JPS6013477B2 - Method for manufacturing fuel cladding for nuclear reactors - Google Patents

Method for manufacturing fuel cladding for nuclear reactors

Info

Publication number
JPS6013477B2
JPS6013477B2 JP53149631A JP14963178A JPS6013477B2 JP S6013477 B2 JPS6013477 B2 JP S6013477B2 JP 53149631 A JP53149631 A JP 53149631A JP 14963178 A JP14963178 A JP 14963178A JP S6013477 B2 JPS6013477 B2 JP S6013477B2
Authority
JP
Japan
Prior art keywords
layer
zirconium alloy
steel
copper
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53149631A
Other languages
Japanese (ja)
Other versions
JPS5575688A (en
Inventor
一雄 鈴木
鉄雄 藤原
三則 吉本
満晴 萩原
洋 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP53149631A priority Critical patent/JPS6013477B2/en
Publication of JPS5575688A publication Critical patent/JPS5575688A/en
Publication of JPS6013477B2 publication Critical patent/JPS6013477B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Chemically Coating (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

【発明の詳細な説明】 本発明は、燃料べレットとの機械的相互作用(Pell
et/CladInteraction、以下「PCI
作用Jと略記する)を緩和できる原子炉用燃料被覆管の
製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides mechanical interaction with fuel pellets.
et/CladInteraction, hereinafter “PCI
The present invention relates to a method for manufacturing a fuel cladding tube for a nuclear reactor that can alleviate the effects (abbreviated as J).

従来は軽水炉においては核燃、料としては二酸化ウラン
(U02)暁結体が用いられ、該凝結体を被覆する管と
して耐食性、中性子吸収断面積、高温強度などの点で優
れたジルコニウム合金(例えばジルカロィ−2又は−4
)の薄肉管が使用されているが、燃料と被覆管との間の
間隙は熱伝導を良くするため(原子炉全体の熱効率に関
係する)数百ムmと極めて小さい。
Conventionally, uranium dioxide (U02) aggregates have been used as nuclear fuel in light water reactors, and zirconium alloys (such as zircaloy), which have excellent corrosion resistance, neutron absorption cross-section, and high-temperature strength, have been used to coat the aggregates. -2 or -4
) thin-walled tubes are used, but the gap between the fuel and the cladding tube is extremely small, several hundred mm, in order to improve heat conduction (related to the thermal efficiency of the entire reactor).

このため、たとえば原子炉を急速に作動させる場合には
、燃料べレットの熱膨暖によりPCI作用現象を生じや
すく、その結果ジルコニウム合金被覆管の破壊事故も予
測されるので、その改善策が望まれていた。又燃料の燃
鱗にともなって生ずるヨウ素ら、カドミウムCdなどの
核分裂生成ガスが燃料榛内に蓄積され、PCI作用を生
じるときは、被覆管はヨウ素などによる侵食およびPC
I作用による応力のために応力腐食割れなどを生ずるお
それがある。前記の不都合な点を改善する方策としてP
CI作用を緩和し、ヨウ素、カドミウムなどのガス体が
直接に被覆管に接触することを避け、被覆管の応力腐食
割れを防止するために軟資金属たとえば純鋼、純ジルコ
ニウムなどの層をジルコニウム合金製管内面に形成した
バリア管がある。
For this reason, for example, when a nuclear reactor is operated rapidly, thermal expansion of the fuel pellets tends to cause PCI effects, and as a result, failure of the zirconium alloy cladding is predicted, so measures to improve this are desirable. It was rare. In addition, when nuclear fission gases such as iodine and cadmium Cd generated as the fuel burns accumulate in the fuel rays and cause PCI effects, the cladding tube is subject to erosion by iodine and PCI.
There is a risk that stress corrosion cracking may occur due to the stress caused by the I action. As a measure to improve the above disadvantages, P
In order to alleviate the CI effect, to avoid direct contact of gases such as iodine and cadmium to the cladding tube, and to prevent stress corrosion cracking of the cladding tube, a layer of soft metal such as pure steel or pure zirconium is coated with zirconium. There is a barrier tube formed on the inner surface of an alloy tube.

