JPS60135600A - Electrolytic treating device for steel strip - Google Patents

Electrolytic treating device for steel strip

Info

Publication number
JPS60135600A
JPS60135600A JP24869383A JP24869383A JPS60135600A JP S60135600 A JPS60135600 A JP S60135600A JP 24869383 A JP24869383 A JP 24869383A JP 24869383 A JP24869383 A JP 24869383A JP S60135600 A JPS60135600 A JP S60135600A
Authority
JP
Japan
Prior art keywords
steel strip
electrolytic
electrodes
strip
electrolytic treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24869383A
Other languages
Japanese (ja)
Other versions
JPH0313320B2 (en
Inventor
Heizaburo Furukawa
古川 平三郎
Yoshio Shimozato
下里 省夫
Kenichi Yanagi
謙一 柳
Katsuhiko Yamada
勝彦 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP24869383A priority Critical patent/JPS60135600A/en
Publication of JPS60135600A publication Critical patent/JPS60135600A/en
Publication of JPH0313320B2 publication Critical patent/JPH0313320B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To perform efficiently an electrolytic treatment with high current density by providing plural electrode pairs which have different polarities and sandwich the steel strip traveling in an electrolyte from above and below, disposing current shielding plates so as to intervene between the electrodes on the outside circumference from both side edges of the steel strip and changing alternately the polarities of the plural electrode pairs. CONSTITUTION:Two sets of electrode pairs 131, 13'1, 132, 13'2 which are in proximity to each other and have different polarities are provided so as to sandwich, from abov and below, a steel strip 10 which travels while the strip is immersed in the electrolyte 11 in an electrolytic cell. Electrical shielding plates 151, 152 having an insulating characteristic are disposed on both side ends of the strip 10 so as to overlap partly on the strip 10 and to intervene between the upper and lower electrodes 131, 13'1, 132, 13'2.

Description

【発明の詳細な説明】 本発明は帯鋼の電解処理装置、特に、間接通電方式によ
る電解処理装置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electrolytic treatment apparatus for steel strips, and more particularly to an improvement in an electrolytic treatment apparatus using an indirect energization method.

帯鋼の電解酸洗や電解脱脂等には、第1図に示す間接通
電方式の電解処理装置が従来広く用いられている。同図
において、1は電解液(塩酸もしくはオルト硅酸ソーダ
等)を満たした電解槽である。該電解槽1の入口および
出口には送給ロール2s 、22が配設されており、こ
の送給ロールによって帯鋼1Oが連続的に電解液中を通
されるようになっている。そして電解槽1内には、帯1
i41Oに沿ってその下面側に(+)電極31と(−)
電極31′とが交互に配設され、同様に、帯鋼1Oの上
面側にも(+)電極32と(−)電極32′とが交互に
配設されている。なお、図中4は電解電源であり、図示
のように夫々(+)電極および(−)電極に接続されて
いる。
For electrolytic pickling, electrolytic degreasing, etc. of steel strips, an indirect energization type electrolytic treatment apparatus shown in FIG. 1 has conventionally been widely used. In the figure, 1 is an electrolytic cell filled with an electrolytic solution (hydrochloric acid, sodium orthosilicate, etc.). Feed rolls 2s and 22 are disposed at the inlet and outlet of the electrolytic cell 1, and the steel strip 1O is continuously passed through the electrolyte by the feed rolls. In the electrolytic cell 1, there is a band 1
(+) electrode 31 and (-) electrode on the lower surface side along i41O
Electrodes 31' are alternately arranged, and similarly, (+) electrodes 32 and (-) electrodes 32' are alternately arranged on the upper surface side of the steel strip 1O. In addition, 4 in the figure is an electrolytic power source, which is connected to the (+) electrode and the (-) electrode, respectively, as shown.

