JPS60133217A - Flame detector - Google Patents

Flame detector

Info

Publication number
JPS60133217A
JPS60133217A JP23873383A JP23873383A JPS60133217A JP S60133217 A JPS60133217 A JP S60133217A JP 23873383 A JP23873383 A JP 23873383A JP 23873383 A JP23873383 A JP 23873383A JP S60133217 A JPS60133217 A JP S60133217A
Authority
JP
Japan
Prior art keywords
flame
signal
light
light detecting
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23873383A
Other languages
Japanese (ja)
Other versions
JPH057608B2 (en
Inventor
Koujirou Yamada
山田 紘二郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP23873383A priority Critical patent/JPS60133217A/en
Publication of JPS60133217A publication Critical patent/JPS60133217A/en
Publication of JPH057608B2 publication Critical patent/JPH057608B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/08Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements
    • F23N5/082Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements using electronic means

Abstract

PURPOSE:To ensure the detection of flame even though the shapes of the flame are changed due to the change in burning conditions and the like and to perform self-checking without using a mechanical shutter, by guiding light beams from the different parts of the flame, converting the light beams into electric signals by photoelectric conversion parts, and judging the presence of the flame based on said electric signals. CONSTITUTION:Light detecting parts 3a, and 3b and 3c are constituted by the tip parts of optical fibers. The light detecting part 3a is obliquely provided in the upward direction. The light detecting part 3b is provided at a slant angle smaller than the light detecting part 3a. The light detecting part 3c is provided approximately horizontally. The detected light beams from the light detecting parts 3a, 3b and 3c are transmitted to photoelectric conversion parts 5a, 5b and 5c and converted into the corresponding electric signals, which are sent to an operating part 8. In the operating part 8, the signal having the maximum value among the input signals is held. The maxium value is compared with the threshold level concerning to the presence or absence of the flame. When the value is larger than the threshold level, a flame ON signal is outputted. When the value is less then the threshold level, a flame OFF signal is outputted.

Description

【発明の詳細な説明】 本発明はボイラ等の燃焼装置のバーナの点火および消火
を判定する火炎検出装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a flame detection device for determining whether a burner of a combustion device such as a boiler is ignited or extinguished.

