JPS60134210A - Connecting method of multicored optical fiber - Google Patents

Connecting method of multicored optical fiber

Info

Publication number
JPS60134210A
JPS60134210A JP24351283A JP24351283A JPS60134210A JP S60134210 A JPS60134210 A JP S60134210A JP 24351283 A JP24351283 A JP 24351283A JP 24351283 A JP24351283 A JP 24351283A JP S60134210 A JPS60134210 A JP S60134210A
Authority
JP
Japan
Prior art keywords
core
optical fiber
center
fibers
optical fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24351283A
Other languages
Japanese (ja)
Inventor
Kengo Imon
井門 健悟
Yukinori Ishida
石田 之則
Masamitsu Tokuda
正満 徳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP24351283A priority Critical patent/JPS60134210A/en
Publication of JPS60134210A publication Critical patent/JPS60134210A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/381Dismountable connectors, i.e. comprising plugs of the ferrule type, e.g. fibre ends embedded in ferrules, connecting a pair of fibres
    • G02B6/3825Dismountable connectors, i.e. comprising plugs of the ferrule type, e.g. fibre ends embedded in ferrules, connecting a pair of fibres with an intermediate part, e.g. adapter, receptacle, linking two plugs
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3833Details of mounting fibres in ferrules; Assembly methods; Manufacture
    • G02B6/3855Details of mounting fibres in ferrules; Assembly methods; Manufacture characterised by the method of anchoring or fixing the fibre within the ferrule
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3873Connectors using guide surfaces for aligning ferrule ends, e.g. tubes, sleeves, V-grooves, rods, pins, balls
    • G02B6/3874Connectors using guide surfaces for aligning ferrule ends, e.g. tubes, sleeves, V-grooves, rods, pins, balls using tubes, sleeves to align ferrules
    • G02B6/3877Split sleeves
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/40Mechanical coupling means having fibre bundle mating means
    • G02B6/403Mechanical coupling means having fibre bundle mating means of the ferrule type, connecting a pair of ferrules

Abstract

PURPOSE:To enable realization of connection with high density and to perform setting of the central position with high accuracy with respect to the outside circumference of a core having just a simple circular shape and control of the hole diameter by making use of one core in connecting fibers. CONSTITUTION:A pair of plugs 10 are connected to an adapter 20. The positioning key 11 of each plug 10 is engaged with the engaging groove 21 of the adapter 20 to position circumferentially a core 30. A clad is removed from the end of a clad optical fiber 1 to expose optical fibers 2. A circular cylindrical body 2' (an optical fiber may be used as a dummy) having the max. outside diameter is disposed at the center of the many optical fibers 2 and thereafter the multicored fibers 2 are assembled by a heat shrinkable tube 40. The central dummy fiber 2' is provided at the center and the fibers 2 are provided on the outside. The top ends of the seven-cored fibers 2, 2' are assembled into a hexagonal shape by the shrinkage force acted toward the center when the tube 40 heated to shrink, by which an optical fiber bundle is formed. The core 30 is inserted into a split sleeve 22 in the stage of connecting.

Description

【発明の詳細な説明】 本発明は多心の光ファイバを中子を用いて接続する方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of connecting multi-core optical fibers using a core.

従来、多心光ファイバの接続方法において、多心光ファ
イバの接続端に取付けた中子を収納する一対のプラグ七
、該プラグ同士を着脱自在に接続するアダプタとからな
る多心光フアイバコネクタを用いる方法が知られている
。この様なコネクタにおいては光ファイバの位置決めが
重要な課題となる。第1図に光ファイバの位置決めのた
めに多数の中子を利用した例を示す。
Conventionally, in a method for connecting multi-core optical fibers, a multi-core optical fiber connector is used, which consists of a pair of plugs 7 that house cores attached to the connecting ends of multi-core optical fibers, and an adapter that connects the plugs to each other in a detachable manner. The methods used are known. In such connectors, positioning of the optical fibers is an important issue. FIG. 1 shows an example in which a large number of cores are used for positioning an optical fiber.