上記第1図の間接通電方式による電解処理装置において
、電解電流は、まず電解電源4から夫々の(+)電極3
1.32に流れ、電解液を通して帯110に流れる。次
に、帯u410を流れた電解電流は電解液を通して(−
)電極31.32−に達し、夫々の電解電源4に帰還す
る。その際、帯鋼1Oの表面、例えば(+)電極31.
32に面した帯鋼表面はく−)極性となり、電解液が電
気分解する電圧に達すると帯鋼のく−)極表面で電気分
解が起り、帯鋼の表面からは電流密度に比例して水素ガ
ス(H2)が発生する。また、(−)電極31−.32
−に面した帯鋼表面は(+)極性となり、酸素ガス(0
2)が発生する。そして、この水素ガス及び酸素ガスに
よる物理的な洗浄作用と、塩酸もしくはオル1〜燐酸ソ
ーダ等の電解液による化学的な酸洗効果もしくは脱脂効
果との相乗効果により、帯鋼表面のスケールをデスケー
リングし、また油脂膜の脱脂洗浄が行なわれる。
In the electrolytic treatment apparatus using the indirect energization method shown in FIG.
1.32 and flows through the electrolyte to band 110. Next, the electrolytic current flowing through the band U410 passes through the electrolyte (-
) reaches the electrodes 31, 32- and returns to the respective electrolytic power sources 4. At that time, the surface of the steel strip 1O, for example, the (+) electrode 31.
The surface of the steel strip facing 32 becomes polarized, and when the electrolytic solution reaches a voltage that electrolyzes, electrolysis occurs on the surface of the steel strip, and electricity flows from the surface of the steel strip in proportion to the current density. Hydrogen gas (H2) is generated. Moreover, the (-) electrode 31-. 32
The steel strip surface facing - has (+) polarity, and oxygen gas (0
2) occurs. Then, the scale on the surface of the steel strip is removed by the synergistic effect of the physical cleaning effect of hydrogen gas and oxygen gas and the chemical pickling effect or degreasing effect of electrolyte such as hydrochloric acid or ol-1-sodium phosphate. Scaling is performed, and the oil film is degreased and cleaned.

ところで、上記従来の間接通電方式による電解処理装置
では、(+)電極および(−)電極に面した帯鋼10の
上下両面で同時に電気分解が起こり、従って1組の電気
回路を用いて帯鋼表面の4か所で電解作用を生じさせる
ことができるという長所を有している反面、次のような
問題があった。
By the way, in the above-mentioned conventional electrolytic treatment apparatus using the indirect energization method, electrolysis occurs simultaneously on both the upper and lower surfaces of the steel strip 10 facing the (+) electrode and the (-) electrode, and therefore, one set of electric circuits is used to treat the steel strip 10. Although it has the advantage of being able to generate electrolytic action at four locations on the surface, it has the following problems.

即ち、(+)電極3s 、32から帯鋼10を通って(
−)電極31−、32−へ電流が流れる際、帯鋼の電気
抵抗が大きいため、所定の電流を流すのに要する電圧が
高くなり、電力消費が大きくなることである。
That is, from the (+) electrodes 3s and 32 through the steel strip 10 (
-) When current flows to the electrodes 31-, 32-, since the electrical resistance of the steel strip is large, the voltage required to flow a predetermined current becomes high, and power consumption increases.

そこで、上記間接通電方式の電解処理装置における問題
を回避するために、最近では第2図あるいは第3図に示
す直接通電方式の電解処理装置が採用されるようになっ
た。この直接通電方式では、第1図における送給ロール
21.22の代りに通電ロール(通称はコンタクタロー
ル)を用い、該コンタクタ[]−ルから帯鋼に直接電流
が流される。
Therefore, in order to avoid the problems of the above-mentioned indirect energization type electrolytic treatment apparatus, a direct energization type electrolytic treatment apparatus as shown in FIG. 2 or 3 has recently been adopted. In this direct energization method, an energizing roll (commonly known as a contactor roll) is used in place of the feed rolls 21 and 22 in FIG. 1, and a current is passed directly from the contactor roll to the steel strip.

第2図において、51.52はコンタクタロールである
。これらのコンタクタロールには負電圧が印加されてお
り、その表面に沿い且つ表面から離間して〈十)電極3
+ 、32が夫々配設されている。また、(十)電+1
u3t 、32の端部にはノズル61.62が夫々配設
されている。該ノズル6+ 、62は、図示のようにコ
ンダクタロールに接触懸架されて送給されて来る帯uA
10と(+)電極31.32との間に電解液を噴出する
ようになっている。こうして噴出された電解液を介して
帯m10から(」暑電橿3工、32に電流が流れ、帯鋼
表面の電解処理が行なわれる。
In FIG. 2, 51 and 52 are contactor rolls. A negative voltage is applied to these contactor rolls, and electrodes 3
+ and 32 are provided, respectively. Also, (10) electricity +1
Nozzles 61 and 62 are arranged at the ends of u3t and 32, respectively. The nozzles 6+, 62 are connected to the belt uA, which is suspended in contact with a conductor roll as shown in the figure.
10 and the (+) electrodes 31, 32, an electrolytic solution is spouted out between the electrodes 31 and 32. A current flows from the band m10 to the hot electric poles 3 and 32 through the electrolytic solution spouted out in this way, and electrolytic treatment is performed on the surface of the steel band.

