JPS60133652A - Fluorescent lamp - Google Patents

Fluorescent lamp

Info

Publication number
JPS60133652A
JPS60133652A JP23988283A JP23988283A JPS60133652A JP S60133652 A JPS60133652 A JP S60133652A JP 23988283 A JP23988283 A JP 23988283A JP 23988283 A JP23988283 A JP 23988283A JP S60133652 A JPS60133652 A JP S60133652A
Authority
JP
Japan
Prior art keywords
fluorescent lamp
fluorescent
resistance value
conductive coating
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23988283A
Other languages
Japanese (ja)
Inventor
Kenji Narisei
成清 謙爾
Yukio Ono
幸雄 大野
Hiroshi Ono
宏 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP23988283A priority Critical patent/JPS60133652A/en
Publication of JPS60133652A publication Critical patent/JPS60133652A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/54Igniting arrangements, e.g. promoting ionisation for starting
    • H01J61/545Igniting arrangements, e.g. promoting ionisation for starting using an auxiliary electrode inside the vessel

Landscapes

  • Vessels And Coating Films For Discharge Lamps (AREA)

Abstract

PURPOSE:To improve the startability of a fluorescent lamp by making the average resistance value of a transparent conductive coating in the area near the electrode on the thinner fluorescent film side larger than five times the resistance value of a transparent conductive coating in the central area of the fluorescent lamp. CONSTITUTION:On the inner wall of a glass tube 1, a transparent conductive coating 2 is provided, and, on this coating 2, a protective coating 3 consisting of a fine-grained alumina is formed. On this coating 3, a fluorescent film 4 is provided which contains more than 5wt% grains, whose average diameter is less than 10mum, and then a rare gas including krypton or xenon is enclosed in the glass tube 1. In such a fluorescent lamp, the average resistance value of the conductive coating 2 in the area near an electrode 5 on the thinner side of the fluorescent film 4 is made more than five times the resistance value of the conductive coating in the central area of the fluorescent lamp. In this way, the glow discharges caused near the electrode on the thinner fluorescent film side is kept from concentration, making it easy to shift from glow discharge to arc discharge. Therefore, the discharge start voltage of a fluorescent lamp can be lowered, and a three wave-length area light emitting and power-saving rapid start fluorescent lamp can be obtained which can be easily lit up even at a low temperature of 0 deg.C.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は粒径が小さい螢光体を用いた螢光膜を有し、ク
リプトン捷たはキセノンを封入した螢光1ランプに関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a fluorescent lamp having a fluorescent film using a phosphor having a small particle size and encapsulating krypton or xenon.

〔発明の背景〕[Background of the invention]

6波長域発光形螢光ランプなどのように粒径が10μm
以下の小さな螢光体を使用する螢光ラングでは、通常の
螢光ランプのように封入ガスとじてアルゴンを用いる場
合は問題ないが、省電力形とするためにクリプトンまた
はキセノ/を含む希ガスを封入する場合には螢光ランプ
の起動性が悪くなり、特に低温下においては商用電源電
圧で点灯しないという欠点があった。ガラス管内面に透
明の導電被膜(ネサ膜)を有するラピッドスタート形螢
光ランプの起動は、まず電極と電極近傍の導電被膜との
間でグロー放電が発生し、このグロー放電が螢光ランプ
の両端の電極から管中央に進展゛してつながるとアーク
放電に移行し螢光ランプが・起動することにカる。6波
長域発光形螢光ランプなどのように上記導電被膜の上に
塗布した螢光体の粒径が小さくなると、螢光膜がち密に
なるだめ導電被膜への電流が流れにくくなり、さらにク
リプトンまたはキセノン等を含むガスはアルゴンガ1ス
に較べて電離しにくいので、上記グロー放電は管中央の
方に進展しにくく、このため起動性が悪くなる。この対
策として従来螢光ランプ内の導電被膜の抵抗を低くする
ことや、導電被膜上にアルミナ保護膜を厚く塗布するこ
とが試みられているが、上記起動性の悪さを完全に解決
するには至っていない。
The particle size is 10 μm, such as in 6-wavelength range fluorescent lamps.
For fluorescent lamps that use the following small fluorescent bodies, there is no problem if argon is used as the filler gas like in ordinary fluorescent lamps, but in order to save power, rare gases such as krypton or xeno are used. In the case of enclosing a fluorescent lamp, the starting performance of the fluorescent lamp becomes poor, and there is a drawback that the lamp cannot be lit at commercial power supply voltage, especially at low temperatures. When starting a rapid-start type fluorescent lamp that has a transparent conductive coating (NESA film) on the inner surface of the glass tube, glow discharge occurs between the electrode and the conductive coating near the electrode, and this glow discharge causes the fluorescent lamp to emit light. When the electricity spreads from the electrodes at both ends to the center of the tube and connects, it turns into an arc discharge and starts the fluorescent lamp. When the particle size of the phosphor coated on the conductive film becomes smaller, such as in a 6-wavelength fluorescent lamp, the phosphor film becomes dense, making it difficult for current to flow through the conductive film. Alternatively, since a gas containing xenon or the like is less likely to ionize than argon gas, the glow discharge is less likely to progress toward the center of the tube, resulting in poor starting performance. As a countermeasure to this problem, attempts have been made to lower the resistance of the conductive coating in the fluorescent lamp and to apply a thick alumina protective film on the conductive coating, but these efforts have not completely resolved the poor start-up performance. Not yet reached.

