JPS6013525B2 - Proximity detection device - Google Patents

Proximity detection device

Info

Publication number
JPS6013525B2
JPS6013525B2 JP52056848A JP5684877A JPS6013525B2 JP S6013525 B2 JPS6013525 B2 JP S6013525B2 JP 52056848 A JP52056848 A JP 52056848A JP 5684877 A JP5684877 A JP 5684877A JP S6013525 B2 JPS6013525 B2 JP S6013525B2
Authority
JP
Japan
Prior art keywords
liquid crystal
frequency
crystal element
change
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52056848A
Other languages
Japanese (ja)
Other versions
JPS53141504A (en
Inventor
慶治 長江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP52056848A priority Critical patent/JPS6013525B2/en
Publication of JPS53141504A publication Critical patent/JPS53141504A/en
Publication of JPS6013525B2 publication Critical patent/JPS6013525B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Electronic Switches (AREA)
  • Channel Selection Circuits, Automatic Tuning Circuits (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Switches That Are Operated By Magnetic Or Electric Fields (AREA)

Description

【発明の詳細な説明】 本発明は、例えば人体などの対象物の接近又は接触を発
振周波数の変化として検知する近接対象検知方式の改良
に関し、更に詳しくは液晶素子の分子配向自己保持作用
を巧みに利用して発振周波数の変化を2値的に検知しう
るようにした、特にテレビジョン受信機の自動選局装置
等に用いるに好適な近接対象検知方式に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a nearby object detection method that detects the approach or contact of an object such as a human body as a change in oscillation frequency, and more specifically, the present invention relates to an improvement in a nearby object detection method that detects the approach or contact of an object such as a human body as a change in oscillation frequency. The present invention relates to a nearby object detection method which is suitable for use in an automatic channel selection device of a television receiver, etc., which can be used to detect changes in oscillation frequency in a binary manner.

従来、いわゆる近接スイッチ装置としては、テレビジョ
ン受信機の自動選局装置などにおいて第1図に示すよう
なものが提案されている。第1図の従来装置において、
11は人体などの接近を静電容量の変化としてとらえる
コンデンサ、12は、この静電容量の変化を周波数の変
化に変換する発振回路13は、この周波数の変化を検出
する周波数検出回路14は、その変イ鰍艇を保持する保
持回路、そして15は、前段よりの信号により自動的に
選局を行なうチューナである。
2. Description of the Related Art Conventionally, as a so-called proximity switch device, a device as shown in FIG. 1 has been proposed for use in automatic channel selection devices for television receivers and the like. In the conventional device shown in Fig. 1,
11 is a capacitor that detects the approach of a human body as a change in capacitance; 12 is an oscillation circuit 13 that converts this change in capacitance into a change in frequency; and a frequency detection circuit 14 that detects this change in frequency. A holding circuit 15 holds the variable speed boat, and a tuner 15 automatically selects a channel based on a signal from the previous stage.

発振回路12の出力Aは、コンデンサ11に人体などが
接近することにより第2図Aに示すように周波数が減少
し、遠く離れることにより再び初期の状態にもどる。次
段の周波数検出回路13は、周波数が減少した時第2図
Bに示すように信号を出す。この信号Bでチューナ15
を動作させるが、第2図Bに示したように人体が離れる
と信号Bも初期状態にもどってしまう。
The frequency of the output A of the oscillation circuit 12 decreases as shown in FIG. 2A when a human body or the like approaches the capacitor 11, and returns to its initial state when the human body moves away from the capacitor 11. The next stage frequency detection circuit 13 outputs a signal as shown in FIG. 2B when the frequency decreases. With this signal B, tuner 15
However, as shown in FIG. 2B, when the human body leaves, the signal B also returns to its initial state.