上記第2図の直接通電方式では、電流が帯鋼1Oを流れ
る際の抵抗が小さいため、低い電圧で大電流を流すこと
ができ、電流密度を大きく取ることができる。従って、
つ4通電時間が短くてすみ消費電力が間接通電方式の場
合と同じ場合には設備の全長を短くできから、少ない設
備費で同一の電解効果が得られるという特長を有してい
る。然し乍ら、第2図の直接通電方式には、電気分解が
帯#41Oの片面でしか行なわれないという欠点がある
In the direct energization method shown in FIG. 2, since the resistance when the current flows through the steel strip 1O is small, a large current can be passed at a low voltage and a large current density can be obtained. Therefore,
4) The energization time is short and the total length of the equipment can be shortened when the power consumption is the same as in the case of the indirect energization method, so it has the advantage that the same electrolytic effect can be obtained with less equipment cost. However, the direct energization method of FIG. 2 has the disadvantage that electrolysis is performed only on one side of band #41O.

他方、第3図の直接通電方式では、帯mioを・コンタ
クタロール対71〜73に通して送給し、各コンダクタ
ロール間において、帯鋼1Oとその上下両側に配設した
(+)N極3r 、32との間隙にノズル61.62か
ら電解液を噴出して電解処理を行なう。この場合、第2
図の場合とは違って帯鋼1○の上下両面で電解処理が行
なわれるが、コンダクタロール対7と(+)電極3との
間に帯mioの電気抵抗が含まれるため、第2図の場合
に較べれば高電圧を必要とし、電力消費量が大きくなら
ざるを得ない。とはいっても、第1図の間接通電方式に
比較すれば道かに高い電流密度が1qられる。このため
、第2図および第3図の直接通電方式は、何れも高電流
密度方式(High5− Current D ensity 略称1−icD方
式)と呼ばれている。
On the other hand, in the direct energization method shown in Fig. 3, the strip MIO is fed through contactor roll pairs 71 to 73, and between each conductor roll, the (+) N poles arranged on the strip steel 1O and both above and below it are fed. 3r and 32, an electrolytic solution is ejected from nozzles 61 and 62 to perform electrolytic treatment. In this case, the second
Unlike the case shown in the figure, the electrolytic treatment is performed on both the upper and lower sides of the steel strip 1○, but since the electrical resistance of the band mio is included between the conductor roll pair 7 and the (+) electrode 3, Compared to the conventional case, a high voltage is required, and power consumption inevitably increases. However, compared to the indirect energization method shown in FIG. 1, the current density is much higher by 1q. For this reason, the direct energization methods shown in FIGS. 2 and 3 are both called high current density methods (High5-Current Density, abbreviated as 1-icD methods).

なお、上記HCD方式には、以下に付言する別の問題が
存在する。
Note that the above-mentioned HCD method has another problem that will be added below.

で焼付きを起して歩留低下をきたすため、電解d=にオ
ルト硅酸ソーダの3%溶液を用いることにより、酸化硅
素(SiO2)を約2 m’j / Td〜4 ml 
/ゴ付与している。即ち、帯鋼の表面に微量の5102
を付与すると、焼鈍時の焼付きを回避することができる
。そして、この場合S + 02は帯鋼の(−)極性に
おいて電流密度に比例して付着する性質がある。
In order to prevent seizure and decrease the yield, a 3% solution of sodium orthosilicate is used for the electrolysis d= to reduce silicon oxide (SiO2) to approximately 2 m'j/Td ~ 4 ml.
/Go is given. That is, a trace amount of 5102 is present on the surface of the steel strip.
By adding , it is possible to avoid seizure during annealing. In this case, S + 02 has the property of adhering in proportion to the current density in the (-) polarity of the steel strip.

ところで、第2図もしくは第3図の直接通電方式では帯
鋼が(−)極性となり、且つ電流密度が大きいため多量
の8+02が付着する。その結果、例えば次工程で錫メ
ッキを施す場合にはメッキ性を阻害するという問題が生
じることがら、 SiO2の付着量を制御するため、電
解液として可性6− ソーダを一定の割合でオルl−硅酸ソーダに添加混合す
る方法も提案されている現状にある。更に、第2図およ
び第3図のHCD方式ではコンダクタロールも(−)極
性である。従って、SiO2は]ンダクタロールにも同
様に付着して通電性を劣化させ、電圧の上昇をきたす。
By the way, in the direct energization method shown in FIG. 2 or 3, the steel strip has (-) polarity and the current density is high, so a large amount of 8+02 adheres. As a result, for example, when tin plating is performed in the next step, there is a problem that the plating performance is inhibited. Therefore, in order to control the amount of SiO2 deposited, a certain proportion of 6-soda is added as an electrolyte. - A method of adding and mixing with sodium silicate has also been proposed. Furthermore, in the HCD system of FIGS. 2 and 3, the conductor roll also has (-) polarity. Therefore, SiO2 also adheres to the conductor roll, deteriorating the conductivity and causing an increase in voltage.

