JPS60135672A - Turning flow path for multistage multistage hydraulic machine - Google Patents

Turning flow path for multistage multistage hydraulic machine

Info

Publication number
JPS60135672A
JPS60135672A JP58243345A JP24334583A JPS60135672A JP S60135672 A JPS60135672 A JP S60135672A JP 58243345 A JP58243345 A JP 58243345A JP 24334583 A JP24334583 A JP 24334583A JP S60135672 A JPS60135672 A JP S60135672A
Authority
JP
Japan
Prior art keywords
flow path
return
blade
turning
hydraulic machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58243345A
Other languages
Japanese (ja)
Inventor
Ichiro Yamagata
山形 一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58243345A priority Critical patent/JPS60135672A/en
Publication of JPS60135672A publication Critical patent/JPS60135672A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B11/00Parts or details not provided for in, or of interest apart from, the preceding groups, e.g. wear-protection couplings, between turbine and generator
    • F03B11/02Casings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Hydraulic Turbines (AREA)

Abstract

PURPOSE:To prevent separation of water flow and generation of secondary flow in the turning flow path of the multistage hydraulic machine by a method wherein a turning blade is provided in the U-turn flow path of the turning flow path while the blade having smaller declining angle is provided in the radial flow path thereof. CONSTITUTION:A plurality of first turning blades 21 are provided in the radial flow path 15 of the turning flow path 10 connecting the runner chambers 8, 9 of high pressure and low pressure stages with intervals circumferentially. The same number of second turning blades 22 are provided in the U-turn flow path 16. The first turning blades 21 are provided with the angle of 90 deg. substantially with respect to the upper and lower flow path wall surfaces of the side face 21a of the blade while the second turning blades 22 are provided from the inside stream line 18 to the outside stream line 17 with angles changing smoothly along respective stream lines.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は多段水力機械の返し流路に係り、特に流路内に
おける流水のはく離や2次流れの発生を防止すると共に
強度的にも剛性の高い返し流路の構造に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a return flow path of a multi-stage hydraulic machine, and in particular, a method that prevents separation of flowing water and generation of secondary flow in the flow path, and improves strength and rigidity. Concerning the structure of a high return flow path.

〔発明の技術的背景と問題点〕[Technical background and problems of the invention]

一般に多段水力機械においては、前段のランナ室の出口
と次段のランナ室の入口とが返し流路によって連絡され
、この返し流路は半径方向流路とUターンb’6路とか
ら構成され、各流路内には返し羽根が設けられている。
Generally, in a multi-stage hydraulic machine, the outlet of the runner chamber of the previous stage and the inlet of the runner chamber of the next stage are connected by a return flow path, and this return flow path is composed of a radial flow path and a U-turn b'6 path. , a return vane is provided in each flow path.

この返しυた路は、水車運転時においては高圧段ランナ
から吐出された水流に回転運動を与えながら低圧側段部
に導く作用をする一方、ポンプ運転時には低圧側段部の
ランナから吐出された高速水流を効率良く圧力回復させ
ながら高圧側段部へと導く作用を受け持つ。また、返し
羽根は、高圧側段部ランナの出口部近傍から低圧側段部
ガイドベーンの近傍ζこ至るまでの返し流路内に連続し
て設けられるものであり、この返し羽根は流路を流れる
水流を効率良く導くための案内羽根としての作用を受け
持つ一方、返し流路の構造強度を受け持つので、その設
計に際しては流体、設計上の要求と侮造設計上の要求を
同時に満足するように配慮する必要がある。特に返し流
路のような曲がり流路では流路の曲がりによる遠心力の
作用等により2次流れやはく離を生じ易いので、曲がり
流路内の羽根の流体設計を行なう場合には、流路内の流
線に沿った羽根角度変化が滑らかとなるように羽根形状
を定める必要がある。
When the turbine is in operation, the water flow discharged from the runners on the high-pressure stage is guided to the low-pressure stage while giving rotational motion, while when the pump is in operation, the water flow discharged from the runners on the low-pressure stage is guided to the low-pressure stage runner. It is responsible for guiding the high-speed water flow to the high-pressure side stage while efficiently restoring pressure. In addition, the return vane is continuously provided in the return flow path from the vicinity of the outlet of the high-pressure side step runner to the vicinity of the low-pressure side step guide vane. While it acts as a guide vane to efficiently guide the flowing water flow, it also takes charge of the structural strength of the return flow path, so when designing it, it is important to simultaneously satisfy the fluid design requirements and the structural design requirements. It is necessary to take this into account. Particularly in curved channels such as return channels, secondary flow and separation are likely to occur due to centrifugal force caused by the bending of the channel. It is necessary to determine the blade shape so that the blade angle changes smoothly along the streamline.