したがって、チューナにより選局された状態を維持して
おくために保持回路14をもうけ第2図Cに示すように
信号Bを保持した信号Cを発生させる必要があった。こ
のような自動選局装置に用いる発振回路として第3図に
示すウィーンブリッジ型発振回路のコンデンサC,の非
接地側極仮に指を触れることにより発振周波数を変化さ
せるものである。第3図において、21は演算増幅器、
22は演算増幅器の非反転入力端子、23は反転入力端
子、R,,R2,RTは抵抗、CTはコンデンサ、24
は出力端子である。これらの回路部品を第3図のように
接続し電源を投入すると出力端子24には、第4図aに
示すように電源電圧Voボルトにほぼ等しい振幅を持つ
方形波が現われる。
Therefore, in order to maintain the state selected by the tuner, it was necessary to provide a holding circuit 14 and generate a signal C holding the signal B as shown in FIG. 2C. An oscillation circuit used in such an automatic tuning device is one in which the oscillation frequency is changed by touching the non-grounded side pole of a capacitor C of a Wien bridge type oscillation circuit shown in FIG. 3 with a finger. In FIG. 3, 21 is an operational amplifier;
22 is a non-inverting input terminal of the operational amplifier, 23 is an inverting input terminal, R,, R2, RT are resistors, CT is a capacitor, 24
is the output terminal. When these circuit components are connected as shown in FIG. 3 and the power is turned on, a square wave having an amplitude approximately equal to the power supply voltage Vo volts appears at the output terminal 24 as shown in FIG. 4a.

またその周波数は次式で表わされることが知られている
。このとき、コンデンサCTの非接地側極板に手などで
触れると、静電容量が大幅に増加し、【1}式で明らか
なように発振周波数〃ま減少し、第4図bのようになる
It is also known that the frequency is expressed by the following equation. At this time, if you touch the non-grounded plate of the capacitor CT with your hand, the capacitance will increase significantly and the oscillation frequency will decrease as shown in equation [1}, as shown in Figure 4b. Become.

この周波数変化を次段の回路で検出し、スイッチの投入
あるいはテレビジョンの自動選局などを行なっていた。
ところが本回路では、指が接触した瞬間だけしか周波数
の変化が起こらず、スイッチ等の状態を保持しておくた
めには、何らかの手段による保持回路または保持機構を
付加しなければならなかった。本発明の目的は、上記し
た欠点を除去し、保持回路あるいは保持機構を必要とし
ない近接対象検知装置を提供するにある。
This frequency change was detected by the next stage of circuitry, and was used to turn on a switch or automatically tune the television.
However, in this circuit, the frequency changes only at the moment of finger contact, and in order to maintain the state of the switch, etc., it was necessary to add some kind of holding circuit or holding mechanism. SUMMARY OF THE INVENTION An object of the present invention is to eliminate the above-mentioned drawbacks and provide a nearby object detection device that does not require a holding circuit or holding mechanism.

本発明は液晶素子の静電容量が、液晶分子の配向状態に
より大きく変化すること、および液晶の分子配向の変化
が開始されるしきい値電圧の周波数依存性が顕著である
ことを利用し、液晶素子を発振回路における周波数の決
定要素であるコンデンサとして用いることを特徴として
いる。
The present invention takes advantage of the fact that the capacitance of a liquid crystal element changes greatly depending on the orientation state of liquid crystal molecules, and that the threshold voltage at which a change in the orientation of liquid crystal molecules starts has a significant frequency dependence. It is characterized by using a liquid crystal element as a capacitor which is a determining element of frequency in an oscillation circuit.

第5図は本発明の一実施例による近接スイッチ装置の発
振回路で、演算増幅器41の出力端子44には抵抗RT
およびR2が接続され、抵抗R,はコンデンサとして用
いられている液晶素子45を介して援地され、液晶素子
45との接続点は演算増幅器41の反転入力端子43に
接続されている。
FIG. 5 shows an oscillation circuit of a proximity switch device according to an embodiment of the present invention, in which a resistor RT is connected to an output terminal 44 of an operational amplifier 41.
and R2 are connected, the resistor R, is grounded via a liquid crystal element 45 used as a capacitor, and the connection point with the liquid crystal element 45 is connected to the inverting input terminal 43 of the operational amplifier 41.

また抵抗R2は抵抗R3を介して接地され、R2とR3
の接続点は演算増幅器41の非反転入力42に接続され
ている。
Furthermore, the resistor R2 is grounded via the resistor R3, and R2 and R3
The connection point of is connected to the non-inverting input 42 of the operational amplifier 41.