これを回避するために、コンダクタロールの極性を(十
)に切替えるとS l 02が帯鋼に付着せず、焼鈍時
の焼付を生じることとなる。このような事情から、第4
図に示ずように、(−)極性のコンダクタロール及び(
+)電極5s 、31の他に、(+)極性のコンダクタ
ロール8及び(=)電極31−を組合せて使用し、51
02の付着量を制即する方法が提案されている。然し乍
ら、この方法では設備費の増大が避けられないといった
問題がある。
In order to avoid this, if the polarity of the conductor roll is switched to (10), S l 02 will not adhere to the steel strip, resulting in seizure during annealing. Due to these circumstances, the fourth
As shown in the figure, conductor rolls of (-) polarity and (
In addition to the +) electrode 5s and 31, a (+) polar conductor roll 8 and (=) electrode 31- are used in combination, and the 51
A method for controlling the amount of 02 deposited has been proposed. However, this method has the problem of an unavoidable increase in equipment costs.

本発明は上記事情に鑑みてなされたもので、間接通電方
式の電解処理装置を改良することにより、直接通電方式
における問題を生じることなく、高電流密度で効率良く
処理することができる帯鋼の電解処理装置を提供するも
のである。
The present invention has been made in view of the above circumstances, and by improving the indirect energization type electrolytic treatment equipment, it is possible to efficiently process steel strips at high current density without causing the problems of the direct energization type. The present invention provides an electrolytic treatment device.

即ち、本発明による帯鋼の電解処理装置は、電解液中に
浸漬されて走行する帯鋼を上下から挟むように近接し、
且つ上下で極性を異にする電極対を前記帯鋼の長手方向
に沿って複数対設けると共に、前記帯鋼の両側縁部から
外側において前記上下に設けられた電極間に介在して電
流遮蔽板を配設し、前記複数の電極対の極性を交互に変
えたことを特徴とするものである。
That is, the electrolytic treatment apparatus for steel strip according to the present invention approaches a steel strip immersed in an electrolytic solution and runs so as to sandwich it from above and below,
A plurality of pairs of electrodes having different polarities on the upper and lower sides are provided along the longitudinal direction of the steel strip, and a current shielding plate is provided between the electrodes provided on the upper and lower sides on the outside from both side edges of the steel strip. , and the polarity of the plurality of electrode pairs is alternately changed.

以下、第5図〜第7図を参照して本発明の詳細な説明す
る。
Hereinafter, the present invention will be explained in detail with reference to FIGS. 5 to 7.

第5図は本発明の一実施例になる帯鋼の電解処理装置を
示す説明図であり、第6図(A>は第5図のVl −V
l 41!に沿う断面図である。これらの図において、
11は電解液(塩酸もしくはオルト硅酸ソータ等)を満
たした電解槽である。該電解槽1の入口および出口には
送給ロール121,122が配設されており、この送給
ロールによって帯鋼1Oが連続的に電解液中を通される
ようになっている。そして、電解槽1内には帯鋼1Oを
上下から挟むようにしてこれに近接した2組の電極対1
3+ 、131−および132.132−が配設されて
いる。これらの電極対は夫々電解型?+!141゜14
2に接続されている。また、第6図(A)に示すように
帯鋼1Oの両側端部には、絶縁性の電気遮蔽板151.
152が一部帯鋼1Oに重なった状態で、上下の電極間
に介在して配設されている。
FIG. 5 is an explanatory diagram showing an electrolytic treatment apparatus for steel strip according to an embodiment of the present invention, and FIG. 6 (A> is Vl - V in FIG. 5).
l 41! FIG. In these figures,
11 is an electrolytic cell filled with an electrolytic solution (hydrochloric acid, ortho-silicic acid sorter, etc.). Feed rolls 121, 122 are disposed at the inlet and outlet of the electrolytic cell 1, and the steel strip 1O is continuously passed through the electrolyte by the feed rolls. In the electrolytic cell 1, two pairs of electrodes 1 are placed adjacent to the steel strip 1O so as to sandwich it from above and below.
3+, 131- and 132.132- are arranged. Are these electrode pairs each electrolytic type? +! 141°14
Connected to 2. Further, as shown in FIG. 6(A), insulating electrical shielding plates 151.
152 is disposed interposed between the upper and lower electrodes, partially overlapping the steel strip 1O.