図において1は被覆光ファイバ、2は光ファイバ、3は
中子、4は中子3の一端面の中心に設けた位置決め穴で
ある。この様な方法では、多心の光ファイバを位置決め
するために光ファイバ2の心線数と等しい個数の中子3
を必要とするばかシか、光ファイバ2の位置決めは各々
の中子3の位置決め穴4に1心づつ光ファイバ2を挿入
し、その後中子3を集合させる作業を必要とするから、
高精度の位置決めが可能となるものの、■多数の中子を
使用しているためコネクタの容積が大きくなり高密度化
が不可能となること、■光ファイバを1心づつ中子に接
着固定するため作業性がよくないこと等の欠点があった
In the figure, 1 is a coated optical fiber, 2 is an optical fiber, 3 is a core, and 4 is a positioning hole provided at the center of one end surface of the core 3. In this method, the number of cores 3 equal to the number of cores of the optical fiber 2 is used to position the multi-core optical fiber.
However, positioning the optical fiber 2 requires inserting the optical fiber 2 one by one into the positioning hole 4 of each core 3, and then assembling the cores 3.
Although high-precision positioning is possible, ■The volume of the connector becomes large due to the use of a large number of cores, making it impossible to increase the density. ■The optical fibers are fixed to the core one by one by adhesive bonding. Therefore, there were drawbacks such as poor workability.

次に、第2図に1個の中子を利用した例を示す。図にお
いて1は被覆光ファイバ、21d光7アイバ、5は中子
、6は中子5の一端面の中心に設けた位置決め穴で、第
3図に拡大して示すとおり、円周方向の位置決めをする
ために内周が多角形状となっている。かかる中子5によ
れば前述したカロき欠点は除去できるが、内周が多角形
状となっているため、1.0μm以下の精密加工が不可
能であるという欠点があった。また、第2図に示すと同
様の構成で、位置決め穴6の内周形状を円形としたもの
も提案されている。
Next, FIG. 2 shows an example in which one core is used. In the figure, 1 is a coated optical fiber, 21d optical fiber 7, 5 is a core, and 6 is a positioning hole provided at the center of one end surface of the core 5. As shown in the enlarged view in Figure 3, positioning in the circumferential direction is The inner periphery is polygonal in order to Although such a core 5 can eliminate the above-mentioned roundness defect, since the inner periphery is polygonal, there is a drawback that precision machining of 1.0 μm or less is impossible. Furthermore, a structure similar to that shown in FIG. 2 but with a circular inner peripheral shape of the positioning hole 6 has also been proposed.

この円形タイプのものでは穴の精密加工は容易であるも
のの、元ファイバ2の外径をすべて等しくしないと高精
度々光ファイバ軸の位置決めができないという問題点が
あった。ところが、現在製造されている光ファイバの外
径は12214n〜128μmといった分布を持つため
、単に多心の光ファイバを光フアイバ位置決め穴に挿入
させて集合したたけでは低損失々多心光ファイバの接続
を実現できないという欠点があった。
Although precision machining of the hole is easy in this circular type, there is a problem in that the optical fiber axis cannot be positioned with high precision unless all the outer diameters of the original fibers 2 are made equal. However, since the outer diameter of currently manufactured optical fibers has a distribution of 12214n to 128μm, it is not possible to connect multi-core optical fibers with low loss by simply inserting the multi-core optical fibers into the optical fiber positioning hole and assembling them together. The disadvantage was that it could not be realized.

本発明はこれらの欠点を除去するため、多数の光ファイ
バの中心に中心外のすべての光ファイバと接する大きさ
の直径を持つ円柱体を設けた上で、外部から中心方向へ
の力を加え、多数の光ファイバを集合させて光ファイバ
束を形成し、該光ファイバ束を中子の位置決め穴に挿入
In order to eliminate these drawbacks, the present invention provides a cylindrical body with a diameter large enough to contact all the optical fibers outside the center at the center of a large number of optical fibers, and then applies a force from the outside toward the center. , A large number of optical fibers are assembled to form an optical fiber bundle, and the optical fiber bundle is inserted into the positioning hole of the core.

固定すること、また、該挿入、固定と同時に、プラグの
円周部に前記中子の円周方向の位置決めキーを取付ける
ようにしたもので、その目的は多心光ファイバの接続に
当シ位瞳決め精度を向上させることにある。以下図面に
ついて詳細に説明する。
At the same time as the insertion and fixing, a positioning key in the circumferential direction of the core is attached to the circumference of the plug.The purpose is to connect multi-core optical fibers. The objective is to improve the accuracy of pupil determination. The drawings will be explained in detail below.