火炎検出装置には、火炎の発する光V検出する光学式火
炎検出装置、火炎中に発生するイオンを電気的に検出す
るイオン電流式火炎検出装置、燃焼に伴なって発生する
燃焼音を検出する燃焼音式火炎検出装置等があり、対象
となる燃焼装置に応じて適宜選択使用されている。例え
ば、事業用ボイラにおいては、従来、主バーナに対して
は光学式火炎検出装置が、又、点火バーナに対しては光
学式火炎検出装置又はイオン電流式火炎検出装置が用い
られている。しかしながら、イオン電流式火炎検出装置
はイオン電流を検出するために電極棒を火炎中あるいは
火炎のごく近傍に設置する必要があり、このため材料の
耐熱性の面から連続的な使用には適さない。したがって
、火炎の有無ケ連続的に検出するためには専ら光学式火
炎検出装置が使用されているのが現状でろる・ ここで、上記光学式火炎検出装置は、さらに火炎の発す
る光の直流光量(DC成分の光量)に着目するDC光検
出方式と、光の変動光量(AC成分の光量)に着目する
AC光検出方式とに分類されており、さらに、雨検出方
式共、火炎が発する光の特定の波長域(例えば紫外域、
可視域、近赤外域、赤外域等)に着目して、例えば紫外
域DC光検出方式、赤赤外域C光検出方式等のように分
類される。AC光検出方式の方は、さらに、変動成分(
AC成分)の特定の周波数帯域(例えば10〜l OO
Hz帯域等)に着目して、例えば10〜l OOHz帯
域AC光検出方式等のように細分される。このうち、バ
ーナ数がごく少数で、かつ、燃焼室の壁温か低い場合又
は燃料によって特定の波長域に固有の発光が期待できる
場合等においては、DC光検出方式も有効であるが、事
業用ボイラのようにバーナ数が多く、かつ、各バーナ火
炎が相互に密接に関連し合って火炎形状が時間的、空間
的に複雑に変動する場合にはAC光検出方式の方が有効
であるといわれている。又、AC光検出方式については
、火炎が発する各波長域に対してどの周波−帯域のAC
光を検出するのが最も有効であるか定まっていない。以
上述べたように、光学式火炎検出装置には種々の方式が
あるが、イスれの方式においても、検出信号の大きさく
レベル)がある定められた閾値レベルより大きいか、小
さいかによって火炎の点・消火判定を行なっている。
The flame detection device includes an optical flame detection device that detects the light V emitted by the flame, an ion current flame detection device that electrically detects ions generated in the flame, and a combustion sound that is generated during combustion. There are combustion sound type flame detection devices, etc., which are selected and used as appropriate depending on the target combustion device. For example, in commercial boilers, conventionally, an optical flame detection device is used for the main burner, and an optical flame detection device or an ion current flame detection device is used for the ignition burner. However, the ionic current type flame detection device requires the electrode rod to be installed in the flame or very close to the flame in order to detect the ionic current, so it is not suitable for continuous use due to the heat resistance of the material. . Therefore, in order to continuously detect the presence or absence of flame, only optical flame detection devices are currently used. It is classified into DC light detection method, which focuses on the amount of light emitted by the flame (DC component light amount), and AC light detection method, which focuses on the fluctuating amount of light (light amount of AC component). specific wavelength range (e.g. ultraviolet range,
(visible region, near-infrared region, infrared region, etc.), and are classified into, for example, ultraviolet DC light detection method, infrared infrared region C light detection method, etc. In the AC light detection method, the fluctuation component (
AC component) specific frequency band (e.g. 10~lOO
Hz band, etc.), it is subdivided into, for example, a 10-100Hz band AC photodetection method. Among these, the DC light detection method is effective in cases where the number of burners is very small and the wall temperature of the combustion chamber is low, or when the fuel can be expected to emit light unique to a specific wavelength range. The AC optical detection method is considered to be more effective in cases where there are many burners, such as in boilers, and where the flames of each burner are closely related to each other, causing the flame shape to fluctuate in a complex manner both temporally and spatially. It is said. In addition, regarding the AC light detection method, which frequency/band AC is used for each wavelength range emitted by the flame?
It is unclear whether light detection is the most effective method. As mentioned above, there are various types of optical flame detection devices, but even in the optical flame detection system, flame detection is determined depending on whether the detection signal (size or level) is larger or smaller than a certain threshold level. fire/extinguishing judgment.

ところで、ボイラ火炉内の火炎は燃料種。負荷。By the way, the flame in the boiler furnace is a type of fuel. load.

空燃比等の燃焼条件、火炉内の他のバーナの点。Combustion conditions such as air-fuel ratio, and other burner points in the furnace.

消火状態専権々の条件によってその火炎形状力1大ぎく
変化する。このため、従来の光学式火炎検出装置では火
炎の有無を確実に検出するのが困難であるという欠点が
あった。又、従来の光学式火炎検出装置においては、そ
の光電変換部の受光面前面に機械的なシャッタ!取付け
たセルフチェック機構を設け、シャッタを閉にしたとき
火炎OFFの出力になるか否、か?みて火炎検出装置自
体の動作確認を行ない、これにより火炎判定の信頼性の
向上ケはかつていたが、セルフチェック機構に機械的な
シャッタが用いられているため、火炎検出装置自体が大
きくかつ高価となるばかりでな(、故障発生の原因にな
るという欠点があった。
The flame shape force varies greatly depending on the extinguishing conditions. For this reason, conventional optical flame detection devices have a drawback in that it is difficult to reliably detect the presence or absence of flame. In addition, in conventional optical flame detection devices, a mechanical shutter is installed in front of the light receiving surface of the photoelectric conversion section. With the self-check mechanism installed, does it output a flame OFF signal when the shutter is closed? It used to be possible to improve the reliability of flame detection by checking the operation of the flame detection device itself, but since the self-check mechanism uses a mechanical shutter, the flame detection device itself is large and expensive. (However, it had the disadvantage of causing malfunctions.)

本発明の目的は、これら従来の欠点な除き、燃焼条件等
の変化に伴なう火炎形状の変化があっても確実に火炎を
検出することができ、かつ、機械的なシャッタを用いる
ことなくセルフチェック7行なうことができる火炎検出
装置を提供するにある。
The purpose of the present invention is to eliminate these conventional drawbacks, to be able to reliably detect flames even if the flame shape changes due to changes in combustion conditions, etc., and to be able to detect flames reliably without using a mechanical shutter. To provide a flame detection device capable of performing seven self-checks.