上記実施例の電解処理装置を、第1図で説明した間接通
電方式による従来の電解処理装置と比較すると、上記の
実施例では帯tN10の上下に対向して配設されている
電極が逆極性になっている点で異なっており、これが本
発明における最も重要な特徴である。即ち、上記の実施
例において、電解電流は電源141.142から夫々(
+)電極131.132に流れ、電解液を通って帯1i
110に流れた後、再び電解液を通って対向する夫々の
く−)電極131−.132−に流れ、電源141.1
42に帰還することによって帯鋼1Oの上下両面で電気
分解を生じる。従って、この場合に帯鋼中を電流が流れ
る方向は帯鋼1Oの面に=9一 対して直角の方向となり、第1図の場合に較べると、電
流が流れる帯鋼の断面は著しく大きくなるから、帯鋼中
を電流が流れる際の抵抗は極めて小さくなる。また、第
1図の場合に電極間を直接流れる無効電流はほとんどな
くなる。この結果、極めて大きな電流密度が得られるた
め、電解時間の短縮あるいは設備全長の短縮(従来の1
/4〜1/2)により設備費の低減が可能となり、従来
の間接通電方式における問題を解消することができる。
Comparing the electrolytic treatment apparatus of the above embodiment with the conventional electrolytic treatment apparatus using the indirect energization method explained in FIG. This is the most important feature of the present invention. That is, in the above embodiment, the electrolytic currents are respectively (
+) flows to the electrodes 131, 132 and through the electrolyte to the band 1i
110, the electrolyte passes through the electrolyte again to each of the opposing electrodes 131-. 132-, power supply 141.1
By returning to the steel strip 42, electrolysis occurs on both the upper and lower surfaces of the steel strip 1O. Therefore, in this case, the direction in which the current flows in the steel strip is perpendicular to the surface of the steel strip 1O, and the cross section of the steel strip in which the current flows is significantly larger than in the case of Fig. 1. Therefore, the resistance when current flows through the steel strip becomes extremely small. Further, in the case of FIG. 1, almost no reactive current flows directly between the electrodes. As a result, an extremely high current density is obtained, which shortens the electrolysis time or the overall length of the equipment (conventional
/4 to 1/2), it is possible to reduce the equipment cost and solve the problems with the conventional indirect energization method.

また、電流密度を大きく取れることから電解効率が上り
、粗洗浄用のホットコースティクタンク及びブラシロー
ルが不要になるため、設備費の低減を図ることができる
。更に、電圧上昇が小さいため電力消費が少なくて済み
、大幅な省エネルギーを図ることがでる。特に、極薄板
のティンゲージの場合の消費電力は従来の1/4〜1/
2以下となる。
Furthermore, since the current density can be increased, the electrolytic efficiency is increased, and a hot caustic tank and brush roll for rough cleaning are not required, so that equipment costs can be reduced. Furthermore, since the voltage rise is small, power consumption is low, resulting in significant energy savings. In particular, the power consumption in the case of ultra-thin plate tin gauges is 1/4 to 1/1 that of conventional ones.
2 or less.

ところで、上述のように上下に対向させた電極の極性を
逆にした結果、上記第5図の実施例においては電極対を
構成する上下の電極間に直接電流=10− が流れることが懸念される。もし帯15i110を流れ
ることなく、上下の電極間に直接電流が流れることにな
れば電気効率は極めて低くなってしまう。
By the way, as a result of reversing the polarity of the vertically opposed electrodes as described above, there is a concern that in the embodiment shown in FIG. Ru. If current were to flow directly between the upper and lower electrodes without flowing through the strips 15i110, the electrical efficiency would be extremely low.

そこで、上記の実施例では帯鋼1Oの両側端部に重なる
電気遮蔽板151,152を設けることにより、このよ
うな無効電流の防止を図っている。
Therefore, in the above embodiment, electric shielding plates 151 and 152 are provided overlapping each other at both ends of the steel strip 1O to prevent such reactive current.

この場合、第6図(B)に示すように先端部が二股に分
岐した電気遮蔽板151−.152−を用い、帯鋼側端
部の上下両面側に遮蔽板を介在させれば、より大きな効
果を得ることができる。
In this case, as shown in FIG. 6(B), the electric shielding plate 151-. If 152- is used and shielding plates are interposed on both upper and lower sides of the steel strip side end, a greater effect can be obtained.