しかし、鋼バリア管の場合銅とジルコニウム合金とは7
00℃以上の高温では比較的拡散しやすく「銅−ジルコ
ニウム二元合金を主体とした種々の金属間化合物を銅バ
リア管とジルコニウム合金との界面で形成し、腕化する
ためPCI作用現象の緩和効果は低減するという問題が
予測される。本発明は前記銅バリア管の高温における拡
散現象を防止し、自らは腕化せず、核燃料との化学反応
や、機械的な作用によるPCI作用現象を恒久的に緩和
し得るジルコニウム合金製被覆管の製造方法の提供を目
的とする。
However, in the case of steel barrier pipes, copper and zirconium alloy are 7
At high temperatures of 00°C or higher, it is relatively easy to diffuse. "Various intermetallic compounds mainly composed of copper-zirconium binary alloy are formed at the interface between the copper barrier tube and the zirconium alloy and form arms, which alleviates the PCI effect phenomenon. The problem is predicted that the effectiveness will be reduced.The present invention prevents the diffusion phenomenon of the copper barrier tube at high temperature, does not become an arm by itself, and prevents the PCI action phenomenon due to chemical reaction with nuclear fuel or mechanical action. The object of the present invention is to provide a method for manufacturing a zirconium alloy cladding tube that can be permanently relaxed.

すなわち、本発明の原子炉用被覆管の製造方法は、ジル
コニウム合金製管の内側面上に鋼層を形成する工程;及
び、該ジルコニウム合金と該碗層との界面において、該
ジルコニウム合金を酸化して酸化物層を形成する工程;
とから成ることを特徴とする。
That is, the method for manufacturing a nuclear reactor cladding tube of the present invention includes the steps of: forming a steel layer on the inner surface of a zirconium alloy tube; and oxidizing the zirconium alloy at the interface between the zirconium alloy and the bowl layer. forming an oxide layer;
It is characterized by consisting of.

本発明方法で製造した燃料被覆管を用いた燃料棒につき
、第1図に則して説明する。
A fuel rod using a fuel cladding tube manufactured by the method of the present invention will be explained with reference to FIG.

燃料被覆管1の上下の両端は、端栓2,3によって気密
に密封され、内部には燃料べレット4が装填されている
。空間5およびべレットと被覆管との空隙にはアルゴン
等のガスが充填されており、燃料べレツトはプレナムス
プリング6により固定されている。燃料被覆管1はその
一部7の拡大図である第2図より明らかなように、ジル
コニウム合金製管21の内面上に酸化物層22が形成さ
れ、更にその酸化物層22の上に銅層23が形成されて
いる。本発明の燃料被覆管の製造方法は、ジルコニウム
合金製管の内面上に銅層を形成後、該ジルコニウム合金
と鋼層の界面においてジルコニウム合金を酸化させて、
酸化物層を形成する方法である。
The upper and lower ends of the fuel cladding tube 1 are hermetically sealed with end plugs 2 and 3, and a fuel pellet 4 is loaded inside. The space 5 and the gap between the pellet and the cladding tube are filled with gas such as argon, and the fuel pellet is fixed by a plenum spring 6. As is clear from FIG. 2, which is an enlarged view of a part 7 of the fuel cladding tube 1, an oxide layer 22 is formed on the inner surface of the zirconium alloy tube 21, and a copper layer is further formed on the oxide layer 22. A layer 23 is formed. The method for manufacturing a fuel cladding tube of the present invention includes forming a copper layer on the inner surface of a zirconium alloy tube, and then oxidizing the zirconium alloy at the interface between the zirconium alloy and the steel layer.
This is a method of forming an oxide layer.

このとき、酸化物層の形成条件としては、酸化鋼の解離
酸素分圧において熱処理を施すとよい。かかる条件にお
いては、鋼層は酸化されず、銅一ジルコニウム合金界面
において、ジルコニウム合金表面を選択的に酸化するこ
とができる。この方法は鋼バリア被覆管にて、高温にお
ける拡散現象を防止するため、ジルコニウム合金製管の
内側表面を銅層と反応しない酸化物層に変質させるもの
である。
At this time, as conditions for forming the oxide layer, it is preferable to perform heat treatment at a dissociated oxygen partial pressure of oxidized steel. Under such conditions, the steel layer is not oxidized, and the zirconium alloy surface can be selectively oxidized at the copper-zirconium alloy interface. In this method, the inner surface of a zirconium alloy tube is transformed into an oxide layer that does not react with the copper layer in order to prevent diffusion phenomena at high temperatures in steel barrier clad tubes.

