JPS60134793A - Positioning controller - Google Patents

Positioning controller

Info

Publication number
JPS60134793A
JPS60134793A JP58242471A JP24247183A JPS60134793A JP S60134793 A JPS60134793 A JP S60134793A JP 58242471 A JP58242471 A JP 58242471A JP 24247183 A JP24247183 A JP 24247183A JP S60134793 A JPS60134793 A JP S60134793A
Authority
JP
Japan
Prior art keywords
speed
movable element
section
mover
error
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58242471A
Other languages
Japanese (ja)
Inventor
Hiroyasu Kitayama
北山 博保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58242471A priority Critical patent/JPS60134793A/en
Publication of JPS60134793A publication Critical patent/JPS60134793A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/19Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
    • G05B19/33Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an analogue measuring device
    • G05B19/35Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an analogue measuring device for point-to-point control
    • G05B19/351Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an analogue measuring device for point-to-point control the positional error is used to control continuously the servomotor according to its magnitude
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37462Resistor, potentiometers
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/41Servomotor, servo controller till figures
    • G05B2219/41021Variable gain
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/41Servomotor, servo controller till figures
    • G05B2219/41337Linear drive motor, voice coil

Abstract

PURPOSE:To perform the positioning control system of a linear motor having stable and high speed servo properties by switching the gain of an error amplifier between the case that a linear motor movable element is moved at the prescribed speed and the case that the element is moved at more than the prescribed speed. CONSTITUTION:A speed command signal in response to an error between a position command applied from a point P2 and a signal of a potentiometer 41 and a speed feedback signal are differentially compared at an addition point 28, and amplified by K1 and K2 times by error amplifiers 29, 30, respectively. The output of error amplifiers 29, 30 are fed through a switch 31 and a voltage/current converter 33 to a current controller 34. The switch 31 is shifted to the K1 side when the speed of the movable element of a linear motor is the prescribed speed or higher set by a level detector 32, and to the K2 side when the speed is the prescribed speed or lower set by the detector 32.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はリニアサーボモーターにおける高精度な位置決
め制御に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to highly accurate positioning control in a linear servo motor.

従来例の構成とその問題点 第1図は従来例のブラシレスリニアサーボモーターの機
構部の構成例である。固定子1は長手方向(可動子移動
方向)に一定ピツチで磁性体よりなる多数の歯状凹凸(
これを以後磁極歯と称する)2を有している。3は可動
子であり、この可動子3は可動子移動方向と直角の両方
向に着磁された永久磁石4と、これを両側から挾むよう
に積層された2個の継鉄6,7と、との継鉄に巻装され
た3相3個のコイル8a、 8b、 8oど、前記継鉄
の固定子対向面にきさまれだ3群の磁極歯群5a、 5
b。
1. Structure of a conventional example and its problems FIG. 1 shows an example of the structure of a mechanical part of a conventional brushless linear servo motor. The stator 1 has a large number of tooth-shaped irregularities (concave and convex) made of magnetic material at a constant pitch in the longitudinal direction (movement direction of the mover).
These are hereinafter referred to as magnetic pole teeth) 2. 3 is a mover, and this mover 3 includes a permanent magnet 4 magnetized in both directions perpendicular to the moving direction of the mover, and two yokes 6 and 7 stacked to sandwich this from both sides. Three three-phase three-phase coils 8a, 8b, 8o are wound around a yoke, and three groups of magnetic pole teeth 5a, 5 are arranged on the stator facing surface of the yoke.
b.