第4図乃至第8図は本発明の一実施例を示すものである
。なお、従来例と同一構成部分は同一符号をもって表わ
す。第4図は本発明方法に用いる接続具の一例を示すも
ので、一対のプラグ10(図では一方のみを示す)と該
プラグ10を着脱自在に結合するアダプタ20とからな
る。
FIGS. 4 to 8 show an embodiment of the present invention. Note that the same components as in the conventional example are represented by the same reference numerals. FIG. 4 shows an example of a connector used in the method of the present invention, which consists of a pair of plugs 10 (only one is shown in the figure) and an adapter 20 that connects the plugs 10 in a detachable manner.

11はプラグ10の外周縁部に取付けた位置決めキーで
、アダプタ20の係合溝21に係合し、プラグ10の中
心軸上に収納された中子30の円周方向の位置決めを行
うようになっている。
Reference numeral 11 denotes a positioning key attached to the outer peripheral edge of the plug 10, which engages with the engagement groove 21 of the adapter 20 and positions the core 30 housed on the central axis of the plug 10 in the circumferential direction. It has become.

12はカップリングナツト、13はカバー、14はスプ
リング、22は前記中子30の先端部を強制的に嵌入し
得る割スリーブである。なお、この接続具は前記位置決
めキー11.係合溝21゜中子30の内部構成を除き既
知なので、詳細な説明を省略する。第5図−は中子3o
の拡大断面図であって、図中31は鍔部、32は円形の
位置決め穴(第6図参照)、4oは熱収縮性チューブで
ある。
12 is a coupling nut, 13 is a cover, 14 is a spring, and 22 is a split sleeve into which the tip of the core 30 can be forcibly inserted. Note that this connecting tool is connected to the positioning key 11. The engaging groove 21° is known except for the internal structure of the core 30, so a detailed explanation will be omitted. Figure 5- is the core 3o
In the figure, 31 is a flange, 32 is a circular positioning hole (see FIG. 6), and 4o is a heat-shrinkable tube.

次に本発明の接続方法を説明する。捷ず、被覆光ファイ
バ1の端部から被覆を除去し、光ファイバ2を露出状態
とする。同様の作業をくり返し、多数の光ファイバ2を
得たのちそれらの中心に最大の外径をもつ円柱体(光フ
ァイバをダミーとして利用してもよい。)2′を配置し
た後、熱収縮チューブ40で多心の光ファイバ2を集合
させる。以下では6心の光ファイバで中心にダミーファ
イバを配置した場合について説明する。第6図は光ファ
イバ2とダミーファイバ2Iの配列状況を示す。2tは
中心にあるダミーファイバでアリ、ダミーファイバ2I
の直径は他の光ファイバ2の直径より小さくない。熱収
縮チューブ40を加熱することにより、外部から中心方
向への収縮力を働かせ7心の光ファイバ2゜2′の先端
部を六角形状に集合し、光ファイバ束を形成する。
Next, the connection method of the present invention will be explained. The coating is removed from the end of the coated optical fiber 1 without being separated, leaving the optical fiber 2 exposed. After repeating the same operation and obtaining a large number of optical fibers 2, a cylindrical body (an optical fiber may be used as a dummy) 2' with the largest outer diameter is placed in the center of them, and then a heat shrink tube is placed. At 40, the multi-core optical fibers 2 are assembled. In the following, a case will be described in which a dummy fiber is arranged at the center of a six-core optical fiber. FIG. 6 shows the arrangement of the optical fiber 2 and the dummy fiber 2I. 2t is the dummy fiber in the center, dummy fiber 2I
is not smaller than the diameter of the other optical fibers 2. By heating the heat-shrinkable tube 40, a shrinking force is exerted from the outside toward the center, and the tips of the seven optical fibers 2.about.2' are assembled into a hexagonal shape to form an optical fiber bundle.

次に集合した光ファイバ束に最適な位置決め穴径をもつ
中子30を選択する。367μmから1μInきざみで
385μmtでの内径をもつ位置決め穴32をあけた多
種類の中子30を用意しておき、光ファイバ束を内径の
大きい位置決め穴コ(2をもつ中子3Oから順次挿入し
ていく。
Next, a core 30 having the optimum positioning hole diameter for the assembled optical fiber bundle is selected. Prepare various types of cores 30 in which positioning holes 32 with inner diameters of 385 μmt are drilled in steps of 1 μIn from 367 μm, and insert optical fiber bundles sequentially from the cores 3O with the positioning holes (2) with large inner diameters. To go.

