JPS6013472B2 - Magnetic field equalizer - Google Patents

Magnetic field equalizer

Info

Publication number
JPS6013472B2
JPS6013472B2 JP53130632A JP13063278A JPS6013472B2 JP S6013472 B2 JPS6013472 B2 JP S6013472B2 JP 53130632 A JP53130632 A JP 53130632A JP 13063278 A JP13063278 A JP 13063278A JP S6013472 B2 JPS6013472 B2 JP S6013472B2
Authority
JP
Japan
Prior art keywords
equalizing
magnetic field
conductors
magnetic pole
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53130632A
Other languages
Japanese (ja)
Other versions
JPS5557139A (en
Inventor
文雄 片木
悦夫 伴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Nihon Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Denshi KK filed Critical Nihon Denshi KK
Priority to JP53130632A priority Critical patent/JPS6013472B2/en
Publication of JPS5557139A publication Critical patent/JPS5557139A/en
Publication of JPS6013472B2 publication Critical patent/JPS6013472B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)
  • Control Of Electrical Variables (AREA)

Description

【発明の詳細な説明】 本発明は核磁気共鳴装置に使用される磁石装置に関し、
特に該磁石装置によって作られる磁界に存在する不均一
を補正するための磁界均一化装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a magnet device used in a nuclear magnetic resonance apparatus,
In particular, it relates to a magnetic field homogenizing device for correcting non-uniformity existing in the magnetic field produced by the magnet device.

核磁気共鳴による分析法では周知のように調べようとす
る試料を数千〜数万ガウスの主磁場Ho内に入れ、それ
より弱い強度の可変周波数の振幅の交番磁場畑.を比に
対してほぼ直角に加え、原子核のラーモア振動数yに共
鳴させることにより、試料中の物質の共鳴振動数を知る
ことができる。
In the nuclear magnetic resonance analysis method, as is well known, the sample to be examined is placed in a main magnetic field Ho of several thousand to tens of thousands of Gauss, and an alternating magnetic field field with a weaker intensity and variable frequency amplitude is applied. The resonant frequency of the substance in the sample can be determined by adding almost perpendicularly to the ratio and making it resonate with the Larmor frequency y of the atomic nucleus.

そこで、試料元素の磁気回転比は主磁場Hoとラーモア
振動数ッを知るこせにより決定できることを利用して特
定の元素および同位元素の識別を行なうものである。こ
の識別を正確になす為には、試料が占める空間中に極め
て均一な分極磁界が要求され、1×10‐安室度の小さ
い磁界の不均一でも正確な識別を不可能とすることが広
く知られている。従って、この極めて小さい磁場の不均
一を補正して均一な磁場を得る為に、従来から磁場&を
発生する磁極間隙に通称シムコィルと呼ばれる修Z正磁
界発生の為の比較的偏平な導体を挿入し、これに通電す
る電流量をブリッジ回路を介するなどして手動で可変し
、比較的満足の出来る均一磁界が得られるまで反復操作
してきた。
Therefore, specific elements and isotopes are identified by utilizing the fact that the gyromagnetic ratio of a sample element can be determined by knowing the main magnetic field Ho and the Larmor frequency. In order to make this identification accurately, an extremely uniform polarized magnetic field is required in the space occupied by the sample, and it is widely known that even a non-uniform magnetic field as small as 1×10-Amuro makes accurate identification impossible. It is being Therefore, in order to correct this extremely small non-uniformity of the magnetic field and obtain a uniform magnetic field, a relatively flat conductor commonly called a shim coil for generating a modified Z-positive magnetic field has been inserted into the gap between the magnetic poles that generates the magnetic field &. However, the amount of current applied to this was manually varied via a bridge circuit, etc., and the operation was repeated until a relatively satisfactory uniform magnetic field was obtained.

この操作は熟練による勘と根気を必要とするもので厄介
で時間Zのかかる作業である。また磁界Hoの均一化の
程度は修正しようとする磁界勾配の数で決まり、この数
に見合ったシムコィルが必要となる。
This operation requires the intuition and perseverance of an expert, and is a troublesome and time-consuming task. Further, the degree of uniformity of the magnetic field Ho is determined by the number of magnetic field gradients to be corrected, and shim coils corresponding to this number are required.

シムコイルの数が増大すれば当然のことながら試料を入
れるべき磁極間の間2隙はシムコィルのしめる体積だけ
減少する。即ち不均一磁界の修正の程度を向上させよう
とすれば磁極間隙の容積が減少してしまい、間隙を大き
くしようとすればシムコィルの数が減少し不均一磁界の
修正の程度が低下する。この様な背反的関係が存するた
め、試料を回転させるなどしてシムコィルの数を極力減
らし、またシムコィルの体積を小さくすることに努力が
払われてきた。また従釆はシムコィルに電流を流すこと
により無数の球面調和関数で表わされる磁界の勾配が発
生するので、目的の調和関数を得る為に調和関数の根を
求めるなどし、更に複数のシムコイルを用いるなどして
コイルの幾何学的位置によって不必要な又はあっては困
る調和関数を互に相殺するなどの手法がとられてきた。
Naturally, as the number of shim coils increases, the gap between the magnetic poles into which the sample is placed will decrease by the volume filled by the shim coils. That is, if an attempt is made to improve the degree of correction of a non-uniform magnetic field, the volume of the magnetic pole gap will be reduced, and if an attempt is made to increase the gap, the number of shim coils will be reduced and the degree of correction of a non-uniform magnetic field will be reduced. Because of this trade-off relationship, efforts have been made to reduce the number of shim coils as much as possible by rotating the sample, and to reduce the volume of the shim coils. In addition, when a current flows through a shim coil, a magnetic field gradient expressed by countless spherical harmonic functions is generated, so in order to obtain the desired harmonic function, the root of the harmonic function is found, and multiple shim coils are used. Techniques have been taken, such as mutually canceling out unnecessary or undesirable harmonic functions depending on the geometrical position of the coil.

その為、シムコィルの位置寸法を決める設計は複雑であ
り、しかもコイルの配置が複数となったり、シムコイル
を取り付けたシム盤の容積も増大するなど、設計上好ま
しからざる結果を生んできた。また、従釆は均一化の向
上をはかる為にシムコィル又は均一化導体の数を増加さ
せると、同一の場所にシムコィル又は均ーイQ導体が平
行して重なったり直角に交わるなどして厚さが増すのみ
ならず、修正磁界の精度を低下させるなど、シムコイ−
1ル又は均一化導体の追加は現実の問題として容易では
なかった。
For this reason, the design for determining the position and dimensions of the shim coils is complicated, and moreover, the coils have to be arranged in multiple places, and the volume of the shim board on which the shim coils are attached increases, resulting in unfavorable design results. Additionally, when the number of shim coils or equalizing conductors is increased in order to improve uniformity, the thickness of the shim coils or uniform Q conductors may be increased by overlapping in parallel or crossing at right angles in the same place. In addition to increasing the
Adding a single conductor or equalizing conductor was not easy as a practical matter.

従釆から、試料のまわりの磁界の均一度を見かけ上向上
させるために試料をその中心線のまわりに回転させるな
どの方法を用いている。
In order to improve the apparent uniformity of the magnetic field around the sample, methods such as rotating the sample around its center line are used.

しかし回転している試料は、静止している試料のもとで
修正する調和関数では修正しきれない、異なった調和関
数を必要とする。本発明の目的は、磁極間隙にあって試
料に影響を与える程度の体積をとらず、しかも高度な磁
界の均一性を実現する磁界均一化装置を提供することに
ある。
However, a rotating sample requires a different harmonic function that cannot be corrected by the harmonic function corrected for a stationary sample. An object of the present invention is to provide a magnetic field homogenizing device that does not take up a volume large enough to affect a sample in the gap between magnetic poles, and that achieves a high degree of uniformity of the magnetic field.

本発明の他の目的は、ある特定の調和関数又は磁界勾配
を修正しても他の調和関数又は磁界勾配に何ら影響を与
えず、希望する調和関数又は磁界勾配のみを単独に可変
することのできる磁界均一化装置を提供することにある
Another object of the present invention is to modify only a desired harmonic function or magnetic field gradient without affecting other harmonic functions or magnetic field gradients. The object of the present invention is to provide a magnetic field homogenization device that can achieve the desired magnetic field uniformity.

本発明の他の目的は、シムコイルの幾何学的位置による
調和関数の相殺などの手段によるのではなく、演算増幅
器などの電気回路を用い、ある種の相関関係を持った電
流を各々均一化導体に給電するこにより試料近傍で調和
関数を相殺又は合成し、以つて必要な調和関数を得るこ
とによって均一化導体の配置を簡単にした磁界均一化装
置を得るにある。
Another object of the invention is to use electrical circuits such as operational amplifiers to direct currents having some kind of correlation to each equalizing conductor, rather than by means such as harmonic cancellation by the geometrical position of the shim coils. The purpose of the present invention is to provide a magnetic field homogenizing device in which the harmonic functions are canceled out or combined in the vicinity of the sample by supplying power to the magnetic field, and the necessary harmonic functions are obtained, thereby simplifying the arrangement of the homogenizing conductor.

