JPS60135732A - Temperature measuring device - Google Patents

Temperature measuring device

Info

Publication number
JPS60135732A
JPS60135732A JP58243364A JP24336483A JPS60135732A JP S60135732 A JPS60135732 A JP S60135732A JP 58243364 A JP58243364 A JP 58243364A JP 24336483 A JP24336483 A JP 24336483A JP S60135732 A JPS60135732 A JP S60135732A
Authority
JP
Japan
Prior art keywords
polarization
light
temperature
optical fiber
maintaining optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58243364A
Other languages
Japanese (ja)
Other versions
JPH0229973B2 (en
Inventor
Masataka Nakazawa
正隆 中沢
Masamitsu Tokuda
正満 徳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP58243364A priority Critical patent/JPS60135732A/en
Publication of JPS60135732A publication Critical patent/JPS60135732A/en
Publication of JPH0229973B2 publication Critical patent/JPH0229973B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/32Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres

Abstract

PURPOSE:To measure temperature easily with high sensitivity by causing linear polarized light to strike a polarization maintaining optical fiber in its main-axis direction through a polarizer, and photodetecting light passed through an analyzer which has the direction of polarization at right angles to the main axis by a photodetector. CONSTITUTION:Light from a light source 1 is made into linear polarized light by the polarizer installed at the incidence terminal of the polarization maintaining optical fiber 10 and the polarized light is made incident while aligned to the principal axis of the fiber 10; and the direction of polarization of the analyzer 9' is set at right angles to the principal axis and the projection light is photodetected by a photodetector 5 to display the result on a display device 8. Strain inducing parts A and A are set asymmetrically to increase the temperature dependency of the quenching ratio of the fiber 10 as a detection part, and light power due to the rotation of the principal axis accompanying temperature variation to calculate the temperature variation. Consequently, the need for a frequency stabilized laser and an interferometer is eliminated.

Description

【発明の詳細な説明】 *i*hi波曲光77ブ丁′が消光比1度依存性をもつ
ことを利用した小型で簡便、高精度に温度測定を行なう
装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a small, simple, and highly accurate temperature measuring device that utilizes the fact that *i*hi wave curved light 77' has a 1 degree dependence on extinction ratio.

従来、光ビームを介在した温度測定法Fi数多くある。Conventionally, there are many temperature measurement methods using a light beam.

例えば■ 熱放射体のふく射光量の温度値し、温度変化
を測 定する方法、■ 水銀温度計に光ファイバを接続し、温
度上昇に伴い、水銀が光ビームを横ぎることにより、ビ
ームを遮断し、温度を測定する方法、イケルソン型干渉
計を 組み、光フアイバ中のコア部の屈折率もしくは長さの温
度変化(光学長の温度1依存性)による干渉縞の変化を
測定する方法がある。しかしながら、■については、単
に光ファイバは熱の伝送用であリ、500度〜1000
度と高温の放射体には適しているものの、常温付近での
汎用性はあまりない。■は、光ビームが通過する水銀柱
の位置から。
For example, ■ A method for determining the temperature value of the amount of light emitted by a thermal radiator and measuring temperature changes; ■ A method for connecting an optical fiber to a mercury thermometer, and as the temperature rises, the mercury crosses the light beam, blocking the beam. There is a method of measuring temperature, and a method of assembling an Ikelson interferometer and measuring changes in interference fringes due to temperature changes in the refractive index or length of the core portion of the optical fiber (temperature 1 dependence of optical length). However, regarding (2), optical fibers are simply for transmitting heat, and temperatures between 500 degrees and 1000 degrees
Although it is suitable for radiators at high temperatures, it is not very versatile at room temperatures. ■ is from the position of the mercury column through which the light beam passes.

温度がわかるが、他の温度竺測定できない。従って一般
的;温度計とはいえず、6しろ温度監視システム用VC
適している。一般的な温度測定法としては■が挙げられ
る。その構成図を第1図に示す。
I can see the temperature, but I can't measure other temperatures. Therefore, it is common; it cannot be called a thermometer, but a VC for temperature monitoring system.
Are suitable. A common method for measuring temperature is ■. Its configuration diagram is shown in FIG.