こ\で第1図乃至第5図を参照して従来の返し流路の構
造と問題点について述べる。
The structure and problems of the conventional return flow path will now be described with reference to FIGS. 1 to 5.

第1図は2段ポンプ水車の構造を示し、水車主軸1の軸
上には高圧段ランナ2と低圧段ランナ3とが軸方向の距
離をおいて固着されている。上記高圧段ランナ2は上カ
バー4および下カバー5で包囲される一方、低圧段ラン
ナ3は上カバー6および下カバー7で包囲され高圧段ラ
ンナ室8および低圧段ランチ室9を構成している。また
、上記゛高圧段ランナ室8と低圧段ランナ室9とは返し
流路10で連絡されている。また、高圧段ランナ室8の
外側には、うず巻ケーシング11力祐己置され、そのう
ず室12と上記高圧段ランナ室8みは連通しており、う
す室120入口は大口弁を介して水圧鉄管に接続されて
いる。さらにまた、高圧段ランナ2の外側には水口開度
を変えられる可動ガイドベーン13が設けられる一方、
低圧段ランナ3の外側にも水口開度が変えられる可動ガ
イドベーン14がそれぞれ円形翼列状に配置されている
FIG. 1 shows the structure of a two-stage pump-turbine, in which a high-pressure stage runner 2 and a low-pressure stage runner 3 are fixed to the main shaft 1 of the water turbine at a distance in the axial direction. The high-pressure stage runner 2 is surrounded by an upper cover 4 and a lower cover 5, while the low-pressure stage runner 3 is surrounded by an upper cover 6 and a lower cover 7, forming a high-pressure stage runner chamber 8 and a low-pressure stage launch chamber 9. . Further, the high-pressure stage runner chamber 8 and the low-pressure stage runner chamber 9 are connected through a return passage 10. Further, a spiral casing 11 is tightly placed outside the high pressure stage runner chamber 8, and the spiral chamber 12 and the high pressure stage runner chamber 8 are in communication with each other, and the inlet of the thin chamber 120 is connected to the water pressure via a large mouth valve. connected to iron pipes. Furthermore, a movable guide vane 13 is provided on the outside of the high-pressure stage runner 2, and the opening degree of the water port can be changed.
Also outside the low-pressure stage runner 3, movable guide vanes 14 whose water openings can be changed are arranged in a circular blade row.

第2図および第3図は返し流路10の構成の詳細を示し
、返し流路10は半径方向流路工5とUターン流路16
とから構成されている。この例では流路の幅がBで示さ
れ、Uターン流路16の内側の曲率半径がRで示されて
いる。
2 and 3 show details of the configuration of the return flow path 10, which includes a radial flow path 5 and a U-turn flow path 16.
It is composed of. In this example, the width of the channel is indicated by B, and the radius of curvature inside the U-turn channel 16 is indicated by R.