一方、液晶素子45は第5図に示すように内面に電極5
1をそなえた2枚の基板52の間に液晶材料53をサン
ドイッチ状にはさみ込んだ構造をしている。
On the other hand, the liquid crystal element 45 has electrodes 5 on its inner surface as shown in FIG.
It has a structure in which a liquid crystal material 53 is sandwiched between two substrates 52 provided with 1.

このとき液晶材料としてP型またはN型のネマチック液
晶を用い、P型では電極に対してほぼ水平に、N型では
ほぼ垂直に初期配向させておく。いまP型ネマチツク液
晶を用いた場合について液晶素子の特性を説明する。
At this time, a P-type or N-type nematic liquid crystal is used as the liquid crystal material, and the P-type is initially aligned substantially horizontally with respect to the electrode, and the N-type is initially aligned substantially perpendicularly to the electrode. The characteristics of a liquid crystal element using a P-type nematic liquid crystal will now be explained.

P型ネマチック液晶分子は分子長藤方向に大きく分極し
ており、長軸方向の誘電率(凡)、短軸方向の譲軍率(
ごs)には次の関係がある。
P-type nematic liquid crystal molecules are largely polarized in the molecular long-axis direction, with a dielectric constant in the long axis direction (normal) and a yield rate in the short axis direction (
s) has the following relationship.

ごL>ごS ....,....{
21なお通常の液晶材料では、ごL/ごs=3〜1の華
度である。また、この液晶素子に交流電圧を印加すると
、分極と電界の相互作用により液晶分子の最軸がほぼ電
界分向すなわち電極に対して垂直方向に一致するように
配向が変化することが知られている。
GoL>GoS. .. .. .. 、. .. .. .. {
21 Note that in the case of ordinary liquid crystal materials, the degree of temperature is 3 to 1 (L/S). It is also known that when an alternating current voltage is applied to this liquid crystal element, the interaction between polarization and electric field causes the orientation of the liquid crystal molecules to change so that the most axes of the liquid crystal molecules approximately align with the direction of the electric field, that is, in the direction perpendicular to the electrodes. There is.

この配向効果には顕著な周波数特性があり、配向を開始
する電圧の実効値をしきし、値電圧(Vth)と定義す
ると、このしきし、値電圧は周波数に対して第7図に示
すような特性となる。同図で明らかなようにしきし、値
電圧(Vth)はある周波数を越えると急激に上昇する
。この周波数は通常10kHz〜10皿Hz程度でカッ
トオフ周波数(ナc)と定義しておく。ここで第5図の
回路にもどって説明を続ける。
This orientation effect has a remarkable frequency characteristic, and if we define the effective value of the voltage that starts orientation as a threshold and value voltage (Vth), this threshold and value voltage are expressed as a function of frequency as shown in Figure 7. It becomes a characteristic. As is clear from the figure, the value voltage (Vth) increases rapidly when it exceeds a certain frequency. This frequency is usually about 10 kHz to 10 Hz and is defined as a cutoff frequency (nac). We will now return to the circuit shown in FIG. 5 and continue the explanation.

本回路の出力端子44に現われる電圧波形は、従来例で
も説明した通り、ほぼ電源電圧を振幅とする方形波で第
8図aに示されるようなものである。またその出力電圧
の周波数は次式のようになる。ただしCpは液晶素子4
5の静電容量で、初期状態として液晶分子が電極に対い
まぼ平行に配向している場合の値であり、前記のどsと
素子形状によって定まる。
As explained in the conventional example, the voltage waveform appearing at the output terminal 44 of this circuit is a square wave whose amplitude is approximately equal to the power supply voltage, as shown in FIG. 8a. The frequency of the output voltage is expressed by the following equation. However, Cp is liquid crystal element 4
This is the value when the liquid crystal molecules are oriented almost parallel to the electrodes in the initial state with a capacitance of 5, and is determined by the throat s and the shape of the element.

このとき、反転入力端子43の電圧波形は抵抗R,,R
2および電源電圧Vcにより定まり、第8図bのように
なり、周波数は上記〆pに等しい。
At this time, the voltage waveform of the inverting input terminal 43 is
2 and the power supply voltage Vc, as shown in FIG. 8b, and the frequency is equal to the above p.