周波数安定化レーザ1からの光出力はビームスプリッタ
2で分離され、一方は単一モード光ファイバ3を通過し
、他方は空間を伝搬し、ビームスプリッタ2′上で合成
されて干渉縞を形成する。ア°リズム4により干渉縞を
分割し、位置が一異なる場所で干渉縞を検出器5および
5′により検出し、それらIdテータレコーダ6に収録
される。両者の値は計算pA7によシArctanをと
ることによシ、位相変化から温度変化を換算し、表示器
8に示す。
The optical output from the frequency stabilized laser 1 is separated by a beam splitter 2, one passes through a single mode optical fiber 3, the other propagates in space, and is combined on the beam splitter 2' to form interference fringes. . The interference fringes are divided by the algorithm 4, and the interference fringes are detected by the detectors 5 and 5' at different positions and recorded in the Id data recorder 6. Both values are calculated by calculating pA7 and taking Arctan, converting the temperature change from the phase change and showing it on the display 8.

しかしこの方法は測定精度が1 mdθg程度ではある
ものの、周波数安定化レーザ、ビームスプリッタ、2個
の光検出器、および計算機を必要とするなど、装置が複
雑でかつ高価であると同時に実時間の温度測定が困難で
あった。また、干渉法を用いるために2つの光学路を必
ず必要とする欠点があグた。。
However, although this method has a measurement accuracy of about 1 mdθg, the equipment is complex and expensive, as it requires a frequency stabilized laser, a beam splitter, two photodetectors, and a computer, and it also requires real-time processing. Temperature measurement was difficult. Another disadvantage is that two optical paths are always required in order to use the interferometry method. .

本発明は、これらの欠点を除去するために、偏波保持光
ファイバの消光比の温度依存性に着iし、これをセンサ
として消光比の変化ヤから温度を測定するか偏波保持光
ファイバの応力付与部を非対称に設定することによシ、
消光比の温度依存性を大きくしその消光比の変化量から
温度を測定するもので、周波数安定化レーザの使用、干
渉計の設置、データ処理等を必要とせず簡便でかつ高感
麿VC温度測定をするもので、以下図面について詳細□
 に説明干る。
In order to eliminate these drawbacks, the present invention takes advantage of the temperature dependence of the extinction ratio of polarization-maintaining optical fibers and uses this as a sensor to measure temperature from changes in the extinction ratio. By setting the stress applying part asymmetrically,
This method increases the temperature dependence of the extinction ratio and measures the temperature from the amount of change in the extinction ratio.It is simple and highly sensitive to VC temperature without the need for frequency-stabilized lasers, interferometer installation, data processing, etc. This is for measurement, and the details of the drawings are below□
Explanation to dry.

′ 第2図は本発明の実施例であって、1け光源(半導
体レーザ、固体レーで、気体レーザ、旧等)、9および
qは偏光子、および検光子であり、10は非対称応力付
与部を有する偏波保存光ファイバ、5Fi光検出器、8
Fi表示装置である。これを動作するには、光源1から
の光を偏光子9により直線偏光として、偏波保持光ファ
イバ10の主軸(X軸)に合致して入射させ、さらに、
検光子9′の偏光方向は入射主軸方向とけ直交方向CY
軸)に設定する。これをクロスニコルに設定するという
' Figure 2 shows an embodiment of the present invention, in which 1 light source (semiconductor laser, solid state laser, gas laser, old etc.), 9 and q are polarizers and analyzers, and 10 is an asymmetric stress applying device. polarization-maintaining optical fiber with a 5Fi photodetector, 8
It is an Fi display device. To operate this, the light from the light source 1 is made into linearly polarized light by the polarizer 9 and is incident on the main axis (X-axis) of the polarization-maintaining optical fiber 10, and further,
The polarization direction of the analyzer 9' is in the direction of the main axis of incidence and in the orthogonal direction CY.
axis). This is said to be set to crossed nicols.