ところで、流路幅Bに対して流路の曲率半径Rが小さい
場合には水がUターン流路16を通過する際に、Uター
ン流路】6の外側流線17に沿って流れる通過距離りが
内側流線18に沿って流れる通過距離lよりも著しく長
くなる。しかして、上記半径方向流路15およびUター
ン流路16内には、それぞれの流線に沿う羽根角度変化
が滑らかになるような返し羽根19の複数枚が円周方向
に間隔をおいて配置されている。しかしながら、従来の
返し羽根19は、第3図の平面図に見られるとおり、U
ターン流路16の外側流線17に沿った羽根巻き角θ!
 がUターン流路16の内側流線18に沿った羽根巻き
角θ、よりも著しく大きくなる。これを羽根断面形状で
見ると、Uターン(AU516の終点近傍の断面A−A
でははゾ垂直な断面形状19Aであるのに対し、Uター
ン流路16の始点近傍の断面B−Bでは流路の上下の壁
面に対して羽根か極端にだおれた形状19Bとなる。ま
た、半径方向流路150羽根19が連続している関係上
、同様に垂直面に対して著しくたおれた形状となってし
まう。そのために、半径方向流路15における剛性が低
く、返し流路1oを上下に圧縮したり引張る力が作用し
た場合や返し流路10内に高水圧が作用した場合には返
し流路10が容易に変形してしまうという問題があった
。この問題を解決するために、従来はやむなく羽根19
の肉厚を厚くしたり、あるいはUターン流路16の流線
に沿った羽根19の角度を急激に変化させて無理に羽根
の巻き角をUターン流路の外側流線と内側流線で合せて
しまうなどの方法がとられてきた。
By the way, when the radius of curvature R of the channel is small relative to the channel width B, when water passes through the U-turn channel 16, the passing distance along the outer streamline 17 of the U-turn channel]6 is is significantly longer than the passage distance l along the inner streamline 18. Therefore, in the radial flow path 15 and the U-turn flow path 16, a plurality of return blades 19 are arranged at intervals in the circumferential direction so that the blade angle changes smoothly along the respective streamlines. has been done. However, as seen in the plan view of FIG. 3, the conventional return blade 19 is
The blade winding angle θ along the outer streamline 17 of the turn channel 16!
is significantly larger than the blade winding angle θ along the inner streamline 18 of the U-turn flow path 16. If we look at this in terms of the blade cross-sectional shape, we can see that it is a U-turn (cross section A-A near the end point of AU516).
The cross section 19A is vertical, whereas the cross section BB near the starting point of the U-turn flow path 16 has a shape 19B in which the blades are extremely sagging relative to the upper and lower walls of the flow path. Further, since the radial flow path 150 and the blades 19 are continuous, the shape is also significantly bent with respect to the vertical plane. Therefore, the rigidity of the radial flow path 15 is low, and when a force that compresses or pulls the return flow path 1o vertically acts, or when high water pressure acts within the return flow path 10, the return flow path 10 is easily closed. There was a problem that it deformed. In order to solve this problem, conventionally the blade 19 was unavoidable.
By increasing the wall thickness of the blade 19 or by rapidly changing the angle of the blade 19 along the streamline of the U-turn flow path 16, the winding angle of the blade can be forcefully adjusted between the outer streamline and the inner streamline of the U-turn flow path. Methods such as combining them have been used.

ところが、この解決手段では水が羽根からはく離したり
、2次流れが発生し易く、そのために水力損失の増大や
はく離による振動発生の問題が起きていた。
However, with this solution, water is likely to separate from the blades and secondary flow may occur, resulting in problems such as increased hydraulic power loss and generation of vibrations due to separation.

0#、明の目的〕 そこで、本発明の目的は、返し流路内における水流が2
羽根からはく離したり2次流れを発生させることなく流
れることを可能にすると共に返し流路部をこ高い財j性
を付与することのできる多段水力機械の返し流路を提供
することにある。
0#, bright purpose] Therefore, the purpose of the present invention is to reduce the water flow in the return flow path to 2
To provide a return flow path for a multi-stage hydraulic machine that allows flow without peeling off from blades or generating secondary flow, and can provide a return flow path section with high quality properties.

〔発明の概要〕[Summary of the invention]

上記目的を達成するため、本発明は返し流路のUターン
流路部lこおいては各流線に沿って羽根角度変化が滑ら
かとなるような返し羽根を設けて流れのはく離や2次流
れの発生を押割する一方、半径方向#、路部においては
羽根のだおれが小さい羽根を設けることにより半径方向
流路に高い剛性を持たせ、Uターン流路部と半径方向流
路部との接続部ではそれぞれの流路部の羽根面が相対的
にねじれ角を持つように配列し、流線に対する羽根角層
についてはそれぞれの流路部の羽根で互いに滑らかに連
続させることにより、半径方向流路部とUターン流路部
との接続部での衝突損失を生じさせないようにしたもの
である。
In order to achieve the above object, the present invention provides return vanes that smooth the change in vane angle along each streamline in the U-turn flow passage section of the return flow passage to prevent flow separation and secondary distortion. While suppressing the generation of flow, by providing blades with small blade sag in the radial direction # and channel section, high rigidity is provided to the radial flow channel, and the U-turn flow channel section and the radial direction flow channel section are By arranging the blade surfaces of each flow path section so that they have a relative twist angle at the connection part with the flow line, and by making the blade corner layer relative to the streamline smoothly continuous with each other, the blades of each flow path section are This is designed to prevent collision loss from occurring at the connection between the radial flow path and the U-turn flow path.