挿入できなくなった中子30より1μ口l大きい穴径を
もつ中子30を最適な中子30として選択する。これに
よシ光ファイバ束と位置決め穴とのクリアランスを1μ
m以下にすることができる。
A core 30 having a hole diameter 1 μl larger than the core 30 that cannot be inserted is selected as the optimal core 30. This allows the clearance between the optical fiber bundle and the positioning hole to be 1μ.
m or less.

選択した中子3Oに光ファイバ束をエポキシ系接着剤で
固定する。接着剤が十分固1つだ後、中子及び光ファイ
バ束の端面を研磨し適正なつき合せ端面、]0 aを得
る。以上の作業を完了した中子30をプラグ10に収納
する。
The optical fiber bundle is fixed to the selected core 3O with epoxy adhesive. After the adhesive has sufficiently hardened, the end faces of the core and optical fiber bundle are polished to obtain a proper mating end face, ]0a. The core 30 that has completed the above operations is stored in the plug 10.

次に円周方向の位置決めを行う。このためにマスタプラ
グ(図示せず)を用いる。マスタプラグも第5図と同様
な構造であシ、中心にダミーファイバがあシその周囲に
6尼・の光ファイバが配置されている。円周上の1番目
の光ファイバには500 mのダミーファイバを通して
、波長0.85μmのLED光源がつながっている。5
00mのダミーファイバは定常モードを得るために入れ
ている。このマスタプラグと前述の如く構成した中子3
0を収納してなるプラグ10とをアダプタ20を用いて
つき合せることにより接続した後、プラグlOに取シつ
けた1番目の光ファイバからくる光を光パワーメークに
よりモニタする。モニタしながらプラグ1oの中子3゜
を回転させるこ表により最大パワーが伝達する位置を見
つけ、プラグ10の円周部に円周方向の位置決めキー1
1を取りつけ固定する。同様にして、他のプラグを構成
し、両者をアダプタ20で結合する。
Next, positioning in the circumferential direction is performed. A master plug (not shown) is used for this purpose. The master plug also has a structure similar to that shown in FIG. 5, with a dummy fiber in the center and 6 mm optical fibers arranged around it. An LED light source with a wavelength of 0.85 μm is connected to the first optical fiber on the circumference through a 500 m dummy fiber. 5
A 00m dummy fiber is inserted to obtain a steady mode. This master plug and the core 3 configured as described above
After connecting the plug 10 which houses the plug 10 using the adapter 20, the light coming from the first optical fiber attached to the plug 10 is monitored by optical power make. While monitoring, rotate the core 3 degrees of the plug 1o to find the position where maximum power is transmitted, and place the positioning key 1 in the circumferential direction on the circumference of the plug 10.
Attach and secure 1. Similarly, other plugs are constructed and both are connected using the adapter 20.

次に位置決めキー11の取り付は精度について説明する
。位置決めキー11の取り付(位置の中子30中心から
の半径’t 5.0 rmとする。一方、6−心の光フ
ァイバの中心軸の中子中心から)半径は125μm&度
である。そこで1半径5.0鰭上の1点に位置決めキー
11を固定する場合の取り付は誤差を40μm以下とす
ると、光ファイ/この中心軸の軸ずれ誤差は、 1μm以下となる。40μm程度の位置決めは容易であ
るので、円周方向の位置決めは、位置決めキー11によ
り高精度に実現できる。
Next, the accuracy of mounting the positioning key 11 will be explained. The mounting radius of the positioning key 11 (radius 't from the center of the positioning core 30 is 5.0 rm. On the other hand, the radius from the center of the core of the central axis of the 6-fiber optical fiber) is 125 μm & degree. Therefore, when the positioning key 11 is fixed at one point on the fin with a radius of 5.0 mm, if the installation error is 40 μm or less, the misalignment error of the optical fiber/this central axis will be 1 μm or less. Since positioning of about 40 μm is easy, positioning in the circumferential direction can be achieved with high accuracy using the positioning key 11.