この目的を達成するため、本発明は、火炎の異なる部分
から光を導き、これらの光を光電変換部によりそれぞれ
電気信号に変換し、とへ変換された電気信号に基づき火
炎の有無の判定を行なうようにしたことな特徴とする。
To achieve this objective, the present invention guides light from different parts of the flame, converts each of these lights into electrical signals by a photoelectric converter, and determines the presence or absence of a flame based on the converted electrical signals. It is a characteristic that I tried to do.

以下、本発明を第1図に示す実施例に基づいて説明1°
る。
The present invention will be explained below based on the embodiment shown in FIG.
Ru.

第1図は本発明の実施例に係る火炎検出装置σンブロッ
ク図である。図で、lは火炉内の火炎、2は火炉外壁の
ウィンドボックスである。3a。
FIG. 1 is a block diagram of a flame detection device according to an embodiment of the present invention. In the figure, 1 is the flame inside the furnace, and 2 is the wind box on the outer wall of the furnace. 3a.

3b、3Cはそれぞれ火炎1の光を検出する光検出部で
ありにれら光検出部3a、3b、3c%!共に光ファイ
バの先端部分で構成されており、光検出部3aは上方に
ある傾斜をもって設置され、光検出部3bは光検出部3
aより小さな傾斜で設置され、光検出s30はほば水平
に設置されている。破線aは光検出部3aの検出視野ケ
、又、破線すは光検出部3bの検出視野を、同じく破線
Cは光検出部3Cの検出視野を示す。4は検出部3a、
3b、3cのそれぞれから延出した光ファイバで構成さ
れろ光伝送部であり、光検出部3a。
3b and 3C are photodetecting sections that detect the light of the flame 1, respectively; these are photodetecting sections 3a, 3b, and 3c%! Both are composed of the tip portions of optical fibers, the photodetector 3a is installed with an upward slope, and the photodetector 3b is installed at an angle above the photodetector 3.
It is installed at an inclination smaller than a, and the photodetector s30 is installed almost horizontally. A broken line a indicates a detection field of view of the photodetector 3a, a broken line indicates a detection field of view of the photodetector 3b, and a broken line C indicates a detection field of view of the photodetector 3C. 4 is a detection unit 3a;
3b and 3c, which constitutes a light transmission section and a light detection section 3a.

3b、3Cで検出された光を伝送する。光伝送部4には
適宜の空冷機構が設けられている。5a。
3b and 3C transmit the detected light. The optical transmission section 4 is provided with an appropriate air cooling mechanism. 5a.

5b、5cはそれぞれ光伝送部4によって伝送されてき
た光検出部3a、3b、3cの検出光を受光し、これを
各検出光に応じた電気信号に変換する光電変換部である
。光電変換部5a、5b。
Reference numerals 5b and 5c are photoelectric conversion units that receive detection lights from the photodetectors 3a, 3b, and 3c transmitted by the optical transmission unit 4, respectively, and convert them into electrical signals corresponding to each detection light. Photoelectric conversion units 5a and 5b.

5Cには、すべて同じ検出波長域を有する光センサが用
いられる。6a、6b、6cは光電変換部5a、5b、
5cの出力信号を前置増幅9選択増幅する増幅部、7は
増幅部6a、6b、6cの出力信号を切替えろ切替部で
ある。8は切替部7によって切替えられた信号を逐次入
力し、セルフか二ツクシ含む火炎有無の判定を行なう演
算処理部である。9は切替部7に対して増幅部6a、6
b。
5C uses optical sensors that all have the same detection wavelength range. 6a, 6b, 6c are photoelectric conversion units 5a, 5b,
A preamplifier 9 selectively amplifies the output signal of the amplifier 5c, and a switching unit 7 switches the output signals of the amplifiers 6a, 6b, and 6c. Reference numeral 8 denotes an arithmetic processing section which sequentially inputs the signals switched by the switching section 7 and judges whether there is a flame or not, including a self-contained signal. 9 connects the switching unit 7 to the amplifying units 6a and 6.
b.