これは、RT,Cpにより定まる時定数により変化する
反転入力端子電圧と、出力端子電圧をR.,R2により
分圧した非反転入力端子電圧とが一致したとき出力端子
電圧が反転するためである。この動作点を前述した周波
数特性との関係から第9図中Q点に定める。
This means that the inverting input terminal voltage, which changes depending on the time constant determined by RT and Cp, and the output terminal voltage are connected to R. This is because the output terminal voltage is inverted when the non-inverting input terminal voltage divided by , R2 matches. This operating point is determined at point Q in FIG. 9 from the relationship with the frequency characteristics described above.

すなわち、周波数「pをカットオフ周波数〆c以上とし
、液晶素子45に印加される電圧(=反転入力端子電圧
)の実効値が、周波数プpにおけるしきい値電圧以下で
ある領域内の一点とする。したがって、液晶素子内の液
晶分子は印加電圧により何らの配向変化をもたらされず
、その静電容量Cpは不変である。次に液晶素子の非接
地側電極に人体の一部(指など)が触れると、人体のも
つ静電容量の影響で、‘3’式におけるCpが大幅に増
大した結果となり、出力端子電圧および液晶素子45に
印加される電圧(=反転入力様子電圧)の周波数が大幅
に減少する。このときの周波数をナmとして動作点を第
9図8点とすると液晶素子45に印加される電圧は、液
晶素子のしきし、値を越えるので液晶分子は電極に対い
まぼ垂直に配向を変える。したがって液晶素子の静電容
量は凡で定まる値Cvとなる。さらに、指をはなすと出
力端子電圧および液晶素子に印加される電圧(=反転入
力端子電圧)の周波数は高周波数側に移動するが、液晶
素子の静電容量Cvで定まる周波数〆vで安定する。
That is, one point in the region where the frequency p is equal to or higher than the cutoff frequency c, and the effective value of the voltage applied to the liquid crystal element 45 (=inverting input terminal voltage) is equal to or lower than the threshold voltage at the frequency p. Therefore, the liquid crystal molecules in the liquid crystal element do not undergo any orientation change due to the applied voltage, and the capacitance Cp remains unchanged.Next, a part of the human body (such as a finger) is connected to the non-grounded electrode of the liquid crystal element. When touched, Cp in equation '3' increases significantly due to the effect of the capacitance of the human body, and the frequency of the output terminal voltage and the voltage applied to the liquid crystal element 45 (=inverted input state voltage) increases. If the frequency at this time is nam and the operating point is set to point 8 in Figure 9, the voltage applied to the liquid crystal element 45 exceeds the threshold value of the liquid crystal element, so the liquid crystal molecules are not opposed to the electrodes. The orientation changes almost vertically.Therefore, the capacitance of the liquid crystal element becomes a value Cv determined by approximately.Furthermore, when you release your finger, the frequency of the output terminal voltage and the voltage applied to the liquid crystal element (=inverting input terminal voltage) is Although it moves to the high frequency side, it stabilizes at the frequency 〆v determined by the capacitance Cv of the liquid crystal element.

このときナvは次式のとおりである。また、{2)式で
示した通り、ごLはごsより大きいので、Cv>Cpが
成りたち、プvとナpは次式を満たす。
At this time, nv is as shown in the following equation. Furthermore, as shown in the equation {2), since L is larger than S, Cv>Cp holds, and Pv and Nap satisfy the following equation.

ナV<ナp ……【5)さらに、
ごL/どs=3〜10程度であるので〆p/ナv:3〜
10となる。
NaV<nap...[5]Furthermore,
Since L/dos=3~10, p/nav: 3~
It becomes 10.

したがって動作点は第9図y点であらわされ、この状態
は保持され、演算増幅器41の電源を切るか、液晶素子
45の両電極間を短絡するなど何らかの外部操作により
リセットするまで安定に継続する。以上により、本発明
になる回路で人体の接触あるいは近接を、発振周波数の
変化として検出し、その状態を安定に保持できることを
説明した。
Therefore, the operating point is represented by point y in Figure 9, and this state is maintained and continues stably until reset by some external operation such as turning off the power to the operational amplifier 41 or shorting the two electrodes of the liquid crystal element 45. . As described above, it has been explained that the circuit according to the present invention can detect the contact or proximity of a human body as a change in the oscillation frequency, and can stably maintain this state.