次に光ファイバの外径差によるコネクタ損失について評
価する。ここではコアの偏心について考慮する必要があ
るが、グレーディト型光ファイ・ぐの製造実績より、コ
アの゛偏心は平均0.68μmであシ、主要なコネクタ
損失の要因とはならないので除外する。現在製造されて
いる光ファイバの外径の規格は122〜128/7mで
あるため単純に、7心の光ファイバを1つの位置決め穴
32に挿入しただけでは高精度の位置決めを行うことが
できない。また中心方向への力を加えて集合させた場合
でも中心のダミーファイバ2′の外径が他の6心の光コ
アイノζ2の外径より小さい時には、中心のダミーファ
イ、6に接しない光ファイ、Fが存在するため、光ファ
イバの中心軸の変動域が大きくなりコネクタ損失が太き
くなる。第7図に6心の光コアイノぐ2を中心のダミー
ファイ・S2′の周囲に熱収縮チューブ40で集合させ
た状態を示す。ダミー7アイ、!!2/の直径をdo、
円周上に並んだ光ファイノセ2の直径をdi(i=]〜
6)1円周上に生じる光フアイバ中心軸の最大ずれをD
とすると近似的に(1)式が成立する。
Next, we will evaluate the connector loss due to the difference in the outer diameter of the optical fiber. Here, it is necessary to consider the eccentricity of the core, but based on the manufacturing experience of graded optical fibers, the eccentricity of the core is 0.68 μm on average, and is not a major cause of connector loss, so it is excluded. Since the outer diameter standard of currently manufactured optical fibers is 122 to 128/7 m, highly accurate positioning cannot be achieved simply by inserting a seven-core optical fiber into one positioning hole 32. Furthermore, even if the central dummy fiber 2' is assembled by applying a force toward the center, if the outer diameter of the central dummy fiber 2' is smaller than the outer diameter of the other six optical cores ζ2, the optical fibers that are not in contact with the central dummy fiber 2' , F, the fluctuation range of the central axis of the optical fiber becomes large and the connector loss increases. FIG. 7 shows a state in which six optical core ingots 2 are assembled around a central dummy fiber S2' with a heat shrink tube 40. Dummy 7 eye! ! Do the diameter of 2/,
The diameter of the optical fiber cells 2 arranged on the circumference is di(i=] ~
6) The maximum deviation of the optical fiber center axis that occurs on one circumference is D
Then, equation (1) approximately holds true.

D=6do−Σ di (μm) l1li=1 グレーディト型光ファイバにおいて軸ずれDによりもた
らされるコネクタ損失りは、(2)式で表わされる。
D=6do-Σ di (μm) l1li=1 The connector loss caused by the axis misalignment D in the graded optical fiber is expressed by equation (2).

、、3 L = −D (d B ) (2) ただし、aはコアの直径である。下記の表Iに実験で用
いた光コアイノ々の外径及びコア径を示す。0)式によ
り最大ずれDは、2.8μ「nと計算できる。2 、8
11mの軸ずれによりもたらされるコネクタ損失は(2
)式より0.17dBとなる。
,,3 L = −D (d B ) (2) where a is the diameter of the core. Table I below shows the outer diameters and core diameters of the optical cores used in the experiments. 0), the maximum deviation D can be calculated as 2.8μ'n.2,8
The connector loss caused by an 11m misalignment is (2
) is 0.17 dB.

前述したように、本発明方法では1心の光ファイバにつ
いてコネクタ損失をモニタすることにより、円周方向の
位置決めを行ったが、円周方向の最大軸ずれを調べるた
め6心金部の光ファイAについて円周方向の位置決めを
行いコネクタ損失の変動を調べた。その結果を下記の表
Hに示す。表■の1番目の光ファイ、Sの最小コネクタ
損失は1番目の光ファイバについて円周方向の位置合せ
thつた場合のコネクタ損失である。また2番目の光コ
アイノ々の最大コネクタ損失は以下の方法でめた。即ち
、3番目(1ヰ1 )の光ファイバについて回転方向の
位置決めを行った場合、1番目の光ファイバのコネクタ
損失は1番目について位置決めを行った場合よりコネク
タ損失が大きくなる。Jを1〜6と変化させた時のコネ
クタ損失の最大値を最大コネクタ損失とした。コネクタ
損失の最大と最小との差は、円周方向の最大軸ずれによ
るものであシ、表Hより平均値は帆19dBとなってい
る。
As mentioned above, in the method of the present invention, positioning in the circumferential direction was performed by monitoring the connector loss for a single-core optical fiber. Positioning of A was performed in the circumferential direction, and variations in connector loss were investigated. The results are shown in Table H below. The minimum connector loss of the first optical fiber, S, in Table 3 is the connector loss when the first optical fiber is aligned th in the circumferential direction. The maximum connector loss of the second optical core was determined using the following method. That is, when positioning the third (1-1) optical fiber in the rotational direction, the connector loss of the first optical fiber becomes greater than when positioning the first optical fiber. The maximum value of connector loss when J was varied from 1 to 6 was defined as the maximum connector loss. The difference between the maximum and minimum connector loss is due to the maximum axis deviation in the circumferential direction, and from Table H, the average value is 19 dB.