さて、第3図(&)に示すように、応力付与部が対称で
あれば、偏波保持光ファイバ10への入力光の強度と検
光子9′を通過して光検出器5で検出される出力光強度
の比である消光比は−60〜−40dBAanと高いた
め、検光子qの出力は非常に小さ□ く、温度変動に対
]〜ても単一偏波の構造が2つの主軸(X軸、Y+M)
’に対して対称であるためモード結合による消光比変化
′は小さい。しかし、ここで第3図(1))、(Q)、
(d)に示すような非対称応力付与1 部をもつ偏波保
持光ファイバを温度センサーとして用いると、消光比が
劣化し光出力が検出器5で受光される。さら[重要な要
素としてコア内部の応力分布がX軸、Y軸に関して対称
ではないので、温度変化により、モード結合量(X軸方
向からY軸方向への変換量辷が変化し、検出器出力が変
化する。この変化量゛は温i変化量に対応しているので
逆算゛することにr゛す;一度変化を知ることができる
Now, as shown in FIG. 3 (&), if the stress applying part is symmetrical, the intensity of the input light to the polarization maintaining optical fiber 10 and the intensity of the light passing through the analyzer 9' are detected by the photodetector 5. Since the extinction ratio, which is the ratio of the output light intensity, is as high as -60 to -40 dBAan, the output of analyzer q is extremely small, and even with temperature fluctuations, the single polarization structure has two main axes. (X axis, Y+M)
Since it is symmetrical with respect to ', the change in extinction ratio due to mode coupling is small. However, here in Figure 3 (1)), (Q),
When a polarization-maintaining optical fiber having 1 part of asymmetric stress as shown in (d) is used as a temperature sensor, the extinction ratio deteriorates and the optical output is received by the detector 5. [An important factor is that the stress distribution inside the core is not symmetrical with respect to the changes. This amount of change corresponds to the amount of change in temperature i, so it is necessary to calculate it backwards; the change can be known once.

第4図に温度変動に伴なう主軸回転の様子を示す。まず
巻ファイバー0のY軸方向に〒界振1fiiEo。
Figure 4 shows the spindle rotation due to temperature fluctuations. First, the field vibration is 1fiiEo in the Y-axis direction of the wound fiber 0.

の光用を入射する。一様に温度が、へTだけ変化した場
合の主軸の回転量を△θは微小であるこ、とをltL”
 a。
of light is incident. The amount of rotation of the main shaft when the temperature uniformly changes by T is △θ, which is infinitesimal.
a.

△θ=(□)△′r ・・・・・・fl)a’r と書くことができる。長さeの光ファイバー0を伝搬後
0主−転′伴なうr軸方向″′″′7軸からの光の変化
量は、 。
It can be written as △θ=(□)△'r...fl)a'r. After propagating through the optical fiber 0 of length e, the amount of change of light from the r-axis direction ``''''7 axis accompanied by 0 principal rotation is as follows.

B(g+5(−E−−Δθ1. e −5Kxらムθ−
F: OCoムθe−1に7/π ゛・・ I;O5’(−一△θ) ・・・・・・(2)
(2)式ば△θ〈1の条件のもとて次のように簡略化さ
れる。
B(g+5(-E--Δθ1. e-5Kxram θ-
F: OCom θe-1 to 7/π ゛... I; O5'(-1 △θ) ・・・・・・(2)
Equation (2) can be simplified as follows under the condition of Δθ<1.

一1Kxe−’1Kyd 但し、cos (−’ −△’l” l二△θ、cos
△シご1を用いた。
-1Kxe-'1Kyd However, cos (-'-△'l" l2△θ, cos
△City 1 was used.

一方、誘電率テンソルの非対合要素の長手方向でのゆ艷
ぎ、△t T [Z )によるモ、づ結合@(Y′軸か
らX方向への結合) amc(1)はa m c(1)
= 手、/’胚εxYのeXp[−i (Kx−Ky’
) Z ] aZ・・・・・(4) で与えられる。ここで2は7アイノくの特性インヒ。
On the other hand, the fluctuation in the longitudinal direction of the unpaired element of the permittivity tensor, the mozu coupling @ (coupling from the Y' axis to the X direction) amc (1) is a m c (1)
= hand, /'eXp[-i (Kx-Ky' of embryo εxY'
) Z ] aZ...(4) It is given by. Here, 2 is the characteristic of 7 eyes.

