coordinate input device
CN206807664U (en) Depth image obtains system
JP3165429B2 (en) Aggregation image judgment method
JPH07110216A (en) Method and instrument for measuring vertical and lateral movement of speckle pattern utilizing laser light
KR20210155080A (en) Trampoline device capable of measuring momentum and a method for deriving a three-dimensional position using the same
JP2000284908A (en) Device with integrated input and output
JPS5458047A (en) Method of metering spacing between cars
JPH04333820A (en) Characteristic evaluation device for two-dimensional display element
KR100892954B1 (en) Physical quantity measuring apparatus using moving picture and method thereof
JPS6091204A (en) Area measuring device utilizing tv picture
JP2900391B2 (en) Bright line distortion measuring device
JP2689447B2 (en) Beam position deviation measuring device
CA1165444A (en) Temperature pattern measuring method and device therefor
SU847023A1 (en) Method of locating deformations on article surface
JPH04330896A (en) Method of measuring cathode ray tube
JPH02140194U (en)