他方、上記実施例の電解処理装置によれば、帯鋼1Oの
上下両面で電気分解が生じ、電解処理が行なわれるから
、従来の1−1 CD方式(直接通電方式)のように帯
鋼の片面でしか電解処理ができないといった問題は生じ
ない。更に、上記の実施例のきよくせいを適当に切替え
ることによって、電極にS1○2が付着して電圧の上昇
をきたすといった、従来のHCD方式におけるような問
題を回避することができる。同様に、(」〜)極性の電
極と(−)極性の電極とが交互に並んでいることから、
帯uA10に対するSiO2の付着についても過剰な付
着を防止し、第1図の従来の間接通電方式の場合と同様
、約2■/Tlt〜4 Il+!? / rrrの適量
が得られるという長所を有している。従って、従来のH
CD方式の場合のように3i○2の付着量を制御するた
めの電極を別途設ける必要はなくなり、その分だけ設備
費の低減および省エネルギーを図ることができる。
On the other hand, according to the electrolytic treatment apparatus of the above embodiment, electrolysis occurs on both the upper and lower surfaces of the steel strip 1O, and the electrolytic treatment is performed, so that the electrolytic treatment of the strip steel is performed as in the conventional 1-1 CD method (direct energization method). The problem that electrolytic treatment can only be performed on one side does not occur. Furthermore, by appropriately switching the cleanliness of the above-described embodiments, it is possible to avoid the problem that occurs in the conventional HCD system, such as S1○2 adhering to the electrodes and causing an increase in voltage. Similarly, since electrodes with (''~) polarity and electrodes with (-) polarity are arranged alternately,
Excessive adhesion of SiO2 to the band uA10 is also prevented, and as in the case of the conventional indirect energization method shown in FIG. 1, approximately 2■/Tlt~4 Il+! ? It has the advantage that a suitable amount of /rrr can be obtained. Therefore, conventional H
It is no longer necessary to separately provide an electrode for controlling the amount of 3i○2 deposited as in the case of the CD method, and it is possible to reduce equipment costs and save energy accordingly.

その他、上記実施例の電解処理装置を具体的な電解処理
に適用することにより、次のような効果を得ることがで
きる。
In addition, the following effects can be obtained by applying the electrolytic treatment apparatus of the above embodiment to specific electrolytic treatment.

例えば電解酸洗の場合、電解液の種類や濃度によっては
、コンダクタロールの材質や寿命からHCD方式の適用
には限界があるが、上記実施例における電極は消耗品扱
いであるから極めて広い範囲に適用できる。場合によっ
ては、軟鋼板の酸洗設備にメカニカルデスケーリングを
組合せることにより、酸洗槽を1/4〜1/2以下とす
ることも可能である。
For example, in the case of electrolytic pickling, there are limits to the application of the HCD method depending on the type and concentration of the electrolyte, the material and lifespan of the conductor roll, but since the electrodes in the above example are treated as consumables, they can be used in a very wide range of applications. Applicable. In some cases, by combining mechanical descaling with equipment for pickling mild steel plates, it is possible to reduce the size of the pickling tank to 1/4 to 1/2 or less.

また、電解清浄設備に適用する場合、高電流密度が取れ
ることから従来は1000 m/minのライン速度で
あるのに対して、2500 ?71/minのライン速
度の達成も実現可能となる。しかも、冷間圧延機(タン
デムコールドミル)との連続化も可能性がでてくる。
In addition, when applied to electrolytic cleaning equipment, the line speed is 2500 m/min, whereas the conventional line speed is 1000 m/min because it can obtain a high current density. It is also possible to achieve a line speed of 71/min. Furthermore, there is a possibility of continuous operation with a cold rolling mill (tandem cold mill).

更に、NMSとAL (co l d)の連続化が可能
となり、特に、APのライン速度は現在100m/+n
inが最高であるが、少なくとも200m/minは充
分に可能となる。
Furthermore, it has become possible to connect NMS and AL (cold) continuously, and in particular, the line speed of AP is currently 100m/+n.
The maximum speed is 200 m/min, but at least 200 m/min is fully possible.

第7図は本発明の他の実施例になる電解処理装置を示す
説明図である。この実施例では3個の送給ロール12r
 、122.123を用いて縦型の構造を採用している
が、その他の基本的な構成は第5図の実施例と同じであ
る。この場合、図では(+)電極と(−)電極とが背中
合せとなり、両者間に直接電流が流れるように見えるが
、何れの電極も帯鋼に面しない側の表面は電気絶縁性の
カバー、例えばゴムライニングを施さており、電極13
− 間の通電は防止されている。またこの場合、電気遮蔽板
151,152は帯鋼1Oの通板時に発生する蛇行に対
して追従できる機構とし、帯鋼10の板幅変更に対して
も追従できる構造とする。
FIG. 7 is an explanatory diagram showing an electrolytic treatment apparatus according to another embodiment of the present invention. In this embodiment, there are three feed rolls 12r.
, 122, 123 to adopt a vertical structure, but other basic configurations are the same as the embodiment shown in FIG. In this case, in the figure, the (+) electrode and the (-) electrode are placed back to back, and it appears that current flows directly between them, but the surface of each electrode that does not face the steel strip is covered with an electrically insulating cover. For example, the electrode 13 may be lined with rubber.
- energization is prevented between. Further, in this case, the electrical shielding plates 151 and 152 have a mechanism that can follow the meandering that occurs when the steel strip 1O is passed through, and also have a structure that can follow changes in the width of the steel strip 10.