−ダンス、ωは光の角周波数−Kxおよびに7&まX軸
およびY軸主軸方向の伝搬定数である。
-dance, ω is the angular frequency of light -Kx and the propagation constant in the X-axis and Y-axis principal axis directions.

a m cfl)のCOSΔθ戊分が検出器5に入射す
るわけであるが、cosΔθ:1であるから、結局屈折
率ゆらぎによるモード結合@ば amc(A’)Bo exp (−1Kxll ”−(
51と表現できる。我々が観測するσ〕に、光、<ワー
であるから、電場の絶対値の2乗に比例する。一方、a
mc、(6エ場所の関数であるから集合平均をとる必要
かある。従って、検出される光ノマワーpobs&工P
obs=、/’:、/::7Σ<IEo△θ(e−■x
7 e−1に744−am c(JR’o ×e −i
K” f ) dxay・・(61となる。ここで、 <1B o Δθ(e−1Kxl−e−iKyり+am
C(1)Eoe−1Kx112〉=2BO”△θ2(1
−ay鴎1+<i amdgM2> E、o ”−+7
1であるので、 P o b s 4(21J 2 (1−ωs成)+b
4 ) Pin ・−+・f13)となる。但し、ここ
で P1n=j:)、l−:壺E02dxdyhl!’ =
(1amc(の12> −・・・=+91Δに= KX
 −に’y である。ここで光源のコヒーレンジ即ち、可干渉性を導
入し、この関数をγとおくと(8)式は修正されて Pobs−(鵠、θ2(1−γ(cos△1’−e )
+hg) Pin −・−anと最後的な表現を得る。
The COSΔθ component of a m cfl) enters the detector 5, and since cosΔθ: 1, the mode coupling due to refractive index fluctuations is eventually caused by mode coupling@amc(A')Bo exp (-1Kxll ”-(
It can be expressed as 51. Since we observe σ], light is <war, so it is proportional to the square of the absolute value of the electric field. On the other hand, a
Since mc is a function of location, it is necessary to take a set average. Therefore, the detected light power pobs &
obs=, /':, /::7Σ<IEo△θ(e-■x
7 e-1 to 744-am c (JR'o ×e-i
K"f) dxay...(61. Here, <1B o Δθ(e-1Kxl-e-iKyri+am
C(1) Eoe-1Kx112〉=2BO”△θ2(1
-ay gu1+<i amdgM2> E, o ”-+7
1, so P ob s 4(21J 2 (1-ωs composition) + b
4) Pin・−+・f13). However, here P1n=j:), l-: Pot E02dxdyhl! '=
(1amc(12> −...=+91Δ= KX
− is 'y. If we introduce the coherence range, or coherence, of the light source and set this function as γ, then equation (8) is modified as
+hg) Pin −・−an and the final expression is obtained.

縦モードが多モードの半導体レーザもしくはLEDスー
パールミネッセントダイオードを用いるとγ二0となシ
、干渉縞の項は消失する。一方He −Neレーザ、Y
AGレーザ、単一モード動作の半導体レーザを用いると
γニ1となり、PotlはωS△、Reの効果で振動的
なふるまいを示す。本温度測定器ではγ=0の方が安定
な測定が可能となるので多モード半導体レーザもしくは
I、EDもしくはスーパールミネッセントダイオードを
光源とするほうが好ましい。一式において入力パワーP
1nは一定、aθ hlは定数、八〇=(ar )酊 であるので、出力p
obs は次のように表現される。
When a semiconductor laser or an LED superluminescent diode with a multi-mode longitudinal mode is used, the term γ20 disappears, and the interference fringe term disappears. On the other hand, He-Ne laser, Y
When an AG laser or a semiconductor laser operating in a single mode is used, γ21 is obtained, and Potl exhibits oscillatory behavior due to the effects of ωSΔ and Re. In this temperature measuring device, stable measurement is possible when γ=0, so it is preferable to use a multimode semiconductor laser, an I, ED, or a superluminescent diode as the light source. Input power P in one set
Since 1n is constant, aθ hl is a constant, and 80=(ar), the output p
obs is expressed as follows.