6Cの信号を所定の切替シーケンス(M序、タイミング
)で切替える指令信号を出力するとともに、プラント制
御信号gを入力して演算処理部8に所要の制御信号?出
力する切替制御部である。
It outputs a command signal for switching the signal of 6C in a predetermined switching sequence (M order, timing), inputs the plant control signal g, and sends the required control signal to the arithmetic processing unit 8. This is a switching control unit that outputs.

次に、本実施例の動作を第2図(I)〜舒、第3図(I
l〜■および第4図(I)〜■に示す各視野における出
力信号の特性図を参照しながら説明する。光検山部3a
、3b、3c)!それぞれ視野a、b、Cからの光を検
出し、この検出光は光伝送部4を介して光電変換部5a
、5b。5cに伝送される。
Next, the operation of this embodiment will be explained in Figs.
This will be explained with reference to characteristic diagrams of output signals in each visual field shown in FIGS. Optical inspection section 3a
, 3b, 3c)! Light is detected from the fields of view a, b, and C, respectively, and this detected light is transmitted to the photoelectric conversion unit 5a via the optical transmission unit 4.
, 5b. 5c.

光電変換部5a、5b、5cでは、それぞれこれら検出
光を受光し、これに応じた電気信号を出力する。ここで
、火炎lが存在している場合の光電変換ffB5a、5
b、5c17)出力信号を第2図(I)〜@)および第
3図(I)〜GII)に示す。第2図(Il〜(111
1)は光電変換部5a、5b、5cに近赤外域センサ?
用いた場合の視野C,b、aにおけろ出力信号の1例、
第3図(I)〜@)は光電変換部5a、5b、5cK赤
外域センサタ用いた場合の視野Ce beaにおける出
力信号の1例である。
The photoelectric conversion units 5a, 5b, and 5c each receive these detection lights and output electric signals corresponding to the detection lights. Here, photoelectric conversion ffB5a, 5 when flame l exists
b, 5c17) The output signals are shown in FIGS. 2(I)-@) and 3(I)-GII). Figure 2 (Il~(111
1) Is there a near-infrared sensor in the photoelectric conversion units 5a, 5b, and 5c?
An example of the output signal in the field of view C, b, a when using
FIGS. 3(I) to 3) are examples of output signals in the field of view Ce bea when the photoelectric conversion units 5a, 5b, and 5cK infrared sensor sensors are used.

なお、各図の横軸にはAC光変動周波数がとってあ7)
にれらの図から、火炎有りの場合には、特に視野aにお
ける出力信号と視野すにおける出力信号との差が大きい
ことが判る。
In addition, the horizontal axis of each figure shows the AC light fluctuation frequency7)
From these figures, it can be seen that in the presence of flame, there is a particularly large difference between the output signal in the visual field a and the output signal in the visual field A.

このような光電変換部5m、5b、5cの出力信号はそ
れぞれ増幅部6a、6b、6cに出力され、増幅部6a
、6b、6cではこれら各信号のうち一定の変動周波数
(例えば100Hz )以上の成分のみを選択増幅する
。増幅された各信号は切替部7で順次切替えられて演算
処理部8に送られる。演算処理部8では、増幅部6a、
6b。
The output signals of such photoelectric conversion units 5m, 5b, and 5c are output to amplification units 6a, 6b, and 6c, respectively.
, 6b, and 6c selectively amplify only the components of these signals having a constant fluctuation frequency (for example, 100 Hz) or higher. Each amplified signal is sequentially switched by the switching section 7 and sent to the arithmetic processing section 8. In the arithmetic processing unit 8, the amplification unit 6a,
6b.

6cからの入力信号のうち最大値を有する信号を保持し
、この最大値ケ火炎有無の閾値レベルと比較し、閾値レ
ベル以上であれば火炎ON信号!、又、閾値レベル未満
であれば火炎OFFFF信号力出力。第1図に示す信号
!はこのような火炎ON、OFFの判定信号を示す。こ
のように、火炎IF/3方向の視野a、b、cで捕捉す
るので、火炎形状が長くなったり短くなったりして時間
的に変動しても、切替部7が増幅部6a、6b。6Cか
らの3つの出力信号を切換えている間(lサイクルの間
)に火炎を検出することができ、確実に火炎ON信号を
出力することができろ。
The signal having the maximum value among the input signals from 6c is held, and this maximum value is compared with the threshold level for flame presence/absence, and if it is above the threshold level, the flame ON signal! , and if it is less than the threshold level, the flame OFF signal power is output. The signal shown in Figure 1! shows such a flame ON/OFF determination signal. In this way, since the flame is captured in the fields of view a, b, and c in the three directions of the flame IF, even if the flame shape changes over time by becoming longer or shorter, the switching unit 7 can control the amplification units 6a and 6b. Flame can be detected while switching the three output signals from 6C (during 1 cycle), and a flame ON signal can be reliably output.