上記第7図の実施例によっても、第5図の実施例につい
て説明したのと同様の種々の効果を得ることができる。
The embodiment shown in FIG. 7 can also provide various effects similar to those described with respect to the embodiment shown in FIG.

以上詳述したように、本発明による帯鋼の電解処理装置
では、間接通電方式でありながら高電流密度で効率良く
帯鋼の電解処理を行なうことができ、且つ従来の直接通
電方式に生じている問題も回避できる等、顕著な効果が
得られるものである。
As detailed above, the steel strip electrolytic treatment apparatus according to the present invention is capable of efficiently electrolyzing a steel strip at a high current density even though it is an indirect energization method, and is capable of efficiently electrolyzing a steel strip at a high current density, which is different from the conventional direct energization method. This can bring about remarkable effects, such as avoiding problems that may arise.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の間接通電方式による帯鋼の電解処理装置
を示す説明図、第2図、第3図、第4図は夫々直接通電
方式による従来の電解処理装置を示す説明図、第5図は
本発明の一実施例になる帯鋼の電解処理装置を示す説明
図、第6図(A>は第4図のVl −Vl線に沿う断面
図であり、第6図(B)はその変形例を示す断面図、第
7図は本発14− 明の他の実施例になる帯鋼の電解処理装置を示す説明図
である。 11・・・電解槽、121.122.123・・・送給
ロール、131,132・・・(+)電極、13t−。 132′・・・(−)電極、141.142・・・電解
電源、151.15+−,152,152−・・・電気
遮蔽板。 15−
Fig. 1 is an explanatory diagram showing a conventional electrolytic treatment apparatus for steel strip using an indirect energization method; Figures 2, 3, and 4 are explanatory diagrams showing a conventional electrolytic treatment apparatus using a direct energization method; The figure is an explanatory diagram showing an electrolytic treatment apparatus for steel strip according to an embodiment of the present invention, FIG. 6 (A> is a cross-sectional view taken along the line Vl-Vl in FIG. 4, and FIG. A sectional view showing a modification thereof, and FIG. 7 are explanatory views showing an electrolytic treatment apparatus for steel strip according to another embodiment of the present invention. 11... Electrolytic cell, 121.122.123. ...Feed roll, 131,132...(+) electrode, 13t-. 132'...(-) electrode, 141.142...Electrolysis power source, 151.15+-, 152,152-...・Electrical shielding plate. 15-

Claims (1)

【特許請求の範囲】[Claims] 電解液中に浸漬されて走行する帯鋼を上下から挟むよう
に近接し、且つ上下で極性を異にする電極対を前記帯鋼
の長手方向に沿って複数対設けると共に、前記帯鋼の両
側縁部から外側において前記上下に設けられた電極間に
介在して電流遮蔽板を配設し、前記複数の電極対の極性
を交互に変えたことを特徴とする帯鋼の電解処理装置。
A plurality of pairs of electrodes are provided along the longitudinal direction of the steel strip, which are close to each other so as to sandwich the steel strip immersed in an electrolytic solution and run from above and below, and have different polarities at the top and bottom, and are arranged on both sides of the steel strip. An apparatus for electrolytic treatment of steel strip, characterized in that a current shielding plate is disposed between the electrodes provided above and below on the outside from the edge, and the polarity of the plurality of electrode pairs is alternately changed.
JP24869383A 1983-12-24 1983-12-24 Electrolytic treating device for steel strip Granted JPS60135600A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24869383A JPS60135600A (en) 1983-12-24 1983-12-24 Electrolytic treating device for steel strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24869383A JPS60135600A (en) 1983-12-24 1983-12-24 Electrolytic treating device for steel strip

Publications (2)

Publication Number Publication Date
JPS60135600A true JPS60135600A (en) 1985-07-18
JPH0313320B2 JPH0313320B2 (en) 1991-02-22

Family

ID=17181926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24869383A Granted JPS60135600A (en) 1983-12-24 1983-12-24 Electrolytic treating device for steel strip

Country Status (1)