なお本動作を確実に行なわせるためには、ナpがカット
オフ周波数〆c以上でありナvがカットオフ周波数ナc
以下であること、(第9図領域1)および液晶素子の印
加電圧(:反転入力端子電圧)の実効値が、カットオフ
周波数以上ではしきい値電圧以下、カットオフ周波数以
下ではしきい値函圧以上であること(第9図領域0)が
必要であり、液晶材料の選定、液晶素子の設計に注意し
なければならない。本明細書では、P型ネマチック液晶
を用いた動作を説明したが、N型ネマチック液晶を用い
た場合には、液晶分子の長軸を電極に対いきぼ垂直にな
るように初期配向させた液晶素子を用いれば同様の動作
を行なう。
In order to perform this operation reliably, Nap must be greater than or equal to the cutoff frequency c, and Nav must be equal to or higher than the cutoff frequency nac.
(Region 1 in Figure 9) and the effective value of the voltage applied to the liquid crystal element (inverting input terminal voltage) is below the threshold voltage when it is above the cutoff frequency, and below the threshold voltage when below the cutoff frequency. (Region 0 in FIG. 9), and care must be taken in selecting the liquid crystal material and designing the liquid crystal element. In this specification, the operation using a P-type nematic liquid crystal has been explained, but when an N-type nematic liquid crystal is used, a liquid crystal whose long axis of the liquid crystal molecules is initially aligned perpendicular to the electrodes is used. A similar operation can be performed using an element.

また、第5図の回路以外でも、発振周波数の決定要素で
あるコンデンサの両端に印加される電圧が、平均値が零
であるような交流波形であり、かつその周波数が出力電
圧波形に対応して変化するような発振回路であれば一般
に同様の効果が得られる。
In addition to the circuit shown in Figure 5, the voltage applied across the capacitor, which is the determining factor for the oscillation frequency, is an AC waveform with an average value of zero, and the frequency corresponds to the output voltage waveform. In general, similar effects can be obtained if the oscillation circuit changes with

さらに、本発明の他の実施例においては前述の液晶素子
45として、一般に時計用表示素子などに用いられてい
るッィステッド・ネマチック型液晶表示素子が用いられ
る。
Furthermore, in another embodiment of the present invention, a twisted nematic type liquid crystal display element, which is generally used in display elements for watches, is used as the liquid crystal element 45 described above.

このようにすれば、人体などの近接を検知するために用
いた液晶素子がそのまま表示の機能を持つことは明らか
であり、従釆別途に設けられていた表示用部品(豆電球
など)が不要となり、その効果は大きい。ツィステッド
・ネマチック型液晶表示素子は、第10図に一例を示す
ように内面にln203などのような透明電極91をそ
なえた2枚のガラス基板92の間に液晶材料93をサン
ドイッチ状にはさみ込んだ構造をしており、ガラス基板
の外側は偏光板94がもうけられている。このとき、液
晶分子は、よく知られているようなツイスト構造をとっ
ていることが必要である。このような液晶表示素子を液
晶素子45として使用することにより、発振回路の発振
周波数の変化、すなわち被検知対象物の接近又は接触を
検知し同時に可視表示させることができ、実際上極めて
有益である。以上に詳述したところから明らかなように
、本発明の近接対象検知方式によれば、液晶素子を発振
周波数決定用コンデンサとして使用することにより、人
体などの接触あるいは近接を周波数の変化として検出し
、その状態を安定に保持できるので、従釆の近接スイッ
チに付加する必要があった保持回路あるいは機械的保持
機構が不必要になり、さらには液晶素子に表示作用をも
たせることにより表示用部品が不必要になるなど顕著な
作用効果が得られる。
If this is done, it is clear that the liquid crystal element used to detect the proximity of a human body, etc., will have the display function as is, and there will be no need for display components (such as miniature light bulbs) that were separately installed in the sub-chamber. Therefore, the effect is large. A twisted nematic type liquid crystal display element has a liquid crystal material 93 sandwiched between two glass substrates 92 each having a transparent electrode 91 such as ln203 on the inner surface, as shown in FIG. 10. A polarizing plate 94 is provided on the outside of the glass substrate. At this time, it is necessary that the liquid crystal molecules have a well-known twisted structure. By using such a liquid crystal display element as the liquid crystal element 45, it is possible to detect a change in the oscillation frequency of the oscillation circuit, that is, the approach or contact of an object to be detected, and simultaneously display the change visually, which is extremely useful in practice. . As is clear from the above detailed description, according to the proximity object detection method of the present invention, by using a liquid crystal element as a capacitor for determining the oscillation frequency, contact or proximity of a human body, etc., can be detected as a change in frequency. Since the state can be maintained stably, there is no longer a need for a holding circuit or mechanical holding mechanism that was required to be added to the subordinate proximity switch, and furthermore, by providing a display function to the liquid crystal element, display parts can be removed. Remarkable effects such as making it unnecessary can be obtained.