本発明の一般的特徴を述べれば、第1に従釆は磁極間隙
で均ーイり導体、又は均一化コイルに電流を流すことに
より調和関数を発生させて均一イリ磁界を得る場合、ア
ンダーソン氏(侍公昭45一381機号)やゴレィ氏(
特公昭47−18794号)などの方法が用いられてき
た。
To describe the general characteristics of the present invention, the first sub-chapter is that when a uniform magnetic field is obtained by generating a harmonic function by passing current through a uniform conductor or equalizing coil in the magnetic pole gap, (Samurai Kosho 451-381) and Mr. Gorey (
Methods such as Japanese Patent Publication No. 47-18794) have been used.

これらの方法の特徴は均ーイり導体や均一にコイルの位
置、寸法、形状などから求めようとする磁界勾配を得る
ことにあり、これらのコイルに流す電流はブリッジ回路
等を用いるなどして磁界の不均一の度合によって相互に
関連せずにただ単に加減するというもので、電気回路と
しては簡単なものを用いていた。即ち均一化導体やコイ
ルの幾何学的寸法や形状の決定にその重点があった為、
シムコィルの形状や位置は複雑なものとならざるを得な
かった。本発明の場合、均一化導体の形状は単に対称に
直線を交差させるだけで良く、しかもその位置や寸法は
設計者の都合によって勝手に決めて良い。本発明は各々
の均一イゼ導体に流すべき電流の相関関係を求め、加算
増幅器など演算回路を含んだ電子回路を用いて修正の為
の不均一磁界を合成し、これを以つて不均一磁界を修正
する装置であって、試料の存する原点付近で、希望する
調和関数を他の調和関数を変化させるこなく単独に可変
させうるところに特徴がある。本発明の一般的特徴の第
2は前述の如く均一化導体の形状が単純であって、位置
は自由であり導体を絶縁しし状態で直交させるのみであ
り、印刷回路の技術を用いて極めて薄く作ることが可能
である。
The feature of these methods is to obtain a magnetic field gradient that is determined from the position, size, shape, etc. of a uniform conductor or coil, and the current flowing through these coils is controlled by using a bridge circuit, etc. They were simply adjusted depending on the degree of non-uniformity of the magnetic field, without being correlated with each other, and a simple electric circuit was used. In other words, the emphasis was on determining the geometric dimensions and shape of the uniform conductor and coil.
The shape and position of the shim coil had to be complicated. In the case of the present invention, the shape of the equalizing conductor may be simply that straight lines intersect symmetrically, and its position and dimensions may be arbitrarily determined according to the designer's convenience. The present invention calculates the correlation between the currents to be passed through each uniform conductor, synthesizes a non-uniform magnetic field for correction using an electronic circuit including an arithmetic circuit such as a summing amplifier, and uses this to correct the non-uniform magnetic field. It is a correction device, and its feature is that it can independently vary a desired harmonic function without changing other harmonic functions in the vicinity of the origin where the sample exists. The second general feature of the present invention is that, as mentioned above, the shape of the uniform conductor is simple, the position is free, and the conductors are only insulated and orthogonal to each other. It is possible to make it thin.

第13図に示す実施例の場合、厚さ50山肌のポリィミ
ドの可操性フィルムの両面に35ム仇の鋼板を張ったも
のを用いており、第14図の如きパターンはZ軸を中心
に×,Y軸を49回転させたものを重ねただけで実現さ
れるので、全厚が500仏肌にも満たず、均一化装魔は
磁極間隙をほとんど狭くすることがない。本発明の特色
ならびに利点とその効果は、添付の図面に関連して以下
に述べる説明と、球面調和関数並びに若干の行列を用い
た数学的説明により明らかとなる。
In the case of the embodiment shown in Fig. 13, a polyimide flexible film with a thickness of 50 mm and a steel plate of 35 mm on both sides is used, and the pattern shown in Fig. 14 is created with the Z axis as the center. Since it is realized by simply stacking the X and Y axes rotated 49 times, the total thickness is less than 500 degrees, and the homogenizing soma hardly narrows the magnetic pole gap. BRIEF DESCRIPTION OF THE DRAWINGS The features and advantages of the invention and its effects will become clearer from the description given below in conjunction with the accompanying drawings and from the mathematical description using spherical harmonics and some matrices.

第1図において、磁極間の任意の1点Pに発生する磁界
日のZ軸方向の分圧Hzはプラズマの式(下式)を満足
することは一般によく知られているところであり、
☆☆v2比=鯛十鯛十鰐=。
In Fig. 1, it is generally well known that the partial pressure in the Z-axis direction of the magnetic field generated at any point P between the magnetic poles, Hz, satisfies the plasma equation (formula below):
☆☆v2 ratio = 10 sea breams 10 crocodile =.

‘1’また、この性質は均ーイ○蔓体に電流を流し
た場合、これより発生する修正の為の糟分磁界に対して
も云えることである。
'1' This property also applies to the correction magnetic field generated when a current is passed through a uniform body.

更に磁界IHは一般にスカラーポテンシャル心で下式の
如く表わされる。
Furthermore, the magnetic field IH is generally expressed as a scalar potential center as shown in the following equation.

IH=一gr幻小 ■こ
の心は直交系の原点(第1図の原点)附近では周知のよ
うに次の球面鏡和関数の項で展開される。
IH = 1gr phantom small ■As is well known, this mind is expanded in terms of the following spherical mirror sum function near the origin of the orthogonal system (the origin in Figure 1).

J=−さ,羊。J=-sa, sheep.

rnP母(cosa)〔A母cosm○十B史simm
J〕 【31ここに針ま第2図に示すように×軸と
yを×−Y平面に射影したものとなす角度であり、夢≦
子圭三叢鰭} ‘41 Z=yCOS8 の関係がある。
rnP mother (cosa) [A mother cosm ○ 1 B history simm
J] [31 As shown in Figure 2, the needle here is the angle formed by projecting the x axis and y onto the x-Y plane, and dream ≦
There is a relationship of '41 Z=yCOS8.

Z方向の分力Hzは式■,‘4}より下式で表わされる
。HZi−C。
The component force Hz in the Z direction is expressed by the following equation from equations (2) and '4}. HZi-C.

S釜十半半解 ‘51式‘3’と式【51よりH
zはルジャンドル関数数から、デカルト座標で表わした
調和関数の和となり下式で表わされることがわかる。
S pot ten and a half solution '51 formula '3' and formula [H from 51
From the Legendre function number, it can be seen that z is the sum of harmonic functions expressed in Cartesian coordinates and is expressed by the following formula.

HZ=A9十2A8Z十3A室X+母拳Y十号A8{z
2‐(x2十Y2)}十1泌さび十脇川1機(X2‐Y
2)十3鰍Y+滋z{解‐3(x2十洲十歩A;x確‐
(x2十Y2)}十袋B;Y他‐(x2十Y2)}十9
山蟹Z(X2‐Y2)十18服毒なY十103鑑X(X
2−3で)十10$※(松2‐松)十・・…・ ・・
・・・・‘6’以上によって、一般に式【6}の次数n
、位贋mの調和関数で、ルジャンドル階関数P玲(co
so)に3対応する定数Aに係るものを(n,m),B
に係るものを(n,m)′で表わすとn>1,m=0n
〉m>0のとき方城調和*関数、n=mのとき扇城調和
関数と呼び、各々の係数を無視すれば、Hzを各調和関
数の成分の合成として表わすことが出釆る。
HZ=A9 12A8Z 13A Room X+ Mother Fist Y No. 10 A8{z
2-(x2 Y2)
2) 13 eel Y + Shizz {solution-3 (x2 Jushu Jupo A; x confirmation-
(x20Y2)}10 bags B; Y and others-(x20Y2)}19
Mountain crab Z (X2-Y2) 118 poisoned Y1103 book X (X
2-3) 110 dollars *(Matsu 2-Matsu) 10...
...By '6' or more, the order n of the formula [6} is generally
, is a harmonic function of rank m, and the Legendre rank function Pling(co
The constant A corresponding to 3 in so) is (n, m), B
If we express something related to (n, m)' as n>1, m=0n
〉When m>0, it is called a Hojo harmonic* function, and when n=m, it is called an Ogijo harmonic function.If each coefficient is ignored, Hz can be expressed as a composition of the components of each harmonic function.