POb8=(2△θ2+he) P 1noc(△T)
2 ・・・・・・αΩ 実際に、波長1.3μmのLEDを光源として、長さ1
00mの偏波保持光ファイバをセンサーとして用いた実
験結果を第5図に示す。横軸に設定温度T−20°とし
て温度変化△Tをとり、縦軸にkA Pobe/ Pi
nの値をとっている。表現を見やすくするために対数変
換し、両対数グラフに示した。
POb8=(2△θ2+he) P 1noc(△T)
2 ・・・・・・αΩ Actually, when an LED with a wavelength of 1.3 μm is used as a light source, the length is 1
Figure 5 shows the results of an experiment using a 00m polarization-maintaining optical fiber as a sensor. The horizontal axis shows the temperature change △T with the set temperature T-20°, and the vertical axis shows kA Pobe/Pi
It takes the value of n. In order to make the expression easier to read, it was logarithmically transformed and shown on a logarithmic graph.

尚、室温における消光比は約30dBのものを用いた。Note that the extinction ratio at room temperature was about 30 dB.

これによると、0.8〜数10度に亘ってきれいな直線
を示しておシ、その傾きは2であシ、式alHcよく一
致することを示している。
According to this, a clear straight line is shown over a range of 0.8 to several tens of degrees, and its slope is 2, indicating that it matches well with the formula alHc.

以上は対称の応力付与部を有する偏波保持光ファイバを
センサとして用いた例であるが、非対称応力伺与部を有
するファイバを用いるならば係数対称性の程度によって
決まり、測定する温度範囲に応じて設計することができ
る。さらに検出感匣を向上させるためには、第6図に示
すような光チヨツパ−11とロックインアンプ12を追
加した同期検波方式がある。” 一方、γご1を有するものを光源として用いると、偏波
保持光ファイ・ミのtilj単な複屈折を同時に測定可
能である。その場合、光源1にはコヒーレンジのよいも
のを用いる。例えば、He”Neレーザや単一モード発
振の半導体レーザは最適である。
The above is an example in which a polarization-maintaining optical fiber with a symmetrical stress applying part is used as a sensor, but if a fiber with an asymmetrical stress applying part is used, it will depend on the degree of coefficient symmetry and will depend on the temperature range to be measured. can be designed. In order to further improve the detection sensitivity, there is a synchronous detection method in which an optical chopper 11 and a lock-in amplifier 12 are added as shown in FIG. "On the other hand, if a light source having γ and 1 is used, it is possible to simultaneously measure the simple birefringence of polarization-maintaining optical fibers. In that case, a light source with a good coherence range is used. For example, a He''Ne laser or a single mode oscillation semiconductor laser is optimal.

この場合a1式は、C0S△Ke成分を含むため、温度
変動に伴って振動的な糖料(1)をする。この複屈折測
定法を第7図に示す二この図は第2図に温度昇降槽13
と温度コントロー楚14を付加したもので、これらによ
り胃定の制器で変化する温度変動を与える。そのと藪位
箱△Keのi化はであシ、ここで一般の偏波保持ファイ
バではであるから となる。ここでeけもとの光ファイバ長、ΔTd屈折の
温度依存性である。cos△Klの一周期は2πで与え
られるので、その変化に要する温度変化をΔT輸とする
と ΔnoKoeα△’lzπ=2yr ・・曲I従って、
伸屈折△noは によりめられる。
In this case, formula a1 contains the COS△Ke component, so it exhibits an oscillatory sugar content (1) as the temperature changes. This birefringence measurement method is shown in Figure 7.
and a temperature controller 14 are added, and these provide temperature fluctuations that vary depending on the stomach temperature control device. In this case, it is difficult to convert the box △Ke to i, since this is the case with a general polarization-maintaining fiber. Here, e is the original optical fiber length and ΔTd is the temperature dependence of refraction. One period of cos△Kl is given by 2π, so if the temperature change required for that change is ∆T transport, ∆noKoeα△'lzπ=2yr... Song I Therefore,
The stretching/refraction Δno is determined by