5と、無接点位置検出センサ9と、固定子1及び可動子
3との間の僅かガ空隙を一定に維持しかつ可動子を滑ら
かに案内する手段とから構成される装との従来例では固
定子1にきざまれだ磁極歯2は一定のピンチでその長手
方向に多数個設けられているのに対し、可動子側継鉄6
,7にきざまれだ磁極歯は合計6群あり、その同一群内
の磁極歯ピッチは固定子ピッチと等しいが、異なる群間
ではすべて位相が異なるようにきざまれでいる。具体的
には、継鉄7の磁極歯群5a、 5b、 5oは互いに
120度ずつ位相が異なり、丑た継鉄7の磁極図群と隣
接する継鉄6の磁極歯群はそれぞれ180度位相差をも
っている。コイル8a、 8b、 8oはいずれも継鉄
6,7に寸だがって巻装されている。
5, a non-contact position detection sensor 9, and a means for maintaining a constant slight gap between the stator 1 and the movable element 3 and smoothly guiding the movable element. On the stator 1, a large number of knurled magnetic pole teeth 2 are provided in the longitudinal direction with a certain pinch, whereas the movable side yoke 6
, 7. There are a total of six groups of magnetic pole teeth, and the pitch of the magnetic pole teeth within the same group is equal to the pitch of the stator, but the pitches are so arranged that the phases of all the different groups are different. Specifically, the magnetic pole tooth groups 5a, 5b, and 5o of the yoke 7 have a phase difference of 120 degrees from each other, and the magnetic pole tooth group of the yoke 7 and the adjacent magnetic pole tooth group of the yoke 6 each have a phase difference of about 180 degrees. There is a difference. The coils 8a, 8b, and 8o are all wound around the yokes 6 and 7 to their full dimensions.

この3相3個のコイルに順次電流を付勢すれば可動子を
固定子の上でその長手方向に移動させることができる。
By sequentially applying current to the three three-phase coils, the movable element can be moved in the longitudinal direction on the stator.

特に前記無接点位置検出センサ9からの位置情報に従っ
て電子的にコイルを順次付勢すれば滑らか、かつ連続的
に移動させることができる。
In particular, if the coils are sequentially energized electronically according to the position information from the non-contact position detection sensor 9, smooth and continuous movement can be achieved.

第2図は上記ブラシレスリニアDCサーボモーターを使
用して位置決め制御を行々う場合の制御回路のブロック
ダイヤグラムである。1○のPlより与えられた位置指
令と20のリニアモーター可動子の現在位置を認識する
だめのポテンショ23の信号は、11の加算点で差分比
較され、その偏差分を12のディジタル、アナログ変換
器でD/A変換する。そしてその出力である速度指令信
号と24のリニアモーター可動子の速度を検出する速度
検出器出力である速度フィードバック信号は、13の加
算点で差分比較される。そしてまたその出力は14の誤
差増幅器でに倍され、15の電圧電流変換器で電流指令
に変換される。
FIG. 2 is a block diagram of a control circuit when positioning control is performed using the brushless linear DC servo motor. The position command given by the Pl of 1○ and the signal of the potentiometer 23 that recognizes the current position of the linear motor mover of 20 are compared at the addition point of 11, and the deviation is converted into digital and analog converters of 12. D/A conversion is performed using a device. The speed command signal that is the output thereof and the speed feedback signal that is the output of the speed detector that detects the speed of the 24 linear motor movers are compared for differences at 13 addition points. The output is then multiplied by 14 error amplifiers and converted into a current command by 15 voltage-current converters.