これを(Hz)と表わせば、次数S迄を含んだ(Hz)
は、(HZ)=n峯.きn,。
If this is expressed as (Hz), it will include (Hz) up to order S.
is (HZ)=nmine. Kin,.

)十・nさ.・三重主・{くn,m)十(n,m)′}
:さ.毒も三(3ミ辛もぎをを.*)′キ(n,m)′
}十(h,n)+(n,n)′〕‘7’となる。例えば
S=4、即ち次数4迄の(Hz) は下式で表わされる
。(HZ):(1,0)十(1,1)十(1,1!)′
十(2,0)十(2,1)十(2,1)′+(2,2)
十(2,2)′十(3,0)十(3.1)十(3.1)
′+(3,2)十(3,2)′十(3,3)十(3,3
)′+(4,0)十(4,1)十(4,1)′+(4,
2)十(4,2)′+(4,3)十(4,3)′+(4
.4)十(4,4)′
・・・・・・‘8’従って静止している試料のもとで
、不均一磁界を次数4まで修正するときは、式■に於る
24個の調和関数で表わされる修正磁界を各々ほぼ独立
に修正に必要な量だけ発生させることを要する。
) ten・nsa.・Threefold Lord・{kun, m) ten (n, m)′}
:difference. Poison mo three (three mi spicy pickles. *)'ki (n, m)'
}(h,n)+(n,n)']'7'. For example, S=4, that is, up to the fourth order (Hz) is expressed by the following formula. (HZ): (1,0) ten (1,1) ten (1,1!)'
Ten(2,0) Ten(2,1) Ten(2,1)′+(2,2)
ten (2,2)' ten (3,0) ten (3.1) ten (3.1)
'+(3,2) ten(3,2)'ten(3,3) ten(3,3
)′+(4,0)ten(4,1)ten(4,1)′+(4,
2) Ten (4, 2)' + (4, 3) Ten (4, 3)' + (4
.. 4) Ten (4,4)'
・・・・・・'8' Therefore, when modifying the inhomogeneous magnetic field up to order 4 under a stationary sample, each of the modified magnetic fields expressed by the 24 harmonic functions in equation (■) should be approximately It is necessary to generate only the amount necessary for correction independently.

*簡単のために(4,4),(4,4)′を無視して
、(Hz)の次数4、位数3迄の調和関数を表1にまと
める。表1 試料をY軸を中心に回転させた場合、任意な或る原子核
に対する磁界HzはY軸と直角な平面内にあって、その
藤上に中心を有する円に沿って平均化される。
*For simplicity, (4,4) and (4,4)' are ignored, and the harmonic functions of (Hz) up to order 4 and order 3 are summarized in Table 1. Table 1 When the sample is rotated around the Y axis, the magnetic field Hz for any given atomic nucleus is in a plane perpendicular to the Y axis and is averaged along a circle centered on the plane.

即ち×及びZの形を含んでいる調和関数の項は打ち消さ
れるので、このY軸を中心にした回転で打ち消されない
調和関数は表1の中で‘ま(1,1)′,(2,0),
(2,2),(3,1)′,(3,3)′,(4,0)
,(4,2)となる。一方、試料に回転周波数fでスピ
ンニングをかけたとき、スピンニング側波帯について式
■のY磯とZ軸を交換したときに生ずる調和関数は、0
位数項がスピンニング分解館に影響を及ぼし、1対の1
位数項が中心スペクトルからfのところの第1側波帯共
振に影響を及ぼし、1対の2位数頃が中心スペクトルか
ら2のところの第2側波帯共振、1対の3位数頃が中心
スペクトルから$のところの第3側波帯共振、以下同様
に影響を及ぼすことが知られている。
In other words, the terms of the harmonic function that include the shapes of ,0),
(2,2), (3,1)', (3,3)', (4,0)
, (4, 2). On the other hand, when the sample is spun at a rotational frequency f, the harmonic function generated when the Y-axis and Z-axis of equation (2) are exchanged for the spinning sideband is 0.
The order term affects the spinning decomposition, and one pair of one
The order term affects the first sideband resonance at f from the center spectrum, the second order of the pair affects the second sideband resonance at 2 from the center spectrum, and the third order of the pair affects the second sideband resonance at f from the center spectrum. It is known that the third sideband resonance occurs at $ from the center spectrum and similarly affects the following.

表1にならって、式側のYとZを交換したものを表川こ
まとめる。
Following Table 1, replace Y and Z on the formula side and summarize in Omotekawa.

表□ 表0のC欄は、スペクトルの中心線則ちスピンニング分
解能に影響するものであり、f,f′欄は第1側波帯に
、が,2′,3,g′は第2、第3側波帯に影響する調
和関数である。
Table □ Column C of Table 0 affects the center line of the spectrum, that is, the spinning resolution, columns f and f' are for the first sideband, and columns 2', 3, and g' are for the second sideband. , is the harmonic function affecting the third sideband.

以上のことから、静止試料に対する表1の如き修正の為
の調和関数ではスピニングしている試料の側波帯の振幅
に影響を及ぼし、スピニング分解能をにわかに向上させ
ることが出来ないことが解る。
From the above, it can be seen that the harmonic function for correction as shown in Table 1 for a stationary sample affects the amplitude of the sideband of a spinning sample and cannot suddenly improve the spinning resolution.

この問題は後で再び述べる。さて、磁極間隙内のXY平
面にあって×軸に平行な直線状の均一化導体が第3図乃
至第6図に夫々示すような位置関係と電流の向きにあっ
た場合、原点附近の磁場の勾配は周知の如く第3図では
渋濠,鰐,.・..・・、第4図では舞,a4は四・・
・・・・、総欧は串,鰐,Z初4’磯’a5比 ……、第6図で‘ま老実,孝義鼻 a5’ 66HZ 流罪,……となる。
I will return to this issue later. Now, if a straight homogenizing conductor located on the XY plane in the magnetic pole gap and parallel to the As is well known, the slopes of Shibumoori, Wani, .・.. .. ..., Mai in Figure 4, A4 is 4...
..., Souo is Kushi, Wani, Z first 4'Iso' a5 ratio..., and in Figure 6 it is 'Maojitsu, Takayoshihana a5' 66HZ Exile,...

Z第3図〜第6図に於て、磁極
の比透磁率をムrとし、鏡像現象を考慮すると、原点附
近の磁場勾配を一層精度よく計算できる。ビー・リーゲ
ル及びジェー・クムメル両氏はしビユ−・オプ亀サイェ
ンティフィツク・インストウルメント(1977年3月
P.346〜349)誌上でこの問題をとり上げて論文
を発表している。この論文は均一化導体が磁極面に貼り
ついた状態で各勾配を計算しているに対し、本発明者は
これを更に一般化して、均一化導体が磁極面から離れて
いる状態で、各勾配を第3図〜第6図の直線状均一化導
体の場合(第7図)について計算した。先ず、ビー・リ
ーゲル及びジェー・クムメル両氏の計算法に従い電流l
n(o)nの第k番鏡像の電流の強さを1n(b;CK
1n(0) 【91(ここに、k=
0,1,2,……C白(しr−・)/(rr+・)) とする。
In FIGS. 3 to 6, if the relative magnetic permeability of the magnetic pole is set to r and the mirror image phenomenon is considered, the magnetic field gradient near the origin can be calculated with higher accuracy. Messrs. B. Riegel and J. Kummel published a paper on this problem in the journal of Scientific Instruments (March 1977, pp. 346-349). While this paper calculates each gradient with the equalizing conductor stuck to the magnetic pole surface, the present inventor generalized this and calculated each gradient with the equalizing conductor separated from the magnetic pole surface. The slope was calculated for the straight homogenized conductor of FIGS. 3-6 (FIG. 7). First, we calculate the current l according to the calculation method of B. Riegel and J. Kummel.
The strength of the current of the kth mirror image of n(o)n is 1n(b; CK
1n(0) [91(Here, k=
0, 1, 2,...C white (shir-・)/(rr+・)).

次に上記の両氏の計算法を更に発展させて、磁極間隙の
中心、即ち原点から均一イリ導体のZ軸への射影点Z。
Next, by further developing the above-mentioned calculation method, we can calculate the projection point Z from the center of the magnetic pole gap, that is, the origin, to the Z axis of the uniform conductor.

までの距離と磁極面迄の距離Gとの比をク、即ちそ=Z
The ratio of the distance G to the magnetic pole surface and the distance G to the magnetic pole surface is
.

/G OQとし、次に鏡像の数
をmとしてP=(ah十1)/そ (
11)Q=(2h十〆)/そ (12
)とおき、更に第3図〜第6図の如き直線状均一イQ導
体の場合はり=Y。
/G OQ, then the number of mirror images is m, and P=(ah11)/so (
11) Q=(2h〆)/so (12
), and furthermore, in the case of a linear uniform IQ conductor as shown in Figs. 3 to 6, =Y.