実際に光源として1.52μm He −N eレーザ
を用いてファイバ長10mの測定結果を第8図に示す。
FIG. 8 shows actual measurement results for a fiber length of 10 m using a 1.52 μm He-Ne laser as a light source.

横軸に温度T1縦軸には消光比を示す。これによると予
想したように正弦的な変動を示している。式+1!9に
おいてR8=2π/1,52×10、e−10m1AT
 2 π=1°C,aは通常の偏波保持光ファイバでは
、α−一(aへ旦) = 5.2X10− で与えられ
る△n0 8T ので、△noVi、 = 2.9X1[、”” と算出される。この値は他の方法によってめられた値3
×10′″4とよく一致する。この方法は光ファイバを
切断する従来法とは異なシ非破壊でかつrIIi便であ
る利点をもつ。
The horizontal axis shows the temperature T1, and the vertical axis shows the extinction ratio. This shows a sinusoidal variation as expected. In formula +1!9, R8=2π/1, 52×10, e-10m1AT
2 π = 1°C, a is given by α-1 (a = 5.2X10-) in a normal polarization-maintaining optical fiber, △n0 8T, so △noVi, = 2.9X1[,”” It is calculated as follows. This value is the value 3 determined by another method.
×10'''4.This method has the advantage of being non-destructive and fast, unlike the conventional method of cutting optical fibers.

以上説明したように、本発明によれば、従来、2つの光
路差を用いて干渉法により温度検出していたのに対して
、偏波医持元ファイバの消光比の温度依存性を用いるも
ので、光源の周波数安定化、光ビーム分離等に伴なう装
置の複雑化、高価額化などの欠点が除去され、簡便な高
感度温度測定器となる利点がある。本発明を温度測定装
置として用いるためには、センサとなる偏波保持光ファ
イバに外部から応力が加わらないような条件で使用する
必要がある。なぜならば、偏波保持光ファイバの消光比
は、該ファイバの歪によっても変化するからである。逆
にこの性質を利用することを考えると、たとえば温度を
一定として応力の働く位謹でこの装置Nを動作させるな
らば、高感度歪み測定器となる。1だ偏波保持光ファイ
バの複屈折をも測定できる利点がある。
As explained above, according to the present invention, whereas conventionally the temperature was detected by interferometry using the difference between two optical paths, the temperature detection method uses the temperature dependence of the extinction ratio of the polarization fiber. This eliminates disadvantages such as complication and high cost of the device due to frequency stabilization of the light source, light beam separation, etc., and has the advantage of providing a simple and highly sensitive temperature measuring instrument. In order to use the present invention as a temperature measuring device, it is necessary to use the device under conditions such that no external stress is applied to the polarization-maintaining optical fiber serving as the sensor. This is because the extinction ratio of a polarization maintaining optical fiber also changes depending on the strain of the fiber. Conversely, considering the use of this property, for example, if this device N is operated at a constant temperature and under stress, it will become a highly sensitive strain measuring device. It has the advantage of being able to measure the birefringence of polarization-maintaining optical fibers as well.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の光干渉法による温度測定装置の概略図、
l@2図は本発明の実施例を示す概略構成図、第3図(
a)〜(d)は測定、に用いる偏波保持光ファイバの断
面図、第4図は本発明の測定装置の測定原理を説明する
ための図、第5図は本発明装置による測定の実験結果を
示す図、第6図は本発明の装置を高感度化した一実施例
の概略構成図、第7図は本発明の一応用例で、偏波保持
光ファイバの複屈折の測定法を示す図、第8図はその測
定結果を示す図である。 ・ 1・・・・・光源、2.2’・・用ビームスプリッタ、
3・・・・・単一 モードファイバ、4・・・・・ プ
リズム、5.5′・・・・・光検出2八6・・・・・デ
ータレコーダ、7・・・・・計算器、8・・・・・レベ
ル表示器、9・・・・・偏光子、q・・・・・検光子、
1o・・・・・偏波保持光ファイバ、11・・・・・光
チョッパ−’、12・・・・・ロックインアンプ、13
・・・・・温度昇降償、14・・・・・温度コントロー
ラ。 ”°ミビーダ・′ 第1図 第2図 第5図 0.1 1 IQ 100 20c′ch−ウd) 18対温/firEΔT (’
C)第8図 過度(’C) 第6図 第7図
Figure 1 is a schematic diagram of a temperature measurement device using conventional optical interferometry.
Figure 1@2 is a schematic configuration diagram showing an embodiment of the present invention, and Figure 3 (
a) to (d) are cross-sectional views of polarization-maintaining optical fibers used for measurements, FIG. 4 is a diagram for explaining the measurement principle of the measuring device of the present invention, and FIG. 5 is a measurement experiment using the device of the present invention. Figure 6 is a diagram showing the results, and Figure 6 is a schematic diagram of an example of a high-sensitivity device of the present invention. Figure 7 is an example of an application of the present invention, showing a method for measuring birefringence of a polarization-maintaining optical fiber. 8 are diagrams showing the measurement results.・1... light source, 2.2'... beam splitter,
3... Single mode fiber, 4... Prism, 5.5'... Light detection 286... Data recorder, 7... Calculator, 8... Level indicator, 9... Polarizer, q... Analyzer,
1o...Polarization maintaining optical fiber, 11...Optical chopper', 12...Lock-in amplifier, 13
...Temperature rise/decrease compensation, 14...Temperature controller. "°Mivida・' Figure 1 Figure 2 Figure 5 Figure 5 0.1 1 IQ 100 20c'ch-ud) 18 vs. temperature/firEΔT ('
C) Figure 8 Excess ('C) Figure 6 Figure 7