次に、本実施例のセルフチェックの動作V第4図を参照
しながら説明する。光ファイバで構成される光伝送部に
おいては、光ファイバの耐熱性の点で断線等の事故が生
じるおそれがある。このような事故が発生すると、火炎
lが存在していても火炎無しの判定をしてしまう場合が
ある。そこで。
Next, the self-check operation of this embodiment will be explained with reference to FIG. 4. In an optical transmission section composed of an optical fiber, there is a risk of accidents such as disconnection due to the heat resistance of the optical fiber. When such an accident occurs, it may be determined that there is no flame even if the flame l is present. Therefore.

火炎無しの判定をするには、光伝送部4に断線等の異常
がないことを確認したうえで、信号レベルが閾値レベル
未満のとき火炎OFFの判定7行なう必要がある。今、
火炎lが存在する状態で、仮に、火炎有り判定の重要な
信号ケ伝送する検出部3bから延出した光ファイバに断
線が生じているものとする。この場合の近赤外域センサ
を用いた光電変換部5c、5b、5aの出力を、横軸に
AC光変動周波数をとって、第4図(I)〜(III)
に示す。図から明らかなように、光電変換部5bの出力
は第2図(II)に示す出力レベルと比較して極端に小
さく、低周波部において僅かの出力を生じるにすぎない
。したがって、前述のように、例えば1001(z以上
の成分のみを増幅器6a、6b。
To determine that there is no flame, it is necessary to confirm that there is no abnormality such as a disconnection in the optical transmission section 4, and then perform the determination 7 that the flame is OFF when the signal level is less than the threshold level. now,
Assume that in the presence of flame I, a break has occurred in the optical fiber extending from the detection section 3b that transmits an important signal for determining the presence of a flame. In this case, the outputs of the photoelectric conversion units 5c, 5b, and 5a using near-infrared sensors are shown in FIGS. 4(I) to (III), with the AC light fluctuation frequency plotted on the horizontal axis.
Shown below. As is clear from the figure, the output of the photoelectric conversion section 5b is extremely small compared to the output level shown in FIG. 2 (II), and only a small amount of output is produced in the low frequency range. Therefore, as described above, for example, only the components above 1001 (z) are transmitted to the amplifiers 6a and 6b.

6Cで選択増幅すると、各視野a、b、cともxooH
z以上の変動周波数成分がないので、演算処理部8から
は火炎lが存在するにもかかわらず火炎OFFの信号が
出力されてしまう□しかしながら、本実施例では、演算
処理部8に光伝送路異常判定機能を付加して誤った判定
がなされるのを防止する。即ち、演算処理部8に、各視
野の入力信号の低周波成分(例えば、DC〜5Hz)の
レベルがある閾値レベル以下であるか否かを比較する手
段、および各視野のある周波数(例えば、1 Hz )
におけろ入力信号の間のレベルの大小関係を判断する手
段ケ設けるものである。次表に。
When selectively amplified with 6C, each field of view a, b, and c are xooH
Since there is no fluctuating frequency component higher than z, the arithmetic processing unit 8 outputs a flame OFF signal even though the flame l exists.□However, in this embodiment, the arithmetic processing unit 8 Add an abnormality determination function to prevent incorrect determinations. That is, the arithmetic processing unit 8 includes means for comparing whether the level of the low frequency component (e.g., DC to 5 Hz) of the input signal of each visual field is below a certain threshold level, and 1Hz)
A means for determining the level relationship between input signals is provided. See the table below.

正常な場合と異常な場合の当該信号レベルの大小関係!
示す(光電変換部に近赤外域センサを用(・た場合)。
The relationship between the signal levels in normal and abnormal cases!
(When a near-infrared sensor is used in the photoelectric conversion section.)