この値は前述した計算によ請求めたコネクタ損失0.1
7dBとよく一致している。このように中心に半径最大
の光ファイバ等を配置することによシ、軸ずれを小さく
かつ円周方向の軸ずれの最大値を評価することができる
This value corresponds to the connector loss of 0.1 calculated using the calculation described above.
It is in good agreement with 7dB. By arranging the optical fiber or the like with the largest radius at the center in this way, it is possible to reduce the axial deviation and to evaluate the maximum value of the axial deviation in the circumferential direction.

最後に本発明方法により接続したものを6組作成しコネ
クタ損失を評価したところマツチングオイルを用いて平
均0.27dB(最大0.51dB、最小帆12 dB
)と低損失なコネクタを実現することができた。その結
果を第8図に示す。
Finally, we created 6 sets connected by the method of the present invention and evaluated the connector loss using matching oil.
) and realized a low-loss connector. The results are shown in FIG.

表−■−コネクタ損失の変動 なお、本発明方法によシ構成された中子は多数の光ファ
イバを点対称に位置決めしているため、中子部分に回転
機構を備えることによシ、多数の光ファイバを接続する
ロータリースイッチを構成することも可能である。
Table - ■ - Variation of connector loss Note that the core constructed by the method of the present invention positions a large number of optical fibers point-symmetrically, so by providing a rotation mechanism in the core portion, a large number of optical fibers can be It is also possible to configure a rotary switch that connects two optical fibers.

以上説明したように本発明は1個の中子を利用しておシ
、従来の接続方法のように多数の中子を必要としないた
め、高密度な接続を実現できる。また位置決め穴の形状
は複雑な多角形でなく単純な円形でよいから、中子の外
周に対して高精度な中心位置の設定及び穴径のコン)。
As explained above, the present invention uses one core and does not require a large number of cores unlike the conventional connection method, so that high-density connections can be realized. In addition, since the shape of the positioning hole may be a simple circle rather than a complicated polygon, it is possible to set the center position with high accuracy and control the hole diameter with respect to the outer periphery of the core.