〔発明の実施例〕[Embodiments of the invention]

以下本発明による多段水力機械の返し流路の構造の一実
施例を前回と同一部分に同一符号を付した第6図乃至第
9図を参照して説明する。
Hereinafter, an embodiment of the structure of a return flow path of a multi-stage hydraulic machine according to the present invention will be described with reference to FIGS. 6 to 9, in which the same parts as in the previous example are given the same reference numerals.

第6図において、高圧段ランナ室8と低圧段ランナ室9
とは返し流路ioによって連絡されており、この返し流
路10は半径方向流路15とUターン流路16とから構
成されている。そして本発明によれば。
In FIG. 6, a high pressure stage runner chamber 8 and a low pressure stage runner chamber 9 are shown.
are connected to each other by a return flow path io, and this return flow path 10 is composed of a radial flow path 15 and a U-turn flow path 16. And according to the invention.

半径方向流路15内には複数枚の第1の返し羽根21が
円周方向に間隔をおいて設けられる一方、Uターン流路
16内には同数の第2の返し羽根ηが設けられている。
A plurality of first return blades 21 are provided in the radial flow path 15 at intervals in the circumferential direction, while the same number of second return blades η are provided in the U-turn flow path 16. There is.

このうち第1の返し羽根21は、その羽根の側面21a
の上下の流路壁面に対する角度αがはゾ90度であって
、第7図から明らかなように、はゾ放射方向に延在して
いる。また、前輪21bと後縁21 cは厚さ方向の寸
法が漸減して尖端に丸味がつけられている。
Among these, the first return blade 21 has a side surface 21a of the blade.
The angle α with respect to the upper and lower channel wall surfaces is 90 degrees, and as is clear from FIG. 7, the angle α extends in the radial direction. Further, the front wheel 21b and the rear edge 21c have a dimension in the thickness direction that gradually decreases and a rounded tip.

一方、Uターン流路16に設けられる第2の返し羽根n
は、内側流線18から外側流線17までの各流線に沿っ
て羽根角度がそれぞれ滑らかに変化するように設計され
、その結果、Uターン流路16の始点Sから終点Fまで
の羽根巻き角は外側流線17に沿った羽根巻き角θ、と
、内側流線18に沿った羽根巻き角θ1 では△θだけ
の角度差を生じている。
On the other hand, the second return blade n provided in the U-turn flow path 16
is designed so that the blade angle changes smoothly along each streamline from the inner streamline 18 to the outer streamline 17, and as a result, the blade winding from the starting point S to the ending point F of the U-turn flow path 16 is The blade winding angle θ along the outer streamline 17 and the blade winding angle θ1 along the inner streamline 18 have an angular difference of Δθ.

また、半径方向流路部15とUターン流路部16との接
続部では第1の返し羽根21と第2の返し羽根四とは第
9図に見られるように、第1の返し羽根21の出口端が
第2の返し羽根乙の入口端に対して交叉するように不連
続に配置されているか、第1の返し羽根21の出口端に
おける水流の出口角βと第2の返し羽根乙の入口端にお
ける水流の入口角γが等しくなるように構成されている
。一方、第2の返し羽根四の出口端の近くは、第8図に
示されたように、上下の壁面に対する側面22aの挟角
δははゾ90度となっている。
In addition, at the connection part between the radial flow path section 15 and the U-turn flow path section 16, the first return blade 21 and the second return blade 4 are different from each other, as shown in FIG. are arranged discontinuously so that the outlet end of the second return blade 21 intersects with the inlet end of the second return blade 21, or the exit angle β of the water flow at the outlet end of the first return blade 21 and the second return blade B The inlet angles γ of the water flows at the inlet ends of the inlets are made equal. On the other hand, near the outlet end of the second return blade 4, as shown in FIG. 8, the included angle δ of the side surface 22a with respect to the upper and lower wall surfaces is 90 degrees.