しかし一方鋼層形成前にジルコニウム合金製管内面を酸
化物層に変質させておくことは銅層との接合強度が不十
分なるので、前記のごとき製造方法が好ましい。更に詳
述すると、まず第1工程としてジルコニウム合金製管の
内面に銅めつき層を形成する。すなわち、ジルコニウム
合金の内面を脱脂、酸洗いにより清浄にし、次いで蟹気
めつき法又は無電鱗めつき(化学めつき)法により鋼め
つき層を形成する。鋼めつき層の厚さは中性子吸収断面
積の点から2〜20仏m程度がよい。電気鋼めつき法と
しては通常の硫酸銅めつき格、ピロリン酸鋼めつき格、
シアン化鋼めつき浴などのいずれにてもよく「又無電解
銅めつきとしては、硫酸銅、ロッセル塩、水酸化ナトリ
ウム「 ホルマリンなどを含有する通常のイヒ学銅めつ
き液でよい。前記の鋼めつきの第1工程に続いて、次の
第2工程を行なう。第2工程は第1工程で得られた鋼め
つき層は酸化せず、銅/ジルコニウム合金界面において
、ジルコニウム合金表面のを選択的に酸化する工程であ
る。すなわち、かかる選択的酸化を行い得る酸素分圧雰
囲気を設定し、熱処理を行う工程である。このため例え
ば銅粉末5礎部と酸化鋼(Cu0,Cu20など)粉末
50部を充分蝿梓混合したのち、燃料被覆管の直径程度
の大きさに3〜5【ノ地の圧力で圧縮成形し酸化剤とす
る。該酸化剤を被覆管とともに真空又は不活性ガス雰囲
気の容器に封入し150〜600℃の温度で0.5〜5
の時間加熱し酸化処理を施す。150℃未満では十分な
酸化物層が得られず又600℃を越えると納めつき層が
剥離し好ましくない。
However, on the other hand, if the inner surface of the zirconium alloy tube is altered into an oxide layer before forming the steel layer, the bonding strength with the copper layer will be insufficient, so the manufacturing method described above is preferred. More specifically, in the first step, a copper plating layer is formed on the inner surface of the zirconium alloy tube. That is, the inner surface of the zirconium alloy is cleaned by degreasing and pickling, and then a steel plating layer is formed by a crab plating method or an electroless scale plating (chemical plating) method. The thickness of the steel plating layer is preferably about 2 to 20 meters from the viewpoint of neutron absorption cross section. Electrical steel plating methods include ordinary copper sulfate plating, pyrophosphate steel plating,
Any of the cyanide steel plating baths may be used.For electroless copper plating, ordinary Ihigaku copper plating solutions containing copper sulfate, Rossel's salt, sodium hydroxide, formalin, etc. may be used. Following the first step of steel plating, the following second step is performed.In the second step, the steel plating layer obtained in the first step is not oxidized, and the zirconium alloy surface is coated at the copper/zirconium alloy interface. This is a step of selectively oxidizing the oxidized steel. That is, it is a step of setting an oxygen partial pressure atmosphere in which such selective oxidation can be carried out and performing heat treatment. For this purpose, for example, the copper powder 5 foundation and oxidized steel (Cu0, Cu20, etc.) are heated. ) 50 parts of the powder is thoroughly mixed with powder, and then compressed into a size approximately the diameter of the fuel cladding tube at a pressure of 3 to 5 mm to form an oxidizing agent. 0.5 to 5 at a temperature of 150 to 600℃ sealed in a container with a gas atmosphere
Heat for a period of time to perform oxidation treatment. If the temperature is lower than 150°C, a sufficient oxide layer cannot be obtained, and if the temperature exceeds 600°C, the deposited layer will peel off, which is not preferable.

該酸化物処理により銅めつき層は酸化されず銅めつき層
とジルコニウム合金との界面に選択酸化によりジルコニ
ウム酸化物を主体とした酸化物層を形成できる。該酸イ
り物層の厚さとしては0.01〜2山mが好ましい。こ
の第1工程、第2工程により被覆管内面は表面より鋼層
、酸イ臼物層、ジルコニウム合金となり、酸化物層を介
在させることにより高温での拡散を防止できるとともに
鋼層の存在によりPCI作用現象も緩和できる。本発明
は前記のごとく高温での拡散を防止してジルコニウム合
金管の腕化を防ぐとともに、鋼層の存在によりPCI作
用を恒久的に緩和できるため、燃料棒の破損およびその
取換えによる動力炉の休止時間も減少し、その経済的効
果は大きい。
By this oxide treatment, the copper plating layer is not oxidized, and an oxide layer mainly composed of zirconium oxide can be formed by selective oxidation at the interface between the copper plating layer and the zirconium alloy. The thickness of the acid oxide layer is preferably 0.01 to 2 m. Through these first and second steps, the inner surface of the cladding tube becomes a steel layer, an oxidized metal layer, and a zirconium alloy from the surface, and the presence of the oxide layer prevents diffusion at high temperatures, and the presence of the steel layer prevents PCI. The effect phenomenon can also be alleviated. As described above, the present invention prevents diffusion at high temperatures and prevents the zirconium alloy tube from becoming arms, and the presence of the steel layer permanently alleviates the PCI effect, so the power reactor downtime is also reduced, and the economic effect is significant.