/Z。 (13)なるパラメータ
を採用すれば原点附近の磁界の各勾配を計算すれば次の
様になる。肥努m茎。
/Z. If the parameters (13) are adopted, each gradient of the magnetic field near the origin is calculated as follows. Hitsutomu m stem.

(でpうちが南ヴ (IQ要害=
鮪さ。{mさ・器巻で養老2} (1
5)解熱卓。仲宿等ダCm凌ぎ料
■鰐‐雛‐舟為{叫鰐毒2」Cm2芋鰐器2)}
(17)鰐‐巻茎。{−空羊券)十Cm謡;弊}
(I■寛:‐器受=針卓。仲‐3岬舵出
処だ側4‐磯り2十QQ} (1902十り2〆
の2十りろ4解=‐a器Z=為ふぜ心ノ拘
ぴ−り3)十に他■‐り3)} (2(坪十りづ4
の2十りネ鍔‐潔Z2‐解‐鱗卓。
(Dep Uchiga Nanbu (IQ Fortress=
Tuna. {Yoro 2 in Msa・Kimaki} (1
5) Fever-reducing table. Nakajuku etc. CM charge fee
■Wani-Hina-Funeme {Screaming Crocodile Poison 2” Cm2 Imowaniki 2)}
(17) Crocodile - rolled stem. {-empty sheep ticket) 10 Cm song; evil}
(I ■ Hiroshi: - vessel receiver = needle desk. Naka - 3 Misaki rudder origin side 4 - Isori 20QQ} (1902 Juri 2〆
20 riro 4 solution = -a device Z = Tamefuze heart restraint 3) 10 other ■ -ri 3)} (2(tsubo 10 riz 4
20 Rine Tsuba - Kiyoshi Z2 - Kai - Uroko Taku.

仲小宅三麓2〜4)十ず‐4ノリ(斑4‐1の2り2十
リ4)}
(21)(戊十り2戸器彰=渋受=希m卓。
Nakakoyaku Sanroku 2-4) Juzu-4 Nori (Spot 4-1 2 2 Juri 4)}
(21) (Bojuri 2 doors Kiaki = Shibuuke = Nozomi Taku.

ぜ・−4・小塙鰐ギ5刀4)十Cm‐4・ノQ器器ぞ(
22)a5世 a池 細Z ay5−ay36Z2=布反=老☆み{C叶I白‐ノL
r−1ぼり2十1坪で−杜G2十り2)6十Cm亘./
四6‐1斑4り2十13ぞり4‐立2}
(23)(ぴ‐り2〆湯
=‐器廉=‐農壱=先ず。
Ze-4 Kobanawa Wanigi 5 Swords 4) 10Cm-4 NoQ equipment (
22) a5 generation aike thin Z ay5-ay36Z2 = cloth = old☆mi {C leaf I white-no L
r-1 21 tsubo - Mori G2 2) 60 cm across. /
46-1 spots 4ri 213 sleds 4-tachi 2}
(23) (Piri 2〆bath=-Equipment=-Nōichi=First.

{C叶・−ぽ舵斗2り2〜4G2十り2℃十ぐ‐6./
Q。
{C Kano - Po rudder 2 2 ~ 4 G 2 ten 2℃ tengu - 6. /
Q.

(ぴ‐学・Q2り2十り4)}
(2心ぬ2十り2)6式(14)〜(2
4)は、り,山r,m,その関数であり、り,仏r,れ
ま設計時の諸般の事情より、その都度決める定数である
が鏡像に関するmは磁場勾配の次数によって、これに与
える影響が変化する。式(14)〜(24)をmについ
て着た場合、Hzはm=20,Hzの1次勾配はm=1
亀 2次勾配はm=5,3次勾配はm=4,4次勾配は
m=2,5次勾配はm=1程度で各勾配の値が飽和する
。次に第3図〜第6図に示す直線状の均一化導体をZ軸
を中心に90o回転させた場合は、式(15)〜式(2
4)のYとXを交換したものであり、X成分に関する磁
場勾配が得られる。
(Pi-gaku・Q2 ri 20 ri 4)}
(2 hearts without 20 ri) 6 formulas (14) to (2
4) is a function of ri, mountain r, m, and is a constant determined each time based on various circumstances at the time of design. The impact will change. When formulas (14) to (24) are applied to m, Hz is m = 20, and the linear slope of Hz is m = 1.
Tortoise The values of each gradient are saturated at m=5 for the quadratic gradient, m=4 for the tertiary gradient, m=2 for the quartic gradient, and m=1 for the 5th gradient. Next, when the linear equalizing conductor shown in FIGS. 3 to 6 is rotated 90 degrees around the Z axis, equations (15) to (2)
4) by exchanging Y and X, and the magnetic field gradient regarding the X component can be obtained.

またこれらX,Y軸を45o回転させるとき、この座標
を×,Yとすれば、X=方反−Y) (25) Y=方風Y) (26) の関係が成り立つ。
Further, when rotating these X and Y axes by 45 degrees, if these coordinates are x and Y, the following relationships hold:

例えば調和関数XYZなどの場合はこの座標変換を施せ
ば、XYZ:量(泰22−YZ)となり、(XZ−Y2
Z)をZ軸を中心に450回転させればXYZを得る。
式(15)〜(26)を用いて表1、表0を整理したも
のが表皿、表Nである。
For example, in the case of a harmonic function XYZ, if this coordinate transformation is applied,
Z) is rotated 450 times around the Z axis to obtain XYZ.
Table 1 and Table 0 are rearranged using equations (15) to (26) to form table plate and table N.

表 m 表 N 表mは静止試料のもとで均一磁場を得るための調和関数
であり、表Nは回転試料のもとで均一磁場を得るための
調和関数である。
Table m Table N Table m is a harmonic function for obtaining a uniform magnetic field under a stationary sample, and Table N is a harmonic function for obtaining a uniform magnetic field under a rotating sample.

次に調和関数で表わされるところの磁場勾配の発生のさ
せ方について述べる。
Next, we will discuss how to generate a magnetic field gradient expressed by a harmonic function.

第8図に示す如く、1,,12,13・・・・・・ln
の電流が流れる1組4本の直線状均一イゼ導体n組をZ
o並びに一ろでXY平面上に対抗して平行に配置する。
As shown in Figure 8, 1,,12,13...ln
Z
o and ichiro are arranged parallel to each other on the XY plane.

電流liが流れている導体の電流の向きが、(i)第3
図の如く一方向のときはYの奇数次Y,Y3,・・・・
・・の磁場勾配が作られ(ii)、第4図の如くY磯に
対称でZ軸に対して逆対称なときはYの偶数次Y2,Y
4,…・・側)、第5図の如く点対称の場合はZYの奇
数次肉,ZY3,・・・・・・仙、第6図の如くZ軸に
対称でY軸に対して逆対称な場合は、YZの偶数次Z,
ZY2,ZY4.・…・・の磁界の勾配が作られる。い
ま第8図に於て、1,.12,13,……lnの電流の
向きが前述の(i)の如き関係にあれば、原点附近では
Yの奇数次の磁場勾配が合成される。電流の向きが前述
(ii)の如き関係にあれば、原点附近ではYの偶数次
の磁場勾配が合成される。以下(iii),Gのの場合
も同様である。そこで例として(i),(il)の場合
、即ちYの奇数次と偶数次を取り上げて説明を加える。
第8図に於て、i番目の均一化導体の細を考える。これ
の位置は図よりりi=Yi/幼
(27)これに電流liが流れているが、この電流1
‘はn種類の電流成分で合成されていると仮定すれば、
li=j≧,lii (28)ま
た磁界の勾配の次数をPとし式(14),(15),(
17),(19),(21),(23)をりについて解
き、それに乙P+1をかけたものをfp(り)とすれば
〔18〕=〔ナ2‘‐2(りj)〕‐ldiag〔仇,
,〔比,,は2,日独, ……日2n−2m〕
(35)〔18〕=〔ナ2i−・(りj)〕−1d
iag〔HI1,日脚&3,・・・Qn‐,,n〕=〔
8ij〕diag〔日,.,日32.比3,・・・はn
‐M〕 (3劫式(35)式(
36)の4j−2,j,日2j−,,jをE2‐2,E
幻−,と書き換えて行列の元素18,18を求めると次
の様になる。
The direction of the current in the conductor through which the current li is flowing is (i) the third
As shown in the figure, in the case of one direction, odd-numbered orders of Y, Y3, etc.
... is created (ii), and when it is symmetrical to Y and antisymmetrical to the Z axis as shown in Figure 4, the even order Y2, Y
4,... side), in the case of point symmetry as shown in Figure 5, it is the odd-numbered meat of ZY, ZY3,... side, as shown in Figure 6, it is symmetrical to the Z axis and opposite to the Y axis. In the case of symmetry, even order Z of YZ,
ZY2, ZY4. A gradient of magnetic field is created. Now in Figure 8, 1, . If the directions of the currents 12, 13, . If the direction of the current is in the relationship as described in (ii) above, the even-order magnetic field gradients of Y are synthesized near the origin. The same applies to the case of (iii) and G below. Therefore, as an example, cases (i) and (il), that is, the odd and even orders of Y will be taken up and explained.
In FIG. 8, consider the thinness of the i-th uniformizing conductor. From the figure, the position of this is i=Yi/young
(27) A current li flows through this, and this current 1
' is composed of n types of current components, then
li=j≧,lii (28) Also, let the order of the gradient of the magnetic field be P, and use equations (14), (15), (
17), (19), (21), and (23) for ri, and multiplying it by OtsuP+1 is fp(ri), then [18] = [Na2'-2(rij)]- ldiag [enemy,
, [ratio,, is 2, Japan/Germany, ...day 2n-2m]
(35) [18] = [Na2i-・(Rij)]-1d
iag [HI1, Nikyaku&3,...Qn-,,n]=[
8ij] diag [day, . , day 32. Ratio 3,... is n
-M] (3 kalpa type (35) type (
36) 4j-2,j, day 2j-,,j of E2-2,E
If we rewrite it as phantom-, and find elements 18 and 18 of the matrix, we get the following.