−ルが可能であり、高精度な位置決め穴の加工ができる
。また、中心に中心外のすべての光ファイバと接する大
きさの直径をもつ円柱体を設け、中心方向への力を加え
ることにより多数の光ファイバを集合させるのであるか
ら、円周上のすべての光ファイバは中心の円柱体に接す
るため、円周上の光ファイバの中心軸の変動域を狭くす
ることができ、従って低損失な接続を実現できる。さら
に円周方向の位置決めはプラグの円周上に取シつけた位
置決めキーで行うが、位置決めキーの設定位置は光フア
イバ中心軸と比較して、十分大きな半径をもつため高精
度の円周方向の位置決めが可能である等の利点がある。
- It is possible to machine high-precision positioning holes. In addition, a cylindrical body with a diameter large enough to touch all optical fibers outside the center is provided at the center, and a large number of optical fibers are gathered together by applying force toward the center. Since the optical fiber is in contact with the cylindrical body at the center, the fluctuation range of the central axis of the optical fiber on the circumference can be narrowed, and therefore a low-loss connection can be realized. Furthermore, positioning in the circumferential direction is performed using a positioning key installed on the circumference of the plug, but since the setting position of the positioning key has a sufficiently large radius compared to the center axis of the optical fiber, it is possible to perform positioning in the circumferential direction with high precision. There are advantages such as the possibility of positioning.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の多数の中子を利用した多心光ファイバの
接続方法説明図、第2図は従来の1個の中子を利用した
第1図と同様の図、第3図は第2図の位置決め穴を拡大
して線図的に表わした図、第4図乃至第8図は本発明の
一実施例を示すもので、第4図は本発明方法を適用した
多心光フアイバ接続具の説明図、第5図は中子部分の拡
大断面図、第6図は中子の接続端面を線図的に表わした
図、第7図は他の例を説明するための第6図と同様の図
、第8図は本発明方法による接続部のコネクタ損失分布
図である。 ■・・・被覆光ファイバ、2・・・光ファイバ、10・
プラグ、11・位置決めキー、20・・アダプタ、30
・・中子、32・・・位置決め穴、40・・・熱収縮チ
ューブ。 特許出願人 日本電信電話公社 代理人 弁理士 吉 1)精 孝
Fig. 1 is an explanatory diagram of a conventional method for connecting multi-core optical fibers using a large number of cores, Fig. 2 is a diagram similar to Fig. 1 using a conventional single core, and Fig. An enlarged diagrammatic representation of the positioning holes in Fig. 2, and Figs. 4 to 8 show an embodiment of the present invention, and Fig. 4 shows a multi-core optical fiber to which the method of the present invention is applied. 5 is an enlarged sectional view of the core portion, FIG. 6 is a diagram diagrammatically representing the connecting end surface of the core, and FIG. 7 is a diagram for explaining another example. FIG. 8, which is similar to FIG. 8, is a connector loss distribution diagram of a connecting portion according to the method of the present invention. ■...Coated optical fiber, 2...Optical fiber, 10...
Plug, 11・Positioning key, 20・Adapter, 30
... Core, 32 ... Positioning hole, 40 ... Heat shrink tube. Patent Applicant Nippon Telegraph and Telephone Public Corporation Agent Patent Attorney Yoshi 1) Takashi Sei

Claims (2)

【特許請求の範囲】[Claims] (1) 多心光ファイバの接続端に中子を取付け、該中
子をプラグに収納した後、アダプタを介して着脱自在に
結合する多心光ファイバの接続方法において、接続対象
の多数の光ファイバの中心に中心外のすべての光ファイ
バと接する大きさの直径を持つ円柱体を設け、かつ、熱
収縮チューブ等の被覆手段によって外部から該円柱体の
中心方向へ均一な力を加えて集合することにより光ファ
イバ束を形成し、該光ファイバ束を前記中子の中心に設
けた円形の位置決め穴に挿入、固定することを特徴とす
る多心光ファイバの接続方法。
(1) A multi-core optical fiber connection method in which a core is attached to the connection end of a multi-core optical fiber, the core is housed in a plug, and then the core is removably connected via an adapter. A cylindrical body with a diameter large enough to touch all the optical fibers outside the center is provided at the center of the fibers, and a uniform force is applied from the outside toward the center of the cylindrical body using a covering means such as a heat shrink tube. A method for connecting multi-core optical fibers, comprising forming an optical fiber bundle by doing so, and inserting and fixing the optical fiber bundle into a circular positioning hole provided at the center of the core.
(2) 多心光ファイバの接続端に中子を取付け、該中
子をプラグに収納した後、アダプタを介して着脱自在に
結合する多心光ファイバの接続方法において、接続対象
の多数の光ファイバの中心に中心外のすべての光ファイ
バと接する大きさの直径を持つ円柱体を設け、かつ、熱
収縮チューブ等の被覆手段によって外部から該円柱体の
中心方向へ均一な力を加えて集合することにより光ファ
イバ束を形成し、該光ファイバ束を前記中子の中心に設
けた円形の位置決め穴に挿入、固定すると同時に、前記
プラグの円周部に前記中子の円周方向の位置決めキーを
取伺けることを特徴とする多心光ファイバの接続方法。
(2) A multi-core optical fiber connection method in which a core is attached to the connection end of a multi-core optical fiber, the core is housed in a plug, and then the core is removably connected via an adapter. A cylindrical body with a diameter large enough to touch all the optical fibers outside the center is provided at the center of the fibers, and a uniform force is applied from the outside toward the center of the cylindrical body using a covering means such as a heat shrink tube. An optical fiber bundle is formed by inserting and fixing the optical fiber bundle into a circular positioning hole provided at the center of the core, and at the same time positioning the core in the circumferential direction on the circumference of the plug. A method for connecting multi-core optical fibers, which is characterized in that the key can be retrieved.
JP24351283A 1983-12-23 1983-12-23 Connecting method of multicored optical fiber Pending JPS60134210A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24351283A JPS60134210A (en) 1983-12-23 1983-12-23 Connecting method of multicored optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24351283A JPS60134210A (en) 1983-12-23 1983-12-23 Connecting method of multicored optical fiber