図面の簡単な説頚 第1図は、従来の近接スイッチ装置を示す回路図、第2
図は、第1図の装置の動作を説明するための出力電圧波
形図、第3図は、第1図の装置に用いられる発振回路を
示す回路図、第4図a,bは、第3図の回路の動作を説
明するための電圧波形図、第5図は、本発明の一実施例
による近綾スィッチ装置の発振回路を示す回略図、第6
図は、第5図の回路に使用される液晶素子の構造を示す
斜視図、第7図は、液晶素子の分子配向開始しきい値電
圧の周波数依存性を示すグラフ、第8図は、第5図の回
路の動作を説明するための電圧波形図、第9図は、第5
図の回路の動作時における液晶素子の動作点を示すグラ
フ、第10図は、本発明の他の実施例において使用され
る液晶表示素子を示す斜視図である。
Brief description of the drawings Figure 1 is a circuit diagram showing a conventional proximity switch device, Figure 2 is a circuit diagram showing a conventional proximity switch device.
1 is an output voltage waveform diagram for explaining the operation of the device shown in FIG. 1, FIG. 3 is a circuit diagram showing an oscillation circuit used in the device shown in FIG. 1, and FIGS. FIG. 5 is a voltage waveform diagram for explaining the operation of the circuit shown in FIG. 5, and FIG.
The figure is a perspective view showing the structure of a liquid crystal element used in the circuit of Fig. 5, Fig. 7 is a graph showing the frequency dependence of the threshold voltage for starting molecular alignment of the liquid crystal element, and Fig. 8 is a graph showing the frequency dependence of the threshold voltage for starting molecular alignment of the liquid crystal element. 9 is a voltage waveform diagram for explaining the operation of the circuit shown in FIG. 5.
FIG. 10, which is a graph showing the operating points of the liquid crystal element during operation of the circuit shown in the figure, is a perspective view showing a liquid crystal display element used in another embodiment of the present invention.

41・・・・・・発振回路用演算増幅器、45・・…・
コンデンサ用液晶素子、Q,3,y・・・・・・液晶素
子の動作点。
41... Operational amplifier for oscillation circuit, 45...
Liquid crystal element for capacitor, Q, 3, y... Operating point of liquid crystal element.

群l図 繁2図 第3図 第4図 第6図 第5図 第7図 第8図 解?図 努′0図group l diagram Traditional 2 illustrations Figure 3 Figure 4 Figure 6 Figure 5 Figure 7 Figure 8 Solution? figure Tsutomu'0 figure

Claims (1)