18=Q。18=Q.

・E2J‐2 (37)18=
8ii・E2−. (3母ん(り
):ろ州処里arp (290fp(り)に電流をかけたものをHpと表わせ
ばナp(り)1=Hp (30)と
なる。
・E2J-2 (37)18=
8ii・E2-. (3 mother(ri): Roshu processing arp (290 fp(ri)) and a current applied thereto is expressed as Hp, then Nap(ri)1=Hp (30).

第8図に於て、n組の均ーイQ導体が原点附近に与える
総ての磁場勾配を、偶数次と奇数次に分けて行列表示を
すれば、偶数次のとき〔ナ2i−2(りj)〕〔1j,
j〕=〔日2,−2,一〕(31)奇数次のとき〔ナ2
i−・(りj)〕〔1i,j〕=〔日2日,j〕(32
)となる。
In Figure 8, if we represent all the magnetic field gradients that n sets of homogeneous Q conductors near the origin are divided into even-order and odd-order order into matrix representations, we can see that for the even-order case [Na2i-2 (rij)] [1j,
j] = [day 2, -2, 1] (31) When odd number order [na 2
i-・(rij)][1i,j]=[day 2nd,j](32
).

式(28)のもとで、電流1,,12,13,……ln
のそれぞれのi番目の電流、つまりlu,1小 13i
・・・・・・lnjによって作られるHpiは偶数次の
とき均j−2,j,奇数次のとき日2日,jのみでそれ
以外のときはHPJはお互が打ち消し合って零となるよ
うに電流配分をそれぞれおこなうようにし、そのときの
電流を偶数次のとき18、奇数次のときlo′iiと表
わせだ、式(31)、式(32)の右辺の行列は正方行
列だから、それぞれi=jのとき以外は零、即ち対角行
列となる。〔ナ2i−2(りj)〕〔1;i〕 =diag〔比,,日2, 日43, ……日2n‐2
,n〕 (33)(メi2−・くりj)〕〔18〕=d
iag〔H… 日概, 日53,・…・‐日2n−.,
n〕 (3リ式(33)又は(34)を解いて、1;j
又は18を求めれば、式(28)よりliが求められ、
第8図に於てi番目の紙の均一イリ導体への給電量が求
められる。
Under equation (28), the current 1,,12,13,...ln
each i-th current, i.e., lu,1 small 13i
...HPi created by lnj is equal to j-2, j when it is an even number order, 2 days and only j when it is an odd number order, and in other cases HPJ cancels each other out and becomes zero. The currents at that time are expressed as 18 for even orders and lo'ii for odd orders.Since the matrices on the right sides of Equations (31) and (32) are square matrices, respectively. The matrix is zero except when i=j, that is, it is a diagonal matrix. [Na2i-2 (rij)] [1;i] = diag [ratio,, day 2, day 43, ...day 2n-2
, n] (33) (mei2-・kurij)][18]=d
iag [H... daily summary, day 53,...-day 2n-. ,
n] (Solving equation (33) or (34), 1; j
Or, if 18 is found, li is found from equation (28),
In FIG. 8, the amount of power supplied to the uniform conductor of the i-th paper is determined.

式(33)、式(34)の左辺の二つの行列の階数は等
しいから18,18‘ま必らず存在する。また行列式は
lナ2,‐2(刀i)l,ナ2日(刀i)lが零になら
なければ、必らず〔ナ21−・くりi)〕,〔ナ2,‐
,(りi)〕の逆行列が存在し、これを〔Qij〕,〔
8;i〕とすれば22,日掛,..,日2n・2,n〕
ニ〔QG〕diagそもそも18,18は
図8に於て(公一2).(幻一1)次の修正磁界を発生
する電流成分である。
Since the two matrices on the left side of equations (33) and (34) have the same rank, 18 and 18' necessarily exist. Also, the determinant is necessarily [Na21-・Curi i)], [Na2,-
, (rii)] exists, which can be expressed as [Qij], [
8;i], then 22, days, . .. , day 2n・2,n]
2 [QG] diag 18, 18 is originally shown in Figure 8 (Koichi 2). (Gen 1) This is a current component that generates the following correction magnetic field.

また(ナ2【‐2(刀j)〕の逆行列〔Qij〕のj列
の各元素にE2j‐2をかけたものであり、18は〔り
2日(りi)〕の逆行列〔8ij〕のi列の各元素にE
2j−,をかけたものであることが解る。また18,1
8‘ま添字iに従って、電流1,,12,13,・・・
・・・li,lnの一構成部分であってiに関するもの
であり、原点附近では次数(幻−2),(2j一1)の
修正磁界発生に関与する。以上のことから、〔qli〕
のi列の各元素は、次数(a−2)の修正磁界発生の為
の電圧E2i‐2を電流に変換する率を示しており同機
に〔8,j〕のi列の各元素は次数(a−1)の修正磁
界発生の為の電圧E2−,を電流に変換する率を示して
いる。
Also, E2j-2 is multiplied by each element in the j column of the inverse matrix [Qij] of (Na2 [-2 (sword j)], and 18 is the inverse matrix of [Ri2 (rii)]) 8ij] for each element in column i of
It can be seen that it is multiplied by 2j-,. Also 18,1
8'According to subscript i, current 1,,12,13,...
. . . It is a constituent part of li, ln and is related to i, and is involved in the generation of correction magnetic fields of orders (phantom-2) and (2j-1) near the origin. From the above, [qli]
Each element in the i column of [8, It shows the rate at which the voltage E2- for generating the corrected magnetic field in (a-1) is converted into a current.

第8図のもとで、Yの偶数次の磁場勾配を発生させる為
の付勢回路は、式(28)と式(37)に従ってEo,
E2,・…・・E2n‐2の出力電圧を発生するn個の
ポテンショメータ(可変電源)1と、行列〔Q,j〕の
各要素の値を利得とする増幅器2と加算増中器3とを用
いて例えば第9図の如くあらわすことができる。
Under FIG. 8, the energizing circuit for generating the even-order magnetic field gradient of Y is Eo, according to equation (28) and equation (37).
n potentiometers (variable power supplies) 1 that generate output voltages of E2,...E2n-2, an amplifier 2 whose gain is the value of each element of the matrix [Q, j], and a summing multiplier 3. It can be expressed using, for example, as shown in FIG.

同図において1,は1,=q,,Eo十Q,2E2十…
…Q,nE批‐2=1,.十1,2十……十1Mとなっ
て式(28)を満足し、同様に12,……lnも式(2
8)を満足することがわかる。
In the same figure, 1 is 1, = q, , Eo 10Q, 2E20...
...Q,nE-2=1,. 11, 20...11M, which satisfies equation (28), and similarly 12,...ln also satisfies equation (28).
It can be seen that 8) is satisfied.

従ってEoを変化させることによりY0成分を、E2を
変化させることによりY2成分を夫々独立に変化させる
ことができる。実用的にY2及びY4の磁場勾配を発生
させるのであれば※※均ーイD導体は2組でよく、従っ
て第9図の回路は第10図の様に簡単化される。以下に
その時の行列〔Qij〕を求める例を示す。
Therefore, by changing Eo, the Y0 component can be changed independently, and by changing E2, the Y2 component can be changed independently. If the magnetic field gradients of Y2 and Y4 are to be generated practically, two sets of D conductors are sufficient, and therefore the circuit shown in FIG. 9 can be simplified as shown in FIG. 10. An example of finding the matrix [Qij] at that time is shown below.