〔発明の目的〕[Purpose of the invention]

本発明はろ波長域発光形螢光ランプなどのように粒径が
小さい螢光体を使用し、かつ省電力形とするためにクリ
プトンまたはキセノンを含む希ガスを封入したラピッド
スタート形螢光ランプの起動性を改善することを目的と
する。
The present invention is directed to rapid-start type fluorescent lamps that use a phosphor with a small particle size, such as low-wavelength fluorescent lamps, and are filled with a rare gas containing krypton or xenon in order to save power. The purpose is to improve bootability.

〔発明の概要〕[Summary of the invention]

螢光膜は製造工程において通常ガラス管を鉛直に保持し
て上部から螢光体塗料を流し込んで塗布するので、その
膜厚は上部が薄く下部が厚くなる螢光膜が厚いのは問題
ないが、螢光ランプの電極近傍に」上記のような螢光膜
が薄い部分があると、その部分は電極と導電被膜との間
に電流が流れや1すくなり、電極→導電被膜分電極と流
れる螢光ランプ起動前のグロー放電電流は螢光膜が薄い
部分に集中してしまい、グロー放電が螢光ランプ中央に
進展してアーク放電に移行しない。この状態を防止する
だめに本発明による螢光ランプは、導電被膜上に平均粒
径が10μm以]ミの粒子を5重量係以上含む螢光膜を
有し、クリプトン捷だはキセノンを含む希ガスを封入し
た螢光ランプにおいて、螢光膜が薄い側の電極近傍領域
の透明導電被膜の平均抵抗値を螢光ラングの中央部領域
の透明導電被膜抵抗値の5倍以上にしたことにより、グ
ロー放電電流が螢光膜が薄い電極近傍領域に集中するの
を防ぎ螢光ランプの起動性を改善したものである。
During the manufacturing process, the fluorescent film is usually applied by holding the glass tube vertically and pouring the fluorescent paint from the top, so it is not a problem that the film is thinner at the top and thicker at the bottom. If there is a thin part of the fluorescent film as described above near the electrode of a fluorescent lamp, it becomes easier for current to flow between the electrode and the conductive film in that part, and the current flows from the electrode to the conductive film. The glow discharge current before starting the fluorescent lamp is concentrated in the thin part of the fluorescent film, and the glow discharge does not progress to the center of the fluorescent lamp and transition to arc discharge. In order to prevent this situation, the fluorescent lamp according to the present invention has a fluorescent film on a conductive film containing particles with an average particle size of 10 μm or more by weight of 5 or more, and a rare metal containing krypton or xenon. In a gas-filled fluorescent lamp, the average resistance value of the transparent conductive coating in the region near the electrode on the side where the fluorescent film is thinner is made to be at least five times the resistance value of the transparent conductive coating in the central region of the fluorescent rung. This prevents the glow discharge current from concentrating in the area near the electrode where the fluorescent film is thin, thereby improving the startup performance of the fluorescent lamp.

〔発明の実施例〕[Embodiments of the invention]