【特許請求の範囲】 1 発振出力の周波数の変化に対応して周波数が変化し
且つ平均値が実質的にゼロである交流電圧が両端に印加
される発振周波数決定用コンデンサをそなえた発振回路
を設け、前記コンデンサに接近又は接触する被検知対象
物の存在を前記発振回路における発振周波数の変化とし
て検知するようにした近接対象検知方式において、一対
の電極間に液晶材料を充填して成る液晶素子を前記コン
デンサとして接続し、前記被検知対象物の接近又は接触
がないとき前記液晶材料中の分子配向の変化が生じない
ように前記液晶素子の印加電圧及びその周波数を規定し
、前記被検知対象物の接近又は接触があるとき前記液晶
材料中の分子配向の変化が生じ且つその変化が自己保持
されるように前記液晶素子の印加電圧及びその周波数を
規定したことを特徴とする近接対象検知装置。 2 特許請求の範囲第1項に記載の近接対象検知装置に
おいて、前記液晶素子をその分子配向の変化が外部から
光学的に識別可能なように構成することにより前記液晶
素子に前記発振周波数の変化を可視表示させるようにし
たことを特徴とする近接対象検知装置。
[Scope of Claims] 1. An oscillation circuit equipped with an oscillation frequency determining capacitor to which an AC voltage whose frequency changes in response to changes in the frequency of the oscillation output and whose average value is substantially zero is applied. A liquid crystal element comprising a liquid crystal material filled between a pair of electrodes in a close object detection method in which the presence of an object to be detected approaching or touching the capacitor is detected as a change in the oscillation frequency in the oscillation circuit. is connected as the capacitor, the voltage applied to the liquid crystal element and its frequency are defined so that the molecular orientation in the liquid crystal material does not change when there is no approach or contact with the object to be detected, and A nearby object detection device, characterized in that the voltage applied to the liquid crystal element and its frequency are regulated so that when an object approaches or comes into contact with it, a change in molecular orientation in the liquid crystal material occurs and the change is self-maintained. . 2. In the proximity object detection device according to claim 1, the change in the oscillation frequency is caused in the liquid crystal element by configuring the liquid crystal element so that a change in its molecular orientation can be optically discerned from the outside. A nearby object detection device characterized by visually displaying.
JP52056848A 1977-05-17 1977-05-17 Proximity detection device Expired JPS6013525B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52056848A JPS6013525B2 (en) 1977-05-17 1977-05-17 Proximity detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52056848A JPS6013525B2 (en) 1977-05-17 1977-05-17 Proximity detection device

Publications (2)

Publication Number Publication Date
JPS53141504A JPS53141504A (en) 1978-12-09
JPS6013525B2 true JPS6013525B2 (en) 1985-04-08

Family

ID=13038827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52056848A Expired JPS6013525B2 (en) 1977-05-17 1977-05-17 Proximity detection device

Country Status (1)

Country Link
JP (1) JPS6013525B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0318511U (en) * 1989-07-03 1991-02-22

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5889737A (en) * 1981-11-16 1983-05-28 イギリス国 Finger contact sensitive switch

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0318511U (en) * 1989-07-03 1991-02-22

Also Published As

Publication number Publication date
JPS53141504A (en) 1978-12-09

Similar Documents

Publication Publication Date Title
JP3889874B2 (en) Circuit structure of sensor element
KR910003911A (en) Crystal oscillator with temperature compensation of frequency characteristics
JPH03289715A (en) Capacity change detector and touch panel using same
JPS6013525B2 (en) Proximity detection device
JP3044938B2 (en) Capacitive displacement sensor
US3614651A (en) External control of variable frequency oscillator
JPH0243368B2 (en)
JPH08201537A (en) Hand-position detection device of wristwatch
JPH0246088Y2 (en)
CA2038967A1 (en) Crystal oscillator for use in timepiece of battery-powered portable apparatus
JPS6232490B2 (en)
GB1506256A (en) Temperature sensitive switch
JPH0410982B2 (en)
GB2036330A (en) Circuit arrangement for operating a touch control
GB2241064A (en) Touch sensitive device
EP1077367A4 (en) Capacitive force gauge
JPS58146132A (en) Touch detector
US3958230A (en) Arrangement including a piezo-ferroelectric body
JP3296285B2 (en) Oscillator with oscillation start circuit
KR910000531Y1 (en) Vertical magnitude compensating circuit
JPS55134505A (en) Crystal oscillating circuit
JP2606706B2 (en) Semiconductor checker
JPS6488497A (en) Liquid crystal display device
US3991410A (en) Analog storage circuit including a piezoelectric element
JPH0810156B2 (en) Weight detector