なお、上記芙施例においては、第1の返し羽根21と第
2の返し羽根nの枚数を等しくしたが相違させてもよく
、その場合に第2の返し羽根の枚数の方を少なくした方
が好適である。
In addition, in the above embodiment, the number of the first return blade 21 and the second return blade n are equal, but they may be different. In that case, the number of the second return blade n may be smaller. is suitable.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明によれば、半径
方向流路内の第1の返し羽根のたおれを小さく構成した
ので返し流路全体の剛性を高くすることができ、またU
ターン流路では各流線に沿った羽根角度変化が滑らかな
流体力学的に適正な形状で羽根面が形成されるので流れ
のはく離や2次流れが発生しない。
As is clear from the above description, according to the present invention, since the folding of the first return vane in the radial flow path is configured to be small, the rigidity of the entire return flow path can be increased, and the U
In the turn channel, the blade surface is formed in a hydrodynamically appropriate shape with smooth blade angle changes along each streamline, so flow separation and secondary flow do not occur.

また、半径方向流路とUターン流路との接続部 ′では
Uターン流路部の返し羽根と半径方向流路部の返し羽根
の翼端どうしが互いに交叉する位置に配置されているが
、第1の返し羽根21の出口角と第2の羽根四の入口角
が等しく設定され流線に対する羽根角度が連続している
ので半径方向流路とUターン流路との接続部での衝突損
失は発生せず水力性能を高めることができる。
Furthermore, at the connection part between the radial flow path and the U-turn flow path, the blade tips of the return blades of the U-turn flow path and the return blades of the radial flow path are arranged at a position where they intersect with each other. Since the exit angle of the first return vane 21 and the inlet angle of the second vane 4 are set equal and the vane angle with respect to the streamline is continuous, collision loss occurs at the connection between the radial flow path and the U-turn flow path. Hydraulic performance can be improved without the occurrence of

【図面の簡単な説明】[Brief explanation of drawings]

第1図は2段ポンプ水車の構造を示した略示断面図、第
2図は従来の返し流路を示した略示断面図、第3図は返
し羽根を示した平面図、第4図は第3図のA−A線に沿
う断面図、第5図は第3図のB−B線に沿う断面図、第
6図は本発明による返し流路を示した縦断面図、第7図
は返し羽根を示した平面図、第8図は第7図のA−A線
に沿う断面図、第9図は第7図のB−B線に沿う断面図
である。 2・・・高圧段ランナ、3・・・低圧段ランナ、8・・
・高圧段ランナ室、9・・・低圧段ランナ室、10・・
・返し流路、15・・・半径方向流路、16・・・Uタ
ーン流路、17・・・外側流線、18・・・内側流線、
21・・・第1の返し羽根、n・・・第2の返し羽根。 出願人代理人 猪 股 清 第 l 図
Fig. 1 is a schematic sectional view showing the structure of a two-stage pump turbine, Fig. 2 is a schematic sectional view showing a conventional return flow path, Fig. 3 is a plan view showing the return blade, and Fig. 4 is a cross-sectional view taken along the line A-A in FIG. 3, FIG. 5 is a cross-sectional view taken along the line B-B in FIG. 3, FIG. 8 is a sectional view taken along line AA in FIG. 7, and FIG. 9 is a sectional view taken along line BB in FIG. 7. 2...High pressure stage runner, 3...Low pressure stage runner, 8...
・High pressure stage runner chamber, 9...Low pressure stage runner chamber, 10...
- Return flow path, 15... Radial flow path, 16... U-turn flow path, 17... Outer streamline, 18... Inner streamline,
21...First return blade, n...Second return blade. Applicant's agent Kiyota Inomata

Claims (1)