つぎに本発明の実施例を図面とともに説明する第1図は
本発明による省電力形ラビッドスター1・螢光ランプの
一実施例を示す部分断面図、第2図は螢光体中に粒径1
0μm以下の粒子が含せれる割合と放電開始電圧との関
係を示す図、第6図は電1極から対向電極の方へX離れ
た点Pを含む位置と管端との間の導電被膜を除いた場合
におけるXの距離と放電開始電圧との関係を示す図、第
4図は螢光ランプの電極近傍領域の導電被膜抵抗Rと螢
光ランプ中央部領域の導電被膜抵抗R8との比と放電開
始電圧との関係を示す図である。第1図に示すように本
実施例による省電力形ラピッドスタート螢光ランプは、
ガラス管1の内面に酸化すずを主成分とした透明な導電
被膜2を設け、この上に形成した微粒のアルミナからな
る保護膜6上に螢光膜4を塗布して電極5を封着し、水
銀および希ガスとしてクリプトンを主成分としたガスを
封入している。上記省電力形ラピッドスタート螢光ラン
プを用いて、螢光体粒子の粒径比率、導電被膜の状態お
よび抵抗値を変えた場合の放電開始電圧の変化をつきに
示す。第2図は螢光膜中における粒径10μnl以下の
粒子の重量係と放電開始電圧(■3)との関係を示すも
ので、平均粒径が10μm11以下の粒子が5重量饅未
満では放電開始電圧の上昇が見られないが、5重量係以
上になると放電量1始電圧が急速に上昇する。第6図は
上記螢光ランプの螢光膜の膜厚が薄い側の端部において
、第1図に示すように電極5かも対向電極の方向への距
離がXである点をPとしたとき、このP点を含む位置か
ら管端までの長さlの間に導電被膜2がない場合につい
て距離Xと放電開始電圧との関係を測定した結果を示す
図である。図において導電被膜2がない領域がx ) 
5Q mm、すなわち電極5の前方(対向電極の方向)
50+nrnをこえた場合には放電開始電圧が上昇する
。これにより螢光膜4が薄い方の電極5から約59 、
m m以内の距離範囲の電極近傍領域の導電被膜2の抵
抗を高くすることによって、放電開始電圧の上昇を防止
できることが判明した。」上記電極5の近傍領域の導電
被膜2の抵抗値が螢光ランプの中央部領域の導電被膜2
の!抵抗値に対してどの位高ぐずればよいかを知るため
に、前者をRkΩ/cm、後者をR6197cmとしR
/Roを変化させて放電開始電圧を得た結果を第4図に
示す。第4図から明らかなようにR/ it 。
Next, an embodiment of the present invention will be explained with reference to the drawings. Figure 1 is a partial cross-sectional view showing an embodiment of the power-saving type Ravid Star 1 fluorescent lamp according to the present invention, and Figure 2 is a partial cross-sectional view showing an embodiment of the power-saving type Ravid Star 1 fluorescent lamp according to the present invention. 1
A diagram showing the relationship between the proportion of particles of 0 μm or less and the discharge starting voltage. Figure 6 shows the conductive coating between the tube end and a position including point P, which is X away from the first electrode toward the counter electrode. Figure 4 shows the relationship between the distance X and the discharge starting voltage when . It is a figure which shows the relationship between and discharge starting voltage. As shown in Fig. 1, the power-saving rapid start fluorescent lamp according to this embodiment is as follows:
A transparent conductive film 2 mainly composed of tin oxide is provided on the inner surface of the glass tube 1, and a fluorescent film 4 is applied onto a protective film 6 made of fine alumina particles formed thereon to seal the electrodes 5. It is filled with mercury and a gas whose main component is krypton as a rare gas. Using the above-mentioned power-saving rapid-start fluorescent lamp, changes in the discharge starting voltage will be shown when the particle size ratio of the phosphor particles, the state of the conductive film, and the resistance value are changed. Figure 2 shows the relationship between the weight ratio of particles with a particle size of 10 μm or less in the fluorescent film and the discharge starting voltage (■3).If the average particle size of 10 μm or less of particles weighs less than 5, the discharge starts. Although no increase in voltage is observed, when the weight ratio exceeds 5, the discharge amount 1 starting voltage increases rapidly. Figure 6 shows a point at the end of the fluorescent lamp where the fluorescent film is thinner, where P is the distance from electrode 5 to the opposite electrode as shown in Figure 1. , is a diagram showing the results of measuring the relationship between the distance X and the discharge starting voltage in the case where there is no conductive coating 2 within the length l from the position including this point P to the tube end. In the figure, the area where there is no conductive film 2 is x)
5Q mm, i.e. in front of electrode 5 (direction of counter electrode)
When it exceeds 50+nrn, the discharge starting voltage increases. As a result, the fluorescent film 4 is approximately 59 mm away from the thinner electrode 5,
It has been found that an increase in the discharge starting voltage can be prevented by increasing the resistance of the conductive coating 2 in the region near the electrode within a distance range of 1.2 mm. "The resistance value of the conductive coating 2 in the area near the electrode 5 is equal to the resistance value of the conductive coating 2 in the central area of the fluorescent lamp.
of! In order to know how high the resistance value should be, let's assume that the former is RkΩ/cm and the latter is R6197cm.
FIG. 4 shows the results of obtaining the discharge starting voltage by varying /Ro. As is clear from FIG. 4, R/it.