簡単のために直俊状均一化導体は磁極面上にある(即ち
夕=1)とし、rr=10とする。均一化導体の位遣り
は任意選択できるので、例えばQ2 =0.0 Q3
=1.2とする。そして先に述べた様に鰐‘まmヱ5飽
和、鰐胸=2飽和0するので(17)式にり2 =0.
6,m=5を又く21)式にり3 =1.2,m=2を
夫々代入すると、fp(り)は下表の如くなる。
For the sake of simplicity, it is assumed that the straight homogenizing conductor is on the magnetic pole face (ie, y = 1) and rr = 10. The position of the equalizing conductor can be selected arbitrarily, so for example, Q2 = 0.0 Q3
=1.2. And as mentioned earlier, crocodile breast = 2 saturation and 0 saturation, so according to equation (17), 2 = 0.
By substituting 3 = 1.2 and m = 2 into equation 21), which spans 6 and m = 5, fp(ri) becomes as shown in the table below.

表V 表Vは次数0を無視しているので、これを行列表示し、
この逆行列〔ナ2【‐2(りj〉〕‐1を求めると下式
が得られる。
Table V Table V ignores degree 0, so it is expressed as a matrix,
When this inverse matrix [na2[-2(rij〉]]-1 is found, the following formula is obtained.

(39)式の右辺の例の第例ま鯛総 帥−電流変灘を・第3列‘ま等雌る電庄 一電流変換率を夫々示している。The first example of the right-hand side of equation (39) Marshal - Electric current change, 3rd row 'Madomeru Densho' Each figure shows a current conversion rate.

従って(39)式より第10図におる各増中器2の利得
は第10図中の( )内の値にすればよく、この様にす
ることによりY2及びY4成分を夫々独立に変化させる
ことができる。同様にYの奇数次の磁場勾配を発生させ
る為の付勢回路は第11図の如くなる。
Therefore, from equation (39), the gain of each intensifier 2 in Fig. 10 can be set to the value in parentheses in Fig. 10, and by doing this, the Y2 and Y4 components can be changed independently. be able to. Similarly, an energizing circuit for generating an odd-numbered Y magnetic field gradient is shown in FIG.

同図において1,は1,=8,,E3十812E3十…
…BinE地−,=1,,十1,2十……十1・nとな
って式(28)を満足し同様にら,……lnも式(28
)を満足することがわかる。従ってE,を変化させるこ
とによりYI成分が、E3を変化させることによりY3
成分を、E5を変化させることによりY5成分を夫々独
立に変化させることができる。実用的にY1,Y3,淡
の磁場勾配を発生させるのであれば均一化導体は3組で
よく、第1 1図の回路は第12図の様に簡略化される
。この場合でも行列〔8,J〕は以下の様に求められる
In the same figure, 1 is 1, = 8, E3 812E3 0...
...BinE ground -, = 1,, 11, 20 ... 11 · n, satisfying the formula (28), and similarly, ... ln also has the formula (28
) is found to be satisfied. Therefore, by changing E, the YI component changes, and by changing E3, the Y3 component changes.
By changing E5, the Y5 component can be changed independently. If magnetic field gradients of Y1, Y3, and Y are to be generated practically, three sets of equalizing conductors are sufficient, and the circuit shown in FIG. 11 can be simplified as shown in FIG. 12. Even in this case, the matrix [8, J] can be obtained as follows.

先の例と同じくそ=1,〃r=10とし、りの値を例え
ばり,=0.414,り2 =0.7,り3 =1.0
錠偽胸職場胸=15,鯛胸=4,鰐胸:1で夫燭天。
As in the previous example, let = 1, 〃r = 10, and let the value of ri be, for example, = 0.414, ri2 = 0.7, ri3 = 1.0
Lock fake chest workplace chest = 15, sea bream chest = 4, crocodile chest: 1 and husband candle heaven.

す砂ら・式(15)に刀,白0.414,m=15を、
式(19)にり2=0.7.m=4を、式(23)にり
3 =1.0,m=1を夫々代入し、逆行列〔ナ2,‐
2(りi)〕‐1を求めると下式が得られる。
Susana, equation (15), sword, white 0.414, m=15,
Equation (19) 2=0.7. For m = 4, substitute 3 = 1.0 and m = 1 in equation (23), respectively, and create the inverse matrix [Na 2, -
2(rii)]-1, the following formula is obtained.

式(40)に従い、第12図における各増中器2の増中
率8ijを同図中の( )内の値を定めれば良い。
According to equation (40), the increase rate 8ij of each intensifier 2 in FIG. 12 may be determined by the value in parentheses in the figure.

上記はYの偶数次及び奇数次の磁場勾配を発生させるこ
とについての説明であったが、ZYのYの奇数次及び偶
数次についても均一化導体に電流を流す方向を第5図及
び第6図の様に定めることにより式(16),(18)
,(20),(22),(24)を用いて上記と全く同
様に行列を作ることにより、増幅器の増幅率を求め磁場
勾配を発生させることができる。
The above explanation was about generating magnetic field gradients for even and odd orders of Y, but the direction in which current flows through the equalizing conductor for odd and even orders of Y of ZY is also explained in Figures 5 and 6. By defining as shown in the figure, formulas (16) and (18)
, (20), (22), and (24) in exactly the same manner as above, it is possible to obtain the amplification factor of the amplifier and generate a magnetic field gradient.

第13図は上述の如き考え方に基づいて5次までのYの
奇数次及び偶数次則ちY,Y2,Y3,Y4,汐と5次
までのZYのYの奇数次及び偶数次郎ちZ,ZY,ZY
2,刀3,凶4を発生させるための実施例を示す。
Figure 13 shows the odd and even orders of Y up to the fifth order, namely Y, Y2, Y3, Y4, and the odd and even orders of Y up to the fifth order, Z, ZY, ZY
An example for generating 2, katana 3, and kaku 4 will be shown.

同図において4はポリイミドフィルム(厚さ50仏m)
製のフレキシブルプリント基板であり、該夫々の基板に
はS,〜S,oの10対(計20本)の平行直線プリン
トパターンがヱッチング処理により設けられている。こ
の直線プリントパターンが即ち均一化導体である。そし
て該基板は磁石装置の左右磁極面上に該磁極面の中心と
基板の中心oとを合致させると共にパターンが正確に正
対し、辺A同士及び辺B同士が×鞠方向に長さを持って
向き合うように取付けられる。更に上記均一化導体はS
,,S4,S7が第3図に、S2,S,。が第6図に、
S3,Ssが第4図に、蚤,S6,S8が第5図に夫々
示されている様な関係で電流が流れる様に結線され、S
,,S4,S7はY,Y3,$用付勢回路6へ、S2,
S,oはZY,Zで用付勢回路7へ、S3,S9はY2
,Y4用付勢回路8へ、ミ,S6,S8はZ,肉2,Z
Y4用付勢回路9へ夫々接続されている。夫々の付勢回
路は第10図又は第12図に示したものと全く同一の回
路構成であり、ただ増中器2の増中率のみは夫々の導体
の&瞳則ちりの値によって夫々求められる値となってい
る。この様な構成となせばS,,S4,S7によってY
,Y3,汐の磁場勾配が発生するため、ポテンショメー
タIY,IY3,IY5を操作することによりY,で,
$の磁場不均一成分を補正することができ、更にその他
の可変電源を操作することによりZ,ZY,ZZ,公3
,び4,Y2,Y4の磁場不均一成分を夫々独立に補正
することができる。尚、基板4の裏面に第13図と同一
のパターンをoを中心として900回転させて第14図
の様に設け、第13図と同一構成の付勢回路で付勢する
ようにすれば、Y方向の磁場不均一成分劇ち、×,X2
,X3,X4,X5,ZX,ZX2,ZX3,ZX4が
補正可能である。
In the figure, 4 is a polyimide film (thickness: 50 m)
This is a flexible printed circuit board made by the company, and each board is provided with 10 pairs (20 in total) of parallel linear printed patterns of S, - S, o by etching. This linear printed pattern is a uniform conductor. The substrate is arranged so that the center of the magnetic pole surface and the center o of the substrate match on the left and right magnetic pole surfaces of the magnet device, the patterns are exactly facing each other, and the sides A and B have lengths in the x direction. They are installed so that they face each other. Furthermore, the homogenizing conductor is S
,,S4,S7 are shown in FIG. 3, and S2,S,. is shown in Figure 6,
S3 and Ss are connected as shown in Figure 4, and S6 and S8 are connected as shown in Figure 5, so that current flows.
,, S4, S7 to Y, Y3, $ biasing circuit 6, S2,
S, o go to the energizing circuit 7 at ZY, Z, S3, S9 go to Y2
, to the biasing circuit 8 for Y4, Mi, S6, S8 are Z, meat 2, Z
They are respectively connected to the biasing circuit 9 for Y4. Each energizing circuit has exactly the same circuit configuration as that shown in Fig. 10 or Fig. 12, except that the intensification rate of the intensifier 2 is determined by the values of the pupil law and dust of each conductor. The value is as follows. With this configuration, S, , S4, and S7 yield Y
, Y3, because a magnetic field gradient occurs, Y, by operating the potentiometers IY, IY3, and IY5,
It is possible to correct the magnetic field inhomogeneity component of $, and furthermore, by operating other variable power supplies, Z, ZY, ZZ, public 3
, 4, Y2, and Y4 can be corrected independently. Incidentally, if the same pattern as shown in FIG. 13 is provided on the back surface of the substrate 4 by rotating it 900 times around o as shown in FIG. 14, and the same pattern as shown in FIG. Magnetic field inhomogeneous component play in Y direction, ×, X2
, X3, X4, X5, ZX, ZX2, ZX3, and ZX4 can be corrected.