実施例軽水炉用燃料被覆管として外径12.5胸、管の
肉厚0.8柵、長さ4075脇のジルカロイ−2合金管
の内面へ第1表に示す工程により電気鋼めつきを行なっ
た。
Example As a fuel cladding tube for a light water reactor, electrical steel plating was applied to the inner surface of a Zircaloy-2 alloy tube with an outer diameter of 12.5cm, a tube wall thickness of 0.8cm, and a length of 4075mm by the process shown in Table 1. Ta.

電気鋼めつきは硫酸鋼200夕/そ、硫酸50タノク、
塩素イオン50雌/〆、チオ尿素0.01夕/夕、デキ
ストリン0.01夕/そ浴を用い、陽極に純鋼棒を用い
、電流密度約IA/d〆で25分間電気めつきを行なっ
た。第1表 この電気鋼めつきにより銅皮膜の厚さが4075肌の全
長にわたり5±1山mの範囲で均質な銅層が得られた。
Electric steel plating is sulfuric acid steel 200 yen/so, sulfuric acid 50 tanok,
Electroplating was carried out for 25 minutes at a current density of approximately IA/d, using chloride ion at 50/day, thiourea at 0.01/day, and dextrin at 0.01 day/day, using a pure steel rod as the anode. Ta. Table 1: Through this electric steel plating, a uniform copper layer was obtained with a thickness of 5±1 m over the entire length of the 4075 skin.

この銅めつきジルカロィ−2 管を長さ2山地‘こ切断
し試料とした。一方粒度−325メッシュの銅粉末5碇
部と粒度−250メッシュの亜酸化鋼粉末5の部とを十
分燈拝混合したのち、該混合粉159を秤量し直径IQ
舷の金型に挿入し4t/地で圧縮成形し酸化剤を作成し
た。ついで前記鋼めつき試料の中へ圧縮成形した酸化剤
を挿入したのち、内径13側の石英管中に5×1げびo
rrの真空度で真空封入し酸化用カプセルとした。
This copper-plated Zircaloy-2 tube was cut into two lengths and used as samples. On the other hand, after thoroughly mixing 5 parts of copper powder with a grain size of -325 mesh and 5 parts of suboxide steel powder with a grain size of -250 mesh, the mixed powder 159 was weighed and the diameter IQ
The oxidizing agent was created by inserting it into a gunwale mold and compression molding it at 4 tons/base. Next, after inserting the compression-molded oxidizing agent into the steel plating sample, a 5
It was vacuum sealed at a vacuum degree of rr to form an oxidation capsule.

さらに第2表に示す種々の条件で選択酸化処理を施した
のち、形成された酸化皮膜厚さ、銅めつき層との接合強
度などを測定した、その結果を第2表に示す。第2表 第2表の結果より本発明の製造方法を採用することによ
り高温での拡散を防止する酸化物層を内在した鋼バリア
燃料被覆管を容易にかつ安価に製造することができる。
Furthermore, after selective oxidation treatment was performed under various conditions shown in Table 2, the thickness of the formed oxide film, the bonding strength with the copper plating layer, etc. were measured, and the results are shown in Table 2. From the results shown in Table 2, by employing the manufacturing method of the present invention, a steel barrier fuel cladding tube containing an oxide layer that prevents diffusion at high temperatures can be easily and inexpensively manufactured.

なお4075脇の全長にわたり同様の試験を行なったが
、満足な結果が得られた。又実施例1〜5の方法により
作成した試料を2×10‐5Tonの真空度で石英管中
に真空封入し、750qo、1畑時間の加熱を行ない拡
散状態を試験した。
A similar test was conducted over the entire length of the 4075 side, and satisfactory results were obtained. Further, the samples prepared by the methods of Examples 1 to 5 were sealed in a quartz tube at a vacuum level of 2 x 10-5 tons, and heated at 750 qo for 1 field hour to test the diffusion state.