≧5、すなわち電極近傍領域の導電被膜の抵抗値が中央
部領域の導電被膜の抵抗値の5倍以上の場合には放電開
始電圧を十分に低下させることができるが、電極近傍領
域の導電被膜抵抗値が中央部領域の導電被膜抵抗値の5
倍未満であるときは放電開始電圧を低下させることがで
きない。なお、第4図における曲線の点線で示しだ部分
6は前記第5図に示した電極近傍領域に導電被膜が存在
しない場合の放電開始電圧である。上記の結果によp4
0W用のガラス管を用い、螢光膜4が薄くなる側の管端
から電極5の前方5Q mmの範囲にわたる電極近傍領
域の導電被膜2の平均抵抗値が、螢光ランプ中央部領域
の導電被膜抵抗値の5倍以上になるように形成した導電
被膜2上に粒径10μm以下の粒子を5重量係以上含む
螢光膜4を塗布し、封入ガスとしてクリプトンを含む希
ガスを用い、通常の工程にしだがって40Wの5波長域
発光形の省電力形ラピッドスタート螢光ランプを製造し
た。
≧5, that is, when the resistance value of the conductive film in the area near the electrode is 5 times or more than the resistance value of the conductive film in the central area, the discharge starting voltage can be sufficiently lowered. The resistance value is 5 of the conductive coating resistance value in the central region.
If it is less than double, the discharge starting voltage cannot be lowered. Note that the portion 6 of the curve shown by the dotted line in FIG. 4 is the discharge starting voltage when no conductive film exists in the region near the electrode shown in FIG. 5. According to the above results p4
Using a 0W glass tube, the average resistance value of the conductive coating 2 in the area near the electrode over a range of 5Q mm from the tube end on the side where the fluorescent film 4 becomes thinner to the front of the electrode 5 is the conductivity in the central area of the fluorescent lamp. A fluorescent film 4 containing particles with a particle size of 10 μm or less by weight of 5 or more is coated on a conductive film 2 formed to have a resistance value of 5 times or more than the film resistance value, and a rare gas containing krypton is used as a filler gas. A power-saving rapid start fluorescent lamp of 40 W and emitting light in 5 wavelength ranges was manufactured according to the process described above.

その結果、0℃における放電開始電圧は180〜190
■であった。従来この種螢光ランプのQ℃における放電
開始電圧は190〜205■であったため低温時に点灯
しない場合があったが、本発明による螢光ランプは0℃
においても商用電源電圧200■で点灯することが十分
可能になった。
As a result, the discharge starting voltage at 0°C was 180 to 190
■It was. Conventionally, this type of fluorescent lamp had a discharge starting voltage of 190 to 205 cm at Q°C, so it sometimes did not light up at low temperatures, but the fluorescent lamp according to the present invention
It has become possible to turn on the lamp even with a commercial power supply voltage of 200 µm.

〔発明の効果〕〔Effect of the invention〕

上記のように本発明による螢光ラングは、導電被膜上に
形成した平均粒径が1oμm以下の粒子を5重量%以上
含む螢光膜を有し、クリブトノまたはキセノンを含む希
ガスを封入した螢光ランプにおいて、螢光膜が薄い側の
電極近傍領域の導電被膜の平均抵抗値を螢光ランプ中央
部領域の導電被膜抵抗値の5倍以上にしたことによって
、螢光膜が薄い側の電極近傍で生じるグロー放電の集中
を防ぎグロー放電からアーク放電への移行を容易にした
ため、上記螢光ランプの放電開始電圧を低下させること
ができ、0℃の低温でも容易に点灯pJ’1能な6波長
域発光形の省電力形ラピッドスター1・螢光ランプを製
造することができる。
As described above, the fluorescent rung according to the present invention has a fluorescent film formed on a conductive film and containing 5% by weight or more of particles having an average particle size of 1 μm or less, and a fluorescent lamp sealed with a rare gas containing crybution or xenon. In a light lamp, the average resistance value of the conductive film in the region near the electrode on the side where the fluorescent film is thinner is made to be five times or more than the conductive film resistance value in the central region of the fluorescent lamp. By preventing the concentration of glow discharge occurring in the vicinity and facilitating the transition from glow discharge to arc discharge, it is possible to lower the discharge starting voltage of the fluorescent lamp, and it is possible to easily light the fluorescent lamp even at a low temperature of 0°C. It is possible to manufacture a power-saving Rapid Star 1 fluorescent lamp that emits light in a 6-wavelength range.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による省電力形ラピノドスクート螢光ラ
ンプの一実施例を示す部分断面図、第2図は螢光体中に
粒径1oμm以下の粒子が含捷れる割合と放電開始電圧
との関係を示す図、第6図は電極から対向電極の方へX
離れた点Pを含む位置と管端との間の導電被膜を除いた
場合におけるXの距離と放電開始電圧との関係を示す図
、第4図は螢光ランプの電極近傍領域の導電被膜抵抗と
中央部領域の導電被膜抵抗との比と放電開始電圧との関
係を示す図である。 2・・・導電被膜 4・・螢光膜 5 ・電極 代理人弁理士 中イ」純之助
FIG. 1 is a partial cross-sectional view showing an embodiment of the power-saving Lapinodoscoot fluorescent lamp according to the present invention, and FIG. 2 shows the relationship between the ratio of particles with a particle size of 1 μm or less in the phosphor and the firing voltage. A diagram showing the relationship, Figure 6 shows the X from the electrode to the counter electrode.
A diagram showing the relationship between the distance X and the discharge starting voltage when the conductive film between the position including the distant point P and the tube end is excluded. Figure 4 shows the conductive film resistance in the area near the electrode of the fluorescent lamp. FIG. 3 is a diagram showing the relationship between the ratio of conductive film resistance in the central region and the discharge starting voltage. 2... Conductive film 4... Fluorescent film 5 - Junnosuke Chui, patent attorney representing the electrode