この様に第13図の装置により調和関数(1,0),(
1,1),(1,1)′,(2,1),(2,1)′,
(3,1),(3,1)′,(3,3),(3,3)′
,(4,1),(4,1)′.(4,3),(4,3)
′即ち(1,0)と次数1〜4の位数1と3のものは直
ちに発生させることが出来る。
In this way, the harmonic function (1,0), (
1,1), (1,1)', (2,1), (2,1)',
(3,1), (3,1)', (3,3), (3,3)'
, (4,1), (4,1)'. (4,3), (4,3)
That is, (1, 0) and those of orders 1 and 3 of orders 1 to 4 can be generated immediately.

しかし調和関数(2,0),(2,2),(2,2)′
,(3,0),(3,2),(3,2)′,(4,0)
,(4,2),(4,2)′即ち次数2から4までの位
数0,2のものについては、第13図の装置で発生させ
た各次数の磁場勾配から表mにもとづいて合成する必要
がある。例えば(2,0),(2,2),(4,0),
(4,2)は第15図の如き付勢回路で合成可能である
。第15図における付勢回路は基本的に第10図に示し
た付勢回路を2つ並べたものであり、付勢回路10はX
2,X4の磁場勾配を、付勢回路11‘まY2.Y4の
磁場勾配を夫々発生させるべく夫々の2組の均ーイQ導
体へ電流を供給する。la,lbは夫々(2.0),(
2,2)の調和関数で表わされる磁場勾配を加減するた
めのポテンショメータであり、lc,ldは夫々(4,
0),(4,2)の調和関数で表わされる磁場勾配を加
減するためのボテンショメ−夕である。そして第15図
の回路では第10図の回路と異なり各ポテンショメータ
IX2,IX4,IY2,IY4と付勢回路10,1
1の入力との間に3つの入力端子を持つ加算増中器3a
,3b,3c,3dが介挿されており、そしてポテンシ
ョメータlaの出力は加算増中器3a及び3cへ送られ
ている。従ってポテンショメータlaを変えればX2の
磁場勾配とでの磁場勾配が同時に変わり、調和関数(2
,0)即ち(X2十Y2)の磁場勾配を発生させること
ができる。次にボテンショメータlbの出力は直接加算
増中器3aへ送られると共に反転回路12により反転さ
れて加算増中器3cへ送られる。そのため該ポテンショ
メ−タlbにより調和関数(2,2)則ち(X2一Y2
)の磁場勾配を発生させることができる。全く同様に可
変電源lc,ldも夫々調和関数(4,0),(4,2
)即ち(X4十Y4),(X4一Y4)の磁場勾配を発
生させるように夫々加算増中器3b,3dと接続されて
いる。その他の調和関数についても全く同様に発生可能
であることは言うまでもない。
However, the harmonic functions (2,0), (2,2), (2,2)′
, (3,0), (3,2), (3,2)', (4,0)
, (4, 2), (4, 2)', that is, orders 0 and 2 from orders 2 to 4, based on Table m from the magnetic field gradient of each order generated by the apparatus shown in Figure 13. need to be synthesized. For example (2,0), (2,2), (4,0),
(4, 2) can be synthesized using a biasing circuit as shown in FIG. The energizing circuit in FIG. 15 is basically two energizing circuits shown in FIG. 10 arranged side by side, and the energizing circuit 10 is
2, the magnetic field gradient of X4 is applied to the energizing circuit 11' or Y2. Current is supplied to each of the two sets of uniform Q conductors to generate a magnetic field gradient of Y4, respectively. la and lb are (2.0) and (
2, 2), and lc and ld are potentiometers for adjusting the magnetic field gradient expressed by harmonic functions of (4, 2), respectively.
This is a potentiometer for adjusting the magnetic field gradient expressed by a harmonic function of 0) and (4, 2). In the circuit of FIG. 15, unlike the circuit of FIG. 10, each potentiometer IX2, IX4, IY2, IY4 and the energizing circuit
Adding multiplier 3a having three input terminals between the input of
, 3b, 3c, and 3d are inserted, and the output of potentiometer la is sent to summing multipliers 3a and 3c. Therefore, if the potentiometer la is changed, the magnetic field gradient of X2 and the magnetic field gradient of
, 0), that is, a magnetic field gradient of (X2 + Y2) can be generated. Next, the output of the potentiometer lb is directly sent to the summing multiplier 3a, inverted by the inverting circuit 12, and sent to the summing multiplier 3c. Therefore, by using the potentiometer lb, the harmonic function (2, 2), that is, (X2 - Y2
) can be generated. In exactly the same way, variable power supplies lc and ld have harmonic functions (4,0) and (4,2
), that is, they are connected to adder intensifiers 3b and 3d, respectively, to generate magnetic field gradients of (X4 + Y4) and (X4 - Y4). It goes without saying that other harmonic functions can be generated in exactly the same way.

ただし(2,2)′(3,2)′,(4,2)′につい
てはX,Y成分を含むため、第14図に示されるパタ−
ンの均一化導体では発生不可能であり、式(25),(
26)の説明で述べた通り第14図のパターンをoを中
心として45o回転させたパターンも併せた第16図に
示す様なパターンが必要となる。さだし、表mから分る
ように、必要となるのはX2 ,×4,Z×2,Y2,
Y4,ZY2のみであるので均一化導体は第16図の如
くX2,X4用に2組、ZX2用に3組で計5組、又Y
2,Y4用に2組、ZY2用に3組で計5組夫々必要で
ある。各均一化導体は第15図に示した回路例と同様な
回路で付勢され、従って(2,2)′則ち(×2一Y2
)の調和関数をはじめ(3,2)′即ち(ZX2−ZY
2)及び(4,2)′郎ち(X4−Y4)の夫々の調和
関数で表わされるところの磁場勾配を発生させることが
できる。
However, since (2, 2)' (3, 2)' and (4, 2)' include X and Y components, the pattern shown in Figure 14 is
This cannot occur in a uniform conductor of
As mentioned in the explanation of 26), a pattern as shown in FIG. 16 is required, including a pattern obtained by rotating the pattern in FIG. 14 by 45° around o. However, as you can see from Table m, the required values are X2, ×4, Z×2, Y2,
Since there are only Y4 and ZY2, there are a total of 5 sets of equalizing conductors, 2 sets for X2 and X4 and 3 sets for ZX2, as shown in Figure 16.
2, 2 sets for Y4 and 3 sets for ZY2, a total of 5 sets are required. Each equalizing conductor is energized by a circuit similar to the example circuit shown in FIG.
), including the harmonic function of (3,2)′, that is, (ZX2−ZY
It is possible to generate magnetic field gradients represented by the respective harmonic functions of 2) and (4,2)'rochi (X4-Y4).