16は電流制御回路部であり21の無接点位置検出セン
サの信号にもとづいて19a、 19b、 19゜の可
動子コイルに流れる電流を順次切替ながら18の電流検
出器と17のパルス幅変調回路(PWM回路)とにより
電流制御を行ないリニアモーターの推力を制御する。2
2はリニアモーターの固定子である。リニアモーターは
可動子の位置が10のPl に与えられた指令位置と等
しくなるまで移動し位置決めを完了するとそこでサーボ
ロック状態となる。ところが上記構成のリニアサーボモ
ーターは磁極歯のピッチを小さくして、可動子移動時の
コギング力(磁気回路の吸引、反発による推力の脈動)
を少なくするようにしなければなら々い。つ甘り精度の
高い安定々位置決めを行なうにはコギング力が悪影響を
与えるためである。そのだめ上記リニアモーターは前記
磁極歯ピッチが小さいだめ超多極モーターとなる。超多
極になると可動子か高速で移動する場合は可動子コイル
に流れる電流の切替も高速になり、つ捷り電流の切替周
波数、−磁気回路の交番周波数は高くなる、その結果第
31ン1に示されるように、一定電流で駆動してもリニ
アモーターの推力CF(N))−速度[IV(m/S)
]特性は、速度が高くなるに従って急減に推力か低下す
る。なお、このとき1は一定である。この原因C1、[
)1J記磁気回路の交番周波数アップによる鉄損と、コ
イルの電流切替周波数アップによるコイル電気時定数の
影響等が考えられる。第3図より電流当ノコリの推力、
つ寸り推力定数は速度の関数となり、この特性の一1捷
第2図の位置決め制御回路を構成しフ乙場合に可動子移
動時の領域および可動子停止時のサーボロック状態等の
全領域にわたって系の安定性を確保するには制御が複雑
となる。
Reference numeral 16 denotes a current control circuit unit which sequentially switches the current flowing through the movable coils 19a, 19b, and 19° based on the signal from the non-contact position detection sensor 21, and operates the current detector 18 and the pulse width modulation circuit 17 ( (PWM circuit) to control the current and control the thrust of the linear motor. 2
2 is a stator of the linear motor. The linear motor moves until the position of the movable element becomes equal to the command position given to Pl of 10, and when the positioning is completed, the servo lock state is reached. However, in the linear servo motor with the above configuration, the pitch of the magnetic pole teeth is reduced, and the cogging force (pulsation of thrust due to attraction and repulsion of the magnetic circuit) occurs when the mover moves.
We have to try to reduce it. This is because the cogging force has an adverse effect on stable positioning with high accuracy. Therefore, the above-mentioned linear motor becomes a super multi-pole motor because the pitch of the magnetic pole teeth is small. When the movable element moves at high speed, the switching of the current flowing through the movable element coil also becomes faster, and the switching frequency of the switching current and the alternating frequency of the magnetic circuit become higher.As a result, the 31st pin 1, even when driven with a constant current, the linear motor thrust CF (N)) - Speed [IV (m/S)
] The characteristic is that as the speed increases, the thrust rapidly decreases. Note that 1 is constant at this time. This cause C1, [
) 1J The effects of iron loss due to an increase in the alternating frequency of the magnetic circuit and the influence of the coil electrical time constant due to an increase in the current switching frequency of the coil can be considered. From Fig. 3, the thrust of the current saw,
The thrust constant is a function of speed, and this characteristic is used to configure the positioning control circuit shown in Figure 2. In the case of configuring the positioning control circuit shown in Figure 2, the entire range including the area when the mover is moving and the servo lock state when the mover is stopped. Control is complicated to ensure system stability over a long period of time.

発明の目的 本発明は上記欠点を改良し安定な位置決め制御を提供す
るものである。
OBJECTS OF THE INVENTION The present invention improves the above-mentioned drawbacks and provides stable positioning control.