Claims (1)

【特許請求の範囲】 0) 偏波保持光ファイバからなる検出部と、該偏波 
8゜保持光ファイバの主軸方向に一致させて直線偏光を
入射するための光源および該偏波保持光ファイバの入射
端に設置した偏光子と、前記偏波保持光ファイバの前記
主軸方向に直交するもう一つの主軸方向に偏光方向を一
致させた検光子と、該検光子を通過した出射光を受光す
る光検出器および表示装置を具備してなることを特徴と
する温度測定装置。 (2) 光源として、単−縦モードレーザを用いること
を特徴とする特許請求の範囲第(1)項記載の温度測定
装置。 (3) 光源を断続する光チョッパと、該光fヨッパに
同期したロックインアンプを光検出器と表示装置の間に
付加したことを特徴とする特許請求の範囲第(1)項ま
たは第(2)項記載の温度測定装置。 :4)検出部が非対称の応力付与部を有する偏波保持光
ファイバであることを特徴とする特許請求の範囲第0)
項ないし第(3)項のいずれかに記載の温度測定装置。
[Claims] 0) A detection section made of a polarization-maintaining optical fiber;
a light source for inputting linearly polarized light so as to coincide with the main axis direction of the polarization maintaining optical fiber; and a polarizer installed at the input end of the polarization maintaining optical fiber; A temperature measuring device comprising: an analyzer whose polarization direction is aligned with another principal axis direction; a photodetector that receives emitted light that has passed through the analyzer; and a display device. (2) The temperature measuring device according to claim (1), characterized in that a single-longitudinal mode laser is used as the light source. (3) Claim (1) or (3) characterized in that an optical chopper that intermittents the light source and a lock-in amplifier synchronized with the optical chopper are added between the photodetector and the display device. 2) The temperature measuring device described in section 2). :4) Claim 0) characterized in that the detection part is a polarization-maintaining optical fiber having an asymmetrical stress applying part.
The temperature measuring device according to any one of Items to Items (3).
JP58243364A 1983-12-23 1983-12-23 Temperature measuring device Granted JPS60135732A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58243364A JPS60135732A (en) 1983-12-23 1983-12-23 Temperature measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58243364A JPS60135732A (en) 1983-12-23 1983-12-23 Temperature measuring device