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は磁極間の任意の点Pに発生0する磁
界の分圧Hzを説明するための図、第3図〜第6図は磁
極間における均一化導体の配置を説明するための図、第
7図は鏡像の影響を説明するための図、第9図は磁極間
に配置された4本1組、n組の均一化導体を説明するた
めの図、第9タ図〜第12図は均一化導体を付勢するた
めの回路を示す図、第13図は均一化導体のパターンと
付勢回路との結線を示す実施例図、第14図及び第16
図はその他の均一化導体のパターンを示す図、第15図
は付勢回路のその他の例を示す図で0ある。 1:ポテンショメータ、2:増中器、3:加算増中器、
4:フレキシブルプリント基板、6,7,8,9,10
,11:付勢回路、12:反転回路。 第1図 第2図 第3図 第4図 第5図 第6図 第10図 第7図 第9図 第11図 第12図 第13図 第14図 第15図 第16図
Figures 1 and 2 are diagrams for explaining the partial pressure Hz of the magnetic field generated at any point P between the magnetic poles, and Figures 3 to 6 are diagrams for explaining the arrangement of the equalizing conductor between the magnetic poles. Figure 7 is a diagram to explain the effect of mirror image, Figure 9 is a diagram to explain 4 sets and n sets of equalizing conductors arranged between magnetic poles, Figure 9 is a diagram to explain the effect of mirror image. - Figure 12 is a diagram showing a circuit for energizing the equalizing conductor, Figure 13 is an example diagram showing the connection between the equalizing conductor pattern and the energizing circuit, and Figures 14 and 16.
The figure shows another pattern of the equalizing conductor, and FIG. 15 is a diagram showing another example of the energizing circuit. 1: Potentiometer, 2: Multiplier, 3: Addition multiplier,
4: Flexible printed circuit board, 6, 7, 8, 9, 10
, 11: energizing circuit, 12: inverting circuit. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 10 Figure 7 Figure 9 Figure 11 Figure 12 Figure 13 Figure 14 Figure 15 Figure 16

Claims (1)

【特許請求の範囲】 1 磁極中心軸からの距離が等しく互いに平行な2対の
直線状均一化導体を磁極面に平行な面方向に向けて磁極
間隙内に対称的に配置し、上記2対の直線状均一化導体
を直列接続して1組となし、磁極中心軸からの距離の異
なる均一化導体を複数組設け、これら複数組の均一化導
体に夫々供給する電流値を予め定めた比率を保って変化
させるための電源手段を設けてことを特徴とする磁界均
一化装置。 2 磁極中心軸からの距離が等しく互いに平行な2対の
直線状均一化導体を磁極面に平行な面方向に向けて磁極
間隙内に対称的に配置し、上記2対の直線上均一化導体
を直列接続して1組となし、磁極中心軸からの距離の異
なる均一化導体を複数組設けて均一化導体群となし、該
均一化導体群を複数群設け、夫々の均一化導体群に属す
る複数組の均一化導体に夫々供給する電流値を予め定め
た比率を保って変化させるための前記均一化導体群の数
に対応する数の電源手段を設けたことを特徴とする磁界
均一化装置。 3 前記均一化導体群は2群設けられ、夫々の均一化導
体群は90°の角度を成して配置される特許請求の範囲
第2項記載の磁界均一化装置。 4 前記均一化導体群は3群設けられ、各々の均一化導
体群は互いに45°の角度を成して配置される特許請求
の範囲第2項記載の磁界均一化装置。 5 磁極中心軸からの距離が等しく互いに平行な2対の
直線状均一化導体を磁極面に平行な面方向に向けて磁極
間隙内に対称的に配置し、上記2対の直線状均一化導体
を直列接続して1組となし、磁極中心軸からの距離の異
なる均一化導体を複数組設けて均一化導体群となし、該
均一化導体群を複数群設け、該複数の均一化導体群にわ
たって存在する複数組の均一化導体に夫々供給する電流
値を予め定めた比率を保って変化させるための電源手段
を設けてことを特徴とする磁界均一化装置。 6 前記均一化導体群は2群設けられ、夫々の均一化導
体群は90°の角度を成して配置される特許請求の範囲
第5項記載の磁界均一化装置。 7 前記均一化導体群は3群設けられ、各々の均一化導
体群は互いに45°の角度を成して配置される特許請求
の範囲第5項記載の磁界均一化装置。
[Scope of Claims] 1. Two pairs of linear equalizing conductors that are parallel to each other and have equal distances from the central axis of the magnetic poles are arranged symmetrically within the magnetic pole gap in a direction parallel to the magnetic pole surface, and linear equalizing conductors are connected in series to form one set, multiple sets of equalizing conductors are provided at different distances from the central axis of the magnetic pole, and the current values supplied to each of these multiple sets of equalizing conductors are set at a predetermined ratio. 1. A magnetic field equalizing device characterized by comprising a power supply means for maintaining and changing the magnetic field. 2. Two pairs of linear equalizing conductors having equal distances from the magnetic pole center axis and parallel to each other are arranged symmetrically within the magnetic pole gap in a plane direction parallel to the magnetic pole surface, and the two pairs of linear equalizing conductors are connected in series to form one set, multiple sets of equalizing conductors with different distances from the central axis of the magnetic pole are provided to form a equalizing conductor group, multiple groups of equalizing conductors are provided, and each equalizing conductor group is Magnetic field homogenization, characterized in that a number of power supply means corresponding to the number of the homogenization conductor groups is provided for changing the current value supplied to each of the plurality of homogenization conductor groups while maintaining a predetermined ratio. Device. 3. The magnetic field homogenizing device according to claim 2, wherein two groups of the homogenizing conductors are provided, and the respective homogenizing conductor groups are arranged at an angle of 90 degrees. 4. The magnetic field homogenizing device according to claim 2, wherein three groups of the homogenizing conductors are provided, and each of the homogenizing conductor groups is arranged at an angle of 45° with respect to each other. 5. Two pairs of linear equalizing conductors having equal distances from the magnetic pole center axis and parallel to each other are arranged symmetrically within the magnetic pole gap in a plane direction parallel to the magnetic pole surface, and the two pairs of linear equalizing conductors are connected in series to form one set, a plurality of sets of equalizing conductors having different distances from the central axis of the magnetic pole are provided to form a equalizing conductor group, a plurality of equalizing conductor groups are provided, and the plurality of equalizing conductor groups are provided. 1. A magnetic field equalizing device comprising power supply means for changing the current value supplied to each of a plurality of sets of equalizing conductors existing over the area while maintaining a predetermined ratio. 6. The magnetic field homogenizing device according to claim 5, wherein two groups of the homogenizing conductors are provided, and the respective homogenizing conductor groups are arranged at an angle of 90°. 7. The magnetic field homogenizing device according to claim 5, wherein three groups of the equalizing conductors are provided, and each of the equalizing conductor groups is arranged at an angle of 45° with respect to each other.
JP53130632A 1978-10-24 1978-10-24 Magnetic field equalizer Expired JPS6013472B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53130632A JPS6013472B2 (en) 1978-10-24 1978-10-24 Magnetic field equalizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53130632A JPS6013472B2 (en) 1978-10-24 1978-10-24 Magnetic field equalizer

Publications (2)

Publication Number Publication Date
JPS5557139A JPS5557139A (en) 1980-04-26
JPS6013472B2 true JPS6013472B2 (en) 1985-04-08

Family

ID=15038879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53130632A Expired JPS6013472B2 (en) 1978-10-24 1978-10-24 Magnetic field equalizer

Country Status (1)

Country Link
JP (1) JPS6013472B2 (en)

Also Published As

Publication number Publication date
JPS5557139A (en) 1980-04-26

Similar Documents

Publication Publication Date Title
US11350840B2 (en) Magnetic sensor, biological cell sensing device, and diagnostic device
US3622869A (en) Homogenizing coils for nmr apparatus
EP0957368B1 (en) RF coils for magnetic resonance imaging
Bijnens et al. Chiral perturbation theory
US7351194B2 (en) Arrangement for influencing magnetic particles
WO2007108190A1 (en) Magnetic resonance imager and rf coil for magnetic resonance imager
US5760582A (en) Optimized gradient coils and shim coils for magnetic resonance scanning systems
JPS5985651A (en) Nuclear magnetic resonance apparatus for diagnosis
KR20010007447A (en) Method of manufacturing gradient coil, gradient coil unit, gradient coil and mri apparatus
JPS6195235A (en) Winding device which generate additional field in magnet with polarized pole piece for forming image by nuclear magnetic resonance and obtain polarized field having fixed gradient
US6107974A (en) Apparatus and method of generating an RF field
EP0154996B1 (en) Magnetic resonance imaging apparatus using shim coil correction
US5914600A (en) Planar open solenoidal magnet MRI system
US3469180A (en) Apparatus for improving the homogeneity of a magnetic field
JPS6013472B2 (en) Magnetic field equalizer
JPS62256418A (en) Coil apparatus for generating magnetic field inclination
JPH07303621A (en) Rf coil for mri
GB2213595A (en) Magnetic field coils
JP2958549B2 (en) Static magnetic field drift correction coil and static magnetic field drift correction method
JP4393234B2 (en) Magnetic resonance imaging system
Rigden Molecular Beam Experiments on the Hydrogens during the 1930s
JP3372098B2 (en) Static magnetic field generator for magnetic resonance imaging
JPS6384537A (en) Magnetic resonance imaging apparatus
Biro et al. A/sub r/formulation using edge elements, for the calculation of 3-D fields in superconducting magnets
Pradines et al. Impact of the electric field on isotropic and anisotropic spin Hamiltonian parameters