第2工程の酸化物層形成処理を施さない試料では、銅め
つき層が完全にジルカロイー2合金中に拡散浸透し鋼層
は見られなかったが、本発明の酸化物層を設けた試料で
は、拡散現象は認められず、被覆管内面は純錦色を呈し
ていた。
In the sample that was not subjected to the oxide layer forming treatment in the second step, the copper plating layer completely diffused into the Zircaloy 2 alloy and no steel layer was observed, but in the sample with the oxide layer of the present invention, No diffusion phenomenon was observed, and the inner surface of the cladding tube had a pure brocade color.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の被覆管に燃料べレットを充填した燃料
綾の縦断面図であり、第2図はその部分拡大図である。 1・・・・・・燃料被覆管、2,3・・・・・・端栓、
4・・・・・・燃料べレット、7・・・・・・第2図に
よる拡大部分、21・・・・・・ジルコニウム合金製管
、22・・・・・・酸化物層、23・・・・・・鋼。第
1図 第2図
FIG. 1 is a longitudinal sectional view of a fuel trough in which a cladding tube of the present invention is filled with fuel pellets, and FIG. 2 is a partially enlarged view thereof. 1... Fuel cladding tube, 2, 3... End plug,
4... Fuel pellet, 7... Enlarged portion according to Figure 2, 21... Zirconium alloy tube, 22... Oxide layer, 23... ·····steel. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 1 ジルコニウム合金製管の内側面上に銅層を形成する
工程;及び、該ジルコニウム合金と該銅層との界面にお
いて、該ジルコニウム合金を酸化して酸化物層を形成す
る工程;とから成ることを特徴とする原子炉用燃料被覆
管の製造方法。 2 該ジルコニウム合金の酸化物層が、酸化銅の解離酸
素分圧下における熱処理によて形成される特許請求の範
囲第1項に記載の方法。
[Claims] 1. Forming a copper layer on the inner surface of a zirconium alloy tube; and oxidizing the zirconium alloy to form an oxide layer at the interface between the zirconium alloy and the copper layer. A method for manufacturing a fuel cladding tube for a nuclear reactor, comprising the steps of: 2. The method according to claim 1, wherein the zirconium alloy oxide layer is formed by heat treatment of copper oxide under dissociated oxygen partial pressure.
JP53149631A 1978-12-05 1978-12-05 Method for manufacturing fuel cladding for nuclear reactors Expired JPS6013477B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53149631A JPS6013477B2 (en) 1978-12-05 1978-12-05 Method for manufacturing fuel cladding for nuclear reactors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53149631A JPS6013477B2 (en) 1978-12-05 1978-12-05 Method for manufacturing fuel cladding for nuclear reactors

Publications (2)

Publication Number Publication Date
JPS5575688A JPS5575688A (en) 1980-06-07
JPS6013477B2 true JPS6013477B2 (en) 1985-04-08

Family

ID=15479440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53149631A Expired JPS6013477B2 (en) 1978-12-05 1978-12-05 Method for manufacturing fuel cladding for nuclear reactors

Country Status (1)

Country Link
JP (1) JPS6013477B2 (en)

Also Published As

Publication number Publication date
JPS5575688A (en) 1980-06-07

Similar Documents

Publication Publication Date Title
Pahl et al. Irradiation behavior of metallic fast reactor fuels
US4473410A (en) Nuclear fuel element having a composite coating
US4284660A (en) Electroless deposition process for zirconium and zirconium alloys
JPH0658412B2 (en) Corrosion resistant coatings for fuel rods
US3088892A (en) Dispersion element consisting of chromium coated uo2 particles uniformly distributedin a zircaloy matrix
US4093756A (en) Process for electroless deposition of metals on zirconium materials
JPH0213280B2 (en)
JPH0776400B2 (en) Corrosion resistant zirconium and fuel element using the same
SE444368B (en) PROCEDURE FOR THE MANUFACTURING OF A NUCLEAR FUEL CONTAINER FOR USE IN NUCLEAR RIFT REACTORS AND CONTAINERS MANUFACTURED AS PROCEDURED
US4137131A (en) Process for electrolytic deposition of metals on zirconium materials
US4659540A (en) Composite construction for nuclear fuel containers
JPS6029915B2 (en) Composite cladding, fuel elements and manufacturing methods
US4233086A (en) Method for providing a diffusion barrier
JPS6013477B2 (en) Method for manufacturing fuel cladding for nuclear reactors
JPH033917B2 (en)
WO1993000683A1 (en) Apparatus for producing heat from deuterated film-coated palladium
JP4318478B2 (en) Fuel assembly for boiling water LWR
JPS6362716B2 (en)
US3669758A (en) Process for removing contaminants from zirconium surfaces
CA1128376A (en) Electroless deposition process for zirconium and zirconium alloys
US2894890A (en) Jacketing uranium
CN111020655B (en) Preparation method and application of zirconium alloy material with chromium coating
JPS58216988A (en) Buried zirconium layer
JPS6054634B2 (en) Fuel rods for nuclear reactors
JPS6314317B2 (en)