Publications (2)

Publication Number Publication Date
JPS60135732A true JPS60135732A (en) 1985-07-19
JPH0229973B2 JPH0229973B2 (en) 1990-07-03

Family

ID=17102738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58243364A Granted JPS60135732A (en) 1983-12-23 1983-12-23 Temperature measuring device

Country Status (1)

Country Link
JP (1) JPS60135732A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105115436A (en) * 2015-08-04 2015-12-02 苏州光环科技有限公司 sensing device and method for monitoring stress and temperature
CN109702305A (en) * 2019-01-28 2019-05-03 上海工程技术大学 A kind of disturbance decoupling method of micro-plasma arc welding electric arc three-dimensional spectrum

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55163424A (en) * 1979-06-06 1980-12-19 Matsushita Electric Ind Co Ltd Temperature detector
JPS58160827A (en) * 1982-03-19 1983-09-24 Kokusai Denshin Denwa Co Ltd <Kdd> Temperature sensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55163424A (en) * 1979-06-06 1980-12-19 Matsushita Electric Ind Co Ltd Temperature detector
JPS58160827A (en) * 1982-03-19 1983-09-24 Kokusai Denshin Denwa Co Ltd <Kdd> Temperature sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105115436A (en) * 2015-08-04 2015-12-02 苏州光环科技有限公司 sensing device and method for monitoring stress and temperature
CN109702305A (en) * 2019-01-28 2019-05-03 上海工程技术大学 A kind of disturbance decoupling method of micro-plasma arc welding electric arc three-dimensional spectrum

Also Published As

Publication number Publication date
JPH0229973B2 (en) 1990-07-03

Similar Documents

Publication Publication Date Title
Vengsarkar et al. Fiber-optic dual-technique sensor for simultaneous measurement of strain and temperature
JPH0250409B2 (en)
JP3220544B2 (en) Stress measurement method using optical fiber
CN112525373A (en) Strain temperature simultaneous measurement device based on dual-wavelength polarization-maintaining optical fiber interferometer
CN108106817B (en) Method for improving polarization performance measurement accuracy of Y waveguide device
Hsieh et al. Optical relative humidity sensor based on a polyvinyl alcohol film and a phase-enhancement total-internal-reflection heterodyne interferometer
Downs et al. Bi-directional fringe counting interference refractometer
CN105486425B (en) A kind of absolute value measurement method of temperature and measuring device
Vengsarkar et al. Fiber optic sensor for simultaneous measurement of strain and temperature
Bai et al. All fiber Fabry–Pérot interferometer for high-sensitive micro-displacement sensing
JPS60135732A (en) Temperature measuring device
Lu et al. Birefringent interferometer cascaded with PM-FBG for multi-parameter testing
Bock et al. Temperature-compensated fiber optic strain sensor based on polarization-rotated reflection
JPS6352694B2 (en)
JP2005517961A (en) Method for manufacturing sensor head of photoelectric current sensor
JPS63118624A (en) Optical fiber measuring device and method
JPH0361898B2 (en)
JPS581743B2 (en) Refractive index dispersion measuring device
JPH0617851B2 (en) Method and apparatus for measuring mode birefringence of birefringent fiber
US11815404B2 (en) High accuracy frequency measurement of a photonic device using a light output scanning system and a reference wavelength cell
JPS59634A (en) Temperature measuring method using optical fiber preserving polarized wave surface
Bondza et al. A simple experimental method for measuring the thermal sensitivity of single-mode fibers
Bréhat et al. Method for birefringence measurements as a function of wavelength in the visible range, applied to the reinvestigation of crystal quartz
Shan et al. Four-quadrant demodulation fiber sensor for wavelength monitoring of a wavelength phase-shifting interferometer
Pitaya A simple experimental method for measuring the thermal sensitivity of single-mode fibers