【特許請求の範囲】 1、最高圧段部から最低圧段部までの各段部にランナを
備え、瞬接した烏圧側段部と低圧側段部とが返し流路に
よって連絡され、この返し流路が半径方向流路とUター
ン流路とから構成された多段水力機械の返し流路におい
て;上記半径方向流路内には側面が上下の流路壁に対し
てはゾ直交するような第1の返し羽根の複数枚が円周方
向へ間隔をおいて配置される一方、上記Uターン流路内
には羽根の入口端が上記第1の返し羽根の出口端と交叉
し、かつ水流の流線に沿って羽根角度がそれぞれ滑らか
に変化するような第2の返し羽根の複数枚が円周方向へ
間隔をおいて配置されたことを特徴とする、多段水力機
械の返し流路。 2、上記第1の返し羽根の出口角度と上記第2の返し羽
根の入口角度とが等しくなるように設定されたことを特
徴とする特許請求の範囲第1項に記載の多段水力機械の
返し流路。 3、上記第1の返し羽根の枚数と第2の返し羽根の枚数
とを等しく設定したことを特徴とする特許請求の範囲第
1項に記載の多段水力機械の返し流路。 4、上記第1の返し羽根の枚数と第2の返し羽根の枚数
とが相違するように設定したことを特徴とする特許請求
の範囲第1項に記載の多段水力機械の返し流路。
[Claims] 1. A runner is provided in each stage from the highest pressure stage to the lowest pressure stage, and the coronal pressure side stage and low pressure side stage that are in instant contact are connected by a return flow path, and this return flow path is provided. In a return flow path of a multi-stage hydraulic machine whose flow path is composed of a radial flow path and a U-turn flow path; A plurality of first return blades are arranged at intervals in the circumferential direction, and in the U-turn flow path, the inlet end of the blade intersects the outlet end of the first return blade, and the water flow A return flow path for a multi-stage hydraulic machine, characterized in that a plurality of second return vanes are arranged at intervals in the circumferential direction so that the vane angles thereof vary smoothly along the streamlines. 2. The return of the multi-stage hydraulic machine according to claim 1, characterized in that the exit angle of the first return blade and the inlet angle of the second return blade are set to be equal. flow path. 3. The return channel of a multi-stage hydraulic machine according to claim 1, wherein the number of the first return blades and the number of the second return blades are set to be equal. 4. The return channel of a multi-stage hydraulic machine according to claim 1, wherein the number of the first return vanes and the number of the second return vanes are set to be different.
JP58243345A 1983-12-23 1983-12-23 Turning flow path for multistage multistage hydraulic machine Pending JPS60135672A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58243345A JPS60135672A (en) 1983-12-23 1983-12-23 Turning flow path for multistage multistage hydraulic machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58243345A JPS60135672A (en) 1983-12-23 1983-12-23 Turning flow path for multistage multistage hydraulic machine

Publications (1)

Publication Number Publication Date
JPS60135672A true JPS60135672A (en) 1985-07-19

Family

ID=17102441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58243345A Pending JPS60135672A (en) 1983-12-23 1983-12-23 Turning flow path for multistage multistage hydraulic machine

Country Status (1)

Country Link
JP (1) JPS60135672A (en)

Similar Documents

Publication Publication Date Title
KR101491971B1 (en) Turbine
EP0011982B1 (en) Regenerative rotodynamic machines
EP1422382B1 (en) Axial flow turbine
CN105723097A (en) Centrifugal turbomachine
US8834116B2 (en) Fluid flow machine with peripheral energization near the suction side
CN102588294B (en) Barrel-type multistage pump
US2405190A (en) Fluid turbine
CN1997810B (en) Blade or vane for a rotary machine
EP3421815B1 (en) Centrifugal compressor
CN110107539A (en) A kind of anti-ballistic impeller structure for fluid machinery
CN209228688U (en) Vane rotor component and centrifugal pump including it
WO2019172422A1 (en) Diffuser vane and centrifugal compressor
JPS60135672A (en) Turning flow path for multistage multistage hydraulic machine
JP3290039B2 (en) Single shaft multi-stage centrifugal compressor
JP2003090279A (en) Hydraulic rotating machine vane
KR20030063369A (en) Axial flow turbo compressor
JP7161419B2 (en) Method for manufacturing centrifugal rotating machine, and centrifugal rotating machine
JP7161424B2 (en) impeller and rotating machinery
US11236758B2 (en) Impeller and rotary machine
JPH0454203A (en) Turbine rotor blade and turbine cascade
JP2000073705A (en) Blade arrangement provided with shroud of axial flow type turbo machine
JPH01163404A (en) Axial turbine nozzle
JPS5848799A (en) Diffuser equipped with vane
JPH10220202A (en) Axial turbine
GB2036179A (en) Regenerative rotodynamic compressors and pumps