Claims (1)

【特許請求の範囲】[Claims] 導電被膜上に形成した平均粒径が10μm以下の粒子を
5重量係以上含む螢光膜を有し、クリプトン捷たはキセ
ノンを含む希ガスを封入した螢光ランプにおいて、上記
螢光膜が薄い側の電極近傍領域における導電被膜の平均
抵抗値を、螢光ランプ・中央部領域における導電被膜の
平均抵抗値の5倍1以上としたことを特徴とする螢光ラ
ンプ。
In a fluorescent lamp having a fluorescent film formed on a conductive film and containing particles with an average particle size of 10 μm or less by weight of 5 or more, and filled with a rare gas containing krypton or xenon, the fluorescent film is thin. A fluorescent lamp characterized in that the average resistance value of the conductive coating in the region near the side electrodes is 5 times or more the average resistance value of the conductive coating in the central region of the fluorescent lamp.
JP23988283A 1983-12-21 1983-12-21 Fluorescent lamp Pending JPS60133652A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23988283A JPS60133652A (en) 1983-12-21 1983-12-21 Fluorescent lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23988283A JPS60133652A (en) 1983-12-21 1983-12-21 Fluorescent lamp

Publications (1)

Publication Number Publication Date
JPS60133652A true JPS60133652A (en) 1985-07-16

Family

ID=17051279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23988283A Pending JPS60133652A (en) 1983-12-21 1983-12-21 Fluorescent lamp

Country Status (1)

Country Link
JP (1) JPS60133652A (en)

Similar Documents

Publication Publication Date Title
US4171498A (en) High pressure electric discharge lamp containing metal halides
JPS63248050A (en) Rare gas discharge lamp
JP3269976B2 (en) High pressure UV mercury lamp
US4625149A (en) Metal vapor discharge lamp including an inner burner having tapered ends
GB2067826A (en) Metal vapour discharge lamp
US3374377A (en) Metal vapor lamp coating
JPS60207241A (en) Low voltage mercury vapor discharge lamp
JP3399763B2 (en) Ceramic high-pressure mercury discharge lamp for LCD backlight
JPS60133652A (en) Fluorescent lamp
US3325662A (en) Metal vapor lamp having a heat reflecting coating of calcium pyrophosphate
JPH0565981B2 (en)
EP0204382B1 (en) High-pressure sodium discharge lamp
JPS58214266A (en) Metal halide lamp
JPH05144412A (en) Fluorescent lamp
JPS61220265A (en) Metallic vapor discharge lamp
JPS60148043A (en) Metal vapor discharge lamp
JPH05815B2 (en)
JPH09204902A (en) High pressure vapor discharge lamp
JPH10334849A (en) Metal halide lamp
JPH0821368B2 (en) Metal halide lamp
JPH06333534A (en) High pressure discharge lamp
JPS6258562A (en) Ceramic discharge lamp
JPS6084763A (en) Rapid start type fluorescent lamp
JPH0887982A (en) Fluorescent lamp and lighting system
JPH0528969A (en) Rapid start-type fluorescent lamp and its manufacture