Country Link
JP (1) JPS60135600A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19951325A1 (en) * 1999-10-20 2001-05-10 Atotech Deutschland Gmbh Method and device for the electrolytic treatment of electrically mutually insulated, electrically conductive structures on surfaces of electrically insulating film material and applications of the method
EP1309236A2 (en) * 2001-11-05 2003-05-07 Gebr. Schmid GmbH & Co. Process for treating electrically conductive substrates such as circuit boards and the like
JP2003520291A (en) * 1999-10-20 2003-07-02 アトーテヒ ドイッチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング METHOD AND APPARATUS FOR ELECTROLYTIC PROCESSING OF CONDUCTIVE SURFACES OF SHEET AND FILLED MATERIALS SEPARATED FROM EACH AND APPLICATION OF THE SAME
CN102776553A (en) * 2012-07-11 2012-11-14 中冶南方工程技术有限公司 Electrolytic cleaning electrode for cold-rolled band steel

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5541822U (en) * 1978-09-07 1980-03-18
JPS58147598A (en) * 1982-02-26 1983-09-02 Kawasaki Steel Corp Method for electrolytically cleaning cold rolled steel strip

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5541822U (en) * 1978-09-07 1980-03-18
JPS58147598A (en) * 1982-02-26 1983-09-02 Kawasaki Steel Corp Method for electrolytically cleaning cold rolled steel strip

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19951325A1 (en) * 1999-10-20 2001-05-10 Atotech Deutschland Gmbh Method and device for the electrolytic treatment of electrically mutually insulated, electrically conductive structures on surfaces of electrically insulating film material and applications of the method
JP2003516471A (en) * 1999-10-20 2003-05-13 アトーテヒ ドイッチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング Method and apparatus for electrolytically treating electrically insulated conductive structures on the surface of an electrically insulating foil material and use of said method
DE19951325C2 (en) * 1999-10-20 2003-06-26 Atotech Deutschland Gmbh Method and device for the electrolytic treatment of electrically insulated, electrically conductive structures on surfaces of electrically insulating film material and applications of the method
JP2003520291A (en) * 1999-10-20 2003-07-02 アトーテヒ ドイッチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング METHOD AND APPARATUS FOR ELECTROLYTIC PROCESSING OF CONDUCTIVE SURFACES OF SHEET AND FILLED MATERIALS SEPARATED FROM EACH AND APPLICATION OF THE SAME
EP1309236A2 (en) * 2001-11-05 2003-05-07 Gebr. Schmid GmbH & Co. Process for treating electrically conductive substrates such as circuit boards and the like
EP1309236A3 (en) * 2001-11-05 2004-04-07 Gebr. Schmid GmbH & Co. Process for treating electrically conductive substrates such as circuit boards and the like
CN102776553A (en) * 2012-07-11 2012-11-14 中冶南方工程技术有限公司 Electrolytic cleaning electrode for cold-rolled band steel
CN102776553B (en) * 2012-07-11 2015-03-25 中冶南方工程技术有限公司 Electrolytic cleaning electrode for cold-rolled band steel

Also Published As

Publication number Publication date
JPH0313320B2 (en) 1991-02-22

Similar Documents

Publication Publication Date Title
EA025799B1 (en) System for power control in cells for electrolytic recovery of a metal
EP0228610B1 (en) Device for performing continuous electrolytic treatment on a metal web
JP2012162757A (en) Continuous electrolytic cleaning method and continuous electrolytic cleaning device of metal band
JPH05202500A (en) Method for electrolytic acid cleaning and device performing it
CA2573988A1 (en) Method and device for pickling metals
JPS60135600A (en) Electrolytic treating device for steel strip
EP0502537B1 (en) Apparatus for continuous electrolytic treatment of aluminum article
JPS6125800B2 (en)
CN1041758C (en) A method and a device for pickling of stainless steel
US6325913B1 (en) Steel strip descaling apparatus and a steel strip manufacturing apparatus using the descaling apparatus
US6387227B1 (en) Metal plate electrolyzation apparatus and electrode for electrolyzing metal plate
JPS59173293A (en) Electrochemical treating method and apparatus of elongated metal product
JPS60138099A (en) Electrolytic treating device for steel strip
JP2781945B2 (en) Continuous electrolytic polishing method and continuous electrolytic polishing apparatus
US3575829A (en) System for cleaning contact rolls in a plating tank
JPS60138100A (en) Electrolytic treating device for steel strip
JPH06220699A (en) Device for electrolytically pickling steel material
JP4177476B2 (en) Method and apparatus for continuous cleaning of steel strip
JPH0673595A (en) Continuous electroplating device
US6261438B1 (en) Method and apparatus for roughening a support for radiation-sensitive coatings
JP4189053B2 (en) High speed electrolytic descaling method for stainless steel
JPS5925997A (en) Electrolytic treatment device of metallic strip
JPH08283987A (en) Electroplating device for strip
JPS63206498A (en) Method for coupling impedance matching box of vertical type plating cell
RU1808886C (en) Device for electrochemical cleaning of strips