発明の構成 本発明は目標位置指令とブラシレスリニアDCサーボモ
ーター可動子の現在位置を比較する位置偏差検出部と、
前記位置偏差検出部の出力と可動子速度電圧とを比較す
る速度偏差検出部と前記速度偏差検出部の出力を増幅す
る誤差増幅部と前記誤差増幅部の出力によりブラシレス
リニアDCザーボモーターを、駆動する、駆動回路部か
らなり、リニアモーター可動子が停止中、才たけ所定の
速度以下の場合と、可動子が所定の速度を越えて加減速
捷たは移動中の場合とで前記誤差増幅部のゲインを2段
階に切り替えることがら々るブラシレスリニアDCザー
ボモーターの位置決め制御装置に関するものでリニアD
Cザーボモーター可動子が停止中、寸たけ所定の速度以
下の場合は前記誤差増幅部のゲインを低めに設定し、捷
だ可動子が所定の速度を越えて加減速または移動中の場
合は前記誤差増幅部のゲインを高めに設定することによ
り、リニアDCサーボモーター可動子の加減速まだは移
動中は連応性の高い安定なサーボ性を発揮し、寸だ可動
子が停止中または所定の速度以下では安定な位置決め動
作を確保することができその実用的価値は高い。
Structure of the Invention The present invention includes a position deviation detection unit that compares a target position command with a current position of a brushless linear DC servo motor mover;
A speed deviation detection unit that compares the output of the position deviation detection unit and a movable element speed voltage, an error amplification unit that amplifies the output of the speed deviation detection unit, and a brushless linear DC servo motor is driven by the output of the error amplification unit. , a drive circuit section, and the error amplification section operates when the linear motor movable element is stopped and the speed is below a predetermined speed, and when the movable element is accelerating, decelerating, or moving beyond a predetermined speed. Linear D is related to the positioning control device for brushless linear DC servo motors that can switch the gain in two stages.
When the C servo motor mover is stopped and the speed is less than the predetermined speed, the gain of the error amplification section is set to a low value, and when the servo motor mover is accelerating, decelerating, or moving beyond the predetermined speed, the error is increased. By setting the gain of the amplification section to be high, the linear DC servo motor exhibits stable servo performance with high coordination during acceleration and deceleration of the mover while it is still moving, and even when the mover is at rest or below a predetermined speed. It is possible to ensure stable positioning operation, and its practical value is high.

実施例の説明 以下本発明の一実施例について図面を参照しながら説明
する。第4図は本発明の一実施例における制御回路のブ
ロックダイヤグラムである。25のP2 より力えられ
た位置指令と38のリニアモーター可動子の現在位置を
認識するためのポテンショ41の信号は26の加算点で
差分比較され、その誤差分を27のディジタル、アナロ
グ変換器でD/A変換する。そしてその出力である速度
指令信号と42のリニアモーター可動子の速度を検出す
る速度検出器出力である速度フィードバック信号は、2
8の加算点で差分比較され、その出力は29.3○の誤
差増幅器でに1、K2倍にそれぞれ増幅される。K1、
K2の増幅率は〔K2〈K1〕の関係に設定しである、
K1、K2の出力は31のスイッチの入力にそれぞれ接
続され31のスイッチの切替は32のレベル検出器の出
力により制御される。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 4 is a block diagram of a control circuit in one embodiment of the present invention. The position command given by P2 of 25 and the signal of the potentiometer 41 for recognizing the current position of the linear motor movable element of 38 are compared at the addition point of 26, and the error is calculated by the digital/analog converter of 27. Perform D/A conversion. The speed command signal that is the output and the speed feedback signal that is the speed detector output that detects the speed of the 42 linear motor movers are 2
The difference is compared at 8 addition points, and the output is amplified by 1 and K2 times by a 29.3° error amplifier, respectively. K1,
The amplification factor of K2 is set to the relationship [K2<K1],
The outputs of K1 and K2 are connected to the inputs of the switches 31, respectively, and the switching of the switches 31 is controlled by the output of the level detector 32.

スイッチ31の出力は33の電圧電流変換器で電流指令
に変換され34の電流制御回路部に送出される。37a
、 37b、 37oの可動子コイルに流れる電流は3
9のコイル電流切替用無接点位置検出センサの信号にも
とづいて35のパレス幅変調回路(PWM回路)と36
の電流検出器、34の電流制御回路部で順次切替ながら
電流制御され推力を制御する。4oはリニアモーターの
固定子部である。今25のP2に位置指令が与えられる
と、リニアモーター可動子は加速を始める。そして32
のレベル検出器で設定された所定の速度を越えると31
のスイッチは30のに2から29のに1に切替わる。2
9のに1 は系の許容可能な高い増幅率に設定しである
ためリニアモーター可動子はフルパワーで加速し高速な
サーボ性を発揮する。そして目標位置に近づくと所定の
減速カーブにもとづき可動子はフルパワーで減速を始め
る。
The output of the switch 31 is converted into a current command by a voltage-current converter 33 and sent to a current control circuit section 34. 37a
The current flowing through the mover coils of , 37b and 37o is 3
35 pulse width modulation circuits (PWM circuits) and 36
A current detector 34 and a current control circuit section 34 sequentially switch the current to control the thrust. 4o is a stator portion of the linear motor. Now, when a position command is given to P2 of 25, the linear motor mover starts accelerating. and 32
31 when the speed exceeds the predetermined speed set by the level detector.
The switch changes from 2 at 30 to 1 at 29. 2
Since 1 of 9 is set to a high amplification factor that is allowable for the system, the linear motor mover accelerates with full power and exhibits high-speed servo performance. When the target position is approached, the mover starts to decelerate at full power based on a predetermined deceleration curve.