Publications (1)

Publication Number Publication Date
JPS60134210A true JPS60134210A (en) 1985-07-17

Family

ID=17105004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24351283A Pending JPS60134210A (en) 1983-12-23 1983-12-23 Connecting method of multicored optical fiber

Country Status (1)

Country Link
JP (1) JPS60134210A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1380868A2 (en) * 2002-07-12 2004-01-14 CCS Inc. Optical fiber holder and optical fiber holding method
JP2012507753A (en) * 2008-10-31 2012-03-29 バスキュラー イメージング コーポレイション Optical imaging probe connector

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5178256A (en) * 1974-11-29 1976-07-07 Siemens Ag
JPS52116253A (en) * 1976-02-03 1977-09-29 Itt Optical fiber and device for single optical fiber cable
JPS5375948A (en) * 1976-12-15 1978-07-05 Fujitsu Ltd Optical multi-connector
JPS53149044A (en) * 1977-05-31 1978-12-26 Cables De Lyon Geoffroy Delore Light fiber connector and its connecting method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5178256A (en) * 1974-11-29 1976-07-07 Siemens Ag
JPS52116253A (en) * 1976-02-03 1977-09-29 Itt Optical fiber and device for single optical fiber cable
JPS5375948A (en) * 1976-12-15 1978-07-05 Fujitsu Ltd Optical multi-connector
JPS53149044A (en) * 1977-05-31 1978-12-26 Cables De Lyon Geoffroy Delore Light fiber connector and its connecting method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1380868A2 (en) * 2002-07-12 2004-01-14 CCS Inc. Optical fiber holder and optical fiber holding method
EP1380868A3 (en) * 2002-07-12 2005-02-02 CCS Inc. Optical fiber holder and optical fiber holding method
US7050693B2 (en) 2002-07-12 2006-05-23 Ccs, Inc. Optical fiber holder and optical fiber holding method
JP2012507753A (en) * 2008-10-31 2012-03-29 バスキュラー イメージング コーポレイション Optical imaging probe connector
US9533123B2 (en) 2008-10-31 2017-01-03 Vascular Imaging Corporation Optical imaging probe connector method by deforming a cross section and cutting at an oblique angle
US9820632B2 (en) 2008-10-31 2017-11-21 Vascular Imaging Corporation Optical imaging probe having a handle with a cleaning mechanism

Similar Documents

Publication Publication Date Title
EP0138908B1 (en) Improved optical connector sleeve
JP2618466B2 (en) Optical fiber connector, terminal optical fiber, and optical fiber coupling method
JPS6211807A (en) Terminated optical fiber and manufacture thereof
US4134641A (en) Self centering connector design
JPH02140709A (en) Optical fiber connector
JPS6211808A (en) Optical fiber connector and manufacture thereof
JPS589921B2 (en) Optical fiber connector
CN111221083B (en) Multi-core optical fiber single-core connector and preparation and alignment method thereof
CA1060241A (en) Connector for optical fibre
US11474303B2 (en) Optical connector ferrule, sleeve, and method for manufacturing ferrule member
JP2004126371A (en) Optical connector plug and assembly for optical connector plug
CA1112923A (en) Detachable connector for links by optical fibres
US4424174A (en) Fabrication of optical connectors
JPS60134210A (en) Connecting method of multicored optical fiber
EP0256892A2 (en) Hybrid connector
JPS6128909A (en) Optical connector
KR100193992B1 (en) Mechanical optical splicer assembly
JPS5829445Y2 (en) fiber optic connector
JPS5932973Y2 (en) Terminal structure of optical fiber connector
JP2571586Y2 (en) Optical fiber connection device
JPS5930247B2 (en) fiber optic connector
JPS58130311A (en) Optical connector
JPS61275707A (en) Optical fiber connector structure
JP2005221672A (en) Optical connector
JPS6219821A (en) Manufacture of optical fiber multicore connector plug