次に可動子速度が32のレベル検出器で設定さJzだ所
定の速度以下になると前記31のスイッチが3oのに2
に切替わり目標位置で可動子は停止しザーボロノク状態
と々る。300に2はサーボロック時の要求されるサー
ボ剛性(外力に対する可動子の反力)を満たすだけの比
較的低い増幅率に々るように設定しである。このように
可動子速度か所定の速度以上では系の増幅率を高くして
フルパワーで高ザーボ性を達成し、可動子が位置決め完
了領域刊近、または位置決め完了後は必要最小限の増幅
率にすることにより、前記第3図で示される速度に対す
る推力定数の変化の影響を受けない安定な位置決め制御
系を達成できる。
Next, when the speed of the movable element is set by the level detector 32 and becomes lower than the predetermined speed, the switch 31 switches from 3o to 2.
The movable element stops at the target position and returns to the automatic state. 300 and 2 are set to a relatively low amplification factor that satisfies the servo rigidity (reaction force of the movable element against external force) required at the time of servo lock. In this way, when the mover speed exceeds a predetermined speed, the amplification factor of the system is increased to achieve high servo performance with full power, and when the mover is nearing the positioning completion area or after the positioning is completed, the amplification factor is reduced to the minimum necessary. By doing so, it is possible to achieve a stable positioning control system that is not affected by the change in the thrust constant with respect to the speed shown in FIG.

捷だ本実施例では系の増幅率を29.30のに1゜K2
の2段階で構成した場合について説明したが、必要に応
じて切替段階数を増やしていけば、より最適庁制御系を
構成できることは言うまでもない。
In this example, the amplification factor of the system was set to 1°K2 to 29.30.
Although the case where the system is configured with two stages has been described, it goes without saying that by increasing the number of switching stages as necessary, a more optimal agency control system can be constructed.

なお実施例説明中の31のスイッチは、アナログスイッ
チ等の高速電子スイッチを用いる必要がある。
Note that it is necessary to use high-speed electronic switches such as analog switches for the 31 switches in the description of the embodiment.

発明の効果 以−ヒのように本発明は目標位置指令とブラシレスリニ
アDCサーボモーター可動子の現在位置を比較する位置
偏差検出部と、前記位置偏差検出部の出力と可動子速度
電圧とを比較する速度偏差検出部と前記速度偏差検出部
の出力を増幅する誤差増幅部と前記誤差増幅部の出力に
よりブラシレスリニアDCサーボモーターを駆動する駆
動回路部からなり、リニアモーター可動子が停止中、ま
たは所定の速度以下の場合と、可動子が所定の速度を越
えて加減速捷たは移動中の場合とで前記誤差増幅部のケ
インを2段階に切り替えることからなるブラシレスDC
リニアザーボモーターの位置決め制御装置に関しリニア
DCサーボモーター可動子が停止中、または所定の速度
以下の場合は前記誤差増幅部のゲインを低めに設定し、
まだ可動子が所定の速度を越えて加減速捷たけ移動中の
場合は前記誤差増幅部のゲインを高めに設定することか
らなる位置決め制御装置であり、リニアモーター可動子
速度が所定の速度以上では系の増幅率を高め、高速ザー
ボ性を達成し、寸だ可動子が位置決め完了領域付近まだ
は位置決め完了後は必要最低限の値に系の増幅率を切替
えることにより、超多極モーターにみられる、推力定数
の速度に対する変化の影響を受け々い、安定で高速ザー
ボ性を有するリニアモーターの位置決め制御系を達成で
きその実用的価値は犬なるものがある。
Effects of the Invention As described above, the present invention includes a position deviation detection section that compares a target position command and the current position of the brushless linear DC servo motor mover, and a comparison between the output of the position deviation detection section and the mover speed voltage. a speed deviation detection section that amplifies the output of the speed deviation detection section, an error amplification section that amplifies the output of the speed deviation detection section, and a drive circuit section that drives a brushless linear DC servo motor using the output of the error amplification section, and when the linear motor mover is stopped or A brushless DC switch that switches the cane of the error amplifying section into two stages depending on when the speed is below a predetermined speed and when the mover is accelerating, decelerating, or moving beyond a predetermined speed.
Regarding the positioning control device for the linear servo motor, when the linear DC servo motor movable element is stopped or the speed is below a predetermined speed, the gain of the error amplification section is set to a low value,
This positioning control device sets the gain of the error amplifying section to a high value when the movable element is still accelerating or decelerating beyond a predetermined speed, and when the linear motor movable element speed exceeds a predetermined speed. By increasing the system amplification factor, achieving high-speed servo performance, and switching the system amplification factor to the minimum necessary value after the positioning is completed, even if the movable element is near the positioning completion area, it is possible to achieve high-speed servo performance. It is possible to achieve a positioning control system for a linear motor that is not affected by changes in the speed of the thrust constant and has stable and high-speed servo performance, and has great practical value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はブラシレスリニアDCザーボモーターの機+f
砦slsの斜視図、第2図は従来のリニアDCサーボモ
ーター制御系のブロック図、第3図はリニアモータ−タ
ーの推力−速度特性図、第4図は本発明の一実施例にお
ける制御系のブロック図である。 2了 ・・D/A変換器、29,3○ ・・・誤差増幅
器、31・・・スイッチ、32・・・・・速度レベル検
出器、33・・・電圧電流変換器、38・・・・・リニ
アモーター可動子、39・・・・コイル電流切替用位置
検出センザ、4o・・・・リニアモーター固定子、41
・・・・ポテンショ、42・・・・・・速度検出器。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 第 3 (資) F(N) 第 4 □□□
Figure 1 shows a brushless linear DC servo motor machine +f
A perspective view of the fort SLS, Fig. 2 is a block diagram of a conventional linear DC servo motor control system, Fig. 3 is a thrust-speed characteristic diagram of the linear motor, and Fig. 4 is a control system in an embodiment of the present invention. FIG. 2 completed...D/A converter, 29, 3○...Error amplifier, 31...Switch, 32...Speed level detector, 33...Voltage-current converter, 38... ... Linear motor mover, 39 ... Position detection sensor for coil current switching, 4o ... Linear motor stator, 41
... Potentiometer, 42 ... Speed detector. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 No. 3 (Capital) F (N) No. 4 □□□

Claims (2)

【特許請求の範囲】[Claims] (1) 目標位置指令とブラシレスリニアDCサーボモ
ーター可動子の現在位置を比較する位置偏差検出部と、
前記位置偏差検出部の出力と可動子速度電圧とを比較す
る速度偏差検出部と、前記速度偏差検出部の出力を増幅
する誤差増幅部と、前記誤差増幅部の出力によりブラシ
レスリニアDCサーボモーターを駆動する駆動回路部か
ら々LIJニアモーター可動子が停止中、または所定の
速度以下の場合と、可動子が所定の速度を越えて加減速
捷たは移動中の場合とで前記誤差増幅部のゲインを2段
階に切り替えるよう構成された位置決め制御装置。
(1) a position deviation detection unit that compares the target position command and the current position of the brushless linear DC servo motor mover;
a speed deviation detection section that compares the output of the position deviation detection section and a movable element speed voltage; an error amplification section that amplifies the output of the speed deviation detection section; and a brushless linear DC servo motor based on the output of the error amplification section. When the LIJ near motor movable element is stopped or below a predetermined speed from the drive circuit section that drives it, and when the movable element is accelerating, decelerating, or moving beyond a predetermined speed, the error amplification section A positioning control device configured to switch gain in two stages.
(2)、IJ ニアDCサーボモーター可動子が停止中
、またけ所定の速度以下の場合は前記誤差増幅部のゲイ
ンを低めに設定し、寸だ可動子が所定の速度を越えて加
減速まだは移動中の場合は前記誤差増幅部のゲインを高
めに設定することからなる、特許請求の範囲第1項記載
の位置決め制御装置。
(2) When the IJ near DC servo motor mover is stopped and the speed is below the predetermined speed, set the gain of the error amplification section to a low value, and if the mover exceeds the predetermined speed and the speed is still 2. The positioning control device according to claim 1, wherein the gain of the error amplifying section is set to be high when the device is moving.
JP58242471A 1983-12-21 1983-12-21 Positioning controller Pending JPS60134793A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58242471A JPS60134793A (en) 1983-12-21 1983-12-21 Positioning controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58242471A JPS60134793A (en) 1983-12-21 1983-12-21 Positioning controller

Publications (1)

Publication Number Publication Date
JPS60134793A true JPS60134793A (en) 1985-07-18

Family

ID=17089572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58242471A Pending JPS60134793A (en) 1983-12-21 1983-12-21 Positioning controller

Country Status (1)

Country Link
JP (1) JPS60134793A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4808901A (en) * 1986-12-19 1989-02-28 Tokyo Electric Co., Ltd. Control apparatus for linear motor
JPH0199486A (en) * 1987-10-12 1989-04-18 Pioneer Electron Corp Linear motor controller for pick-up driving

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58165679A (en) * 1982-03-24 1983-09-30 Matsushita Electric Ind Co Ltd Controller for linear servo motor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58165679A (en) * 1982-03-24 1983-09-30 Matsushita Electric Ind Co Ltd Controller for linear servo motor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4808901A (en) * 1986-12-19 1989-02-28 Tokyo Electric Co., Ltd. Control apparatus for linear motor
JPH0199486A (en) * 1987-10-12 1989-04-18 Pioneer Electron Corp Linear motor controller for pick-up driving

Similar Documents

Publication Publication Date Title
US4912746A (en) Linear DC brushless motor
JPS61161952A (en) 3-phase linear inductor type motor
Rafael et al. Sliding mode angular position control for an 8/6 switched reluctance machine: Theoretical concept, design and experimental results
CN112335161B (en) Linear motor holder, linear motor, and linear motor system
JPS60134793A (en) Positioning controller
JP3468123B2 (en) Servo motor controller
JP2785406B2 (en) Linear servo motor
JPS5812592A (en) Drive device using pulse motor
JPS6110468Y2 (en)
JPH03169253A (en) Alternating current linear servomotor
JPS59122359A (en) Dc linear motor with dc generator
JPS6098864A (en) Brushless linear servo motor
JP2005245108A (en) Linear motor
JP3486499B2 (en) Brushless motor and positioning table device using the same
JPH0469037A (en) Motor incorporating position detector
US20230291294A1 (en) Motor Assembly for Linear Direct-Drive Motor
Zarri et al. Control of a multi-motor drive based on five-phase tubular PM actuators for positioning systems
JPH0315418B2 (en)
JP2531408B2 (en) Stepping motor
JPS61277362A (en) Three-phase linear inductor type synchronous motor
JPS63294286A (en) Driving method for actuator
Pestana et al. High-Grade Position Control of a Linear Switched Reluctance Actuator based in Direct Instantaneous Force Control
Bolognesi et al. Control of an unconventional rotary-linear brushless machine
JPS61124294A (en) Controller of linear servo motor
JPH0423510B2 (en)