そして、これら各手段により、各視野の入力信号の低周
波成分のレベルが閾値レベル以下であり、かつ、各伝送
路間の信号レベルの大小関係が上記表の正常時以外の関
係にあると判断されたとき、演算処理部8から光伝送路
異常信号fが出力され、異常な警報する。これにより誤
った判定、即ち火炎有りにもかかわらず火炎無しの判定
が行なわれるのを防止することができろ。
Then, by each of these means, it is determined that the level of the low frequency component of the input signal in each field of view is below the threshold level, and that the magnitude relationship of the signal levels between each transmission path is in a relationship other than the normal state shown in the table above. When this occurs, the optical transmission path abnormality signal f is output from the arithmetic processing unit 8 to issue an abnormality alarm. This can prevent an erroneous determination, that is, a determination that there is no flame even though there is a flame.

さきに述べたように、火炎の形状は、負荷、空燃比等の
燃焼条件にエリ大きく変動する。このため、上述の各伝
送路間の低周波信号レベルの大小関係等も変化する。そ
こで、本実施例では、負荷。
As mentioned earlier, the shape of the flame varies greatly depending on combustion conditions such as load and air-fuel ratio. For this reason, the magnitude relationship of the low frequency signal levels between the above-mentioned transmission lines also changes. Therefore, in this embodiment, the load.

空燃比等の燃焼状態に関与するプラント制御信号gを切
替制御部9に入力し、この入力に応じて、演算処理部8
の閾値レベルおよび各伝送路間の信号レベルの正常時の
大小関係等を変更する。これにより、火炎形状変化に対
する幅広い対応ができる。
A plant control signal g related to the combustion state such as the air-fuel ratio is input to the switching control section 9, and according to this input, the arithmetic processing section 8
The threshold level and the normal magnitude relationship of the signal level between each transmission path are changed. This allows for a wide range of responses to changes in flame shape.

このように、本実施例では、3本の光ファイバを用い、
これらの先端なそれぞれ光検出部とし、かつ、各光検出
部の視野を異らしめたので、火炎の形状が変化しても確
実に火炎を検出することができろ。又、光ファイバを用
いたので光伝送部を小さく構成することができる。さら
に、演算処理部にこれら各光検出部の信号レベルを比較
する手段および当該信号レベルの大小関係を比較する手
段を設けたので、機械的シャッタ機構を設けろことなく
セルフチェックを行なうことができ、装置の簡素化およ
び価格の低減に寄与することかできる。さらに又、プラ
ント制御信号に基づいて上記信号レベルな比較する手段
における閾値レベル、および上記信号レベルの大小関係
を比較する手段における大小関係を変更するようにした
ので、火炎形状の変化に対応したセルフチェックな行な
うことかできる。
In this way, in this example, three optical fibers are used,
Since each of these tips is used as a photodetector and the field of view of each photodetector is different, the flame can be reliably detected even if the shape of the flame changes. Furthermore, since an optical fiber is used, the optical transmission section can be configured to be small. Furthermore, since the arithmetic processing section is provided with a means for comparing the signal levels of each of these photodetecting sections and a means for comparing the magnitude relationship of the signal levels, self-check can be performed without providing a mechanical shutter mechanism. This can contribute to simplifying the device and reducing its cost. Furthermore, since the threshold level in the means for comparing the signal levels and the magnitude relationship in the means for comparing the magnitude relationship of the signal levels are changed based on the plant control signal, the Check what you can do.

なお、上記実施例の説明では、光検出部として3つの光
ファイバV用いる例を説明したが、その数は3つに限る
ことなく、2つ又は4つ以上であってもよいし、かつ、
必ずしも光ファイバに限定されろことはなく、他の適宜
の光検出器を使用丁−τことができろ。さらに、各光電
変換部は必ずしもすべて同一の検出波長域な有する光セ
ンサで構成する必要はなく、異なる検出波長域を有する
光センサで構成することもできる。又、切替制御部に入
力されるプラント制御信号は、これをセルフチェック機
能の向上に用いるばかりでな(、次のように用いること
もできる。即ち、多数の光検出部で種々の検出視野を分
担させ、光電変換部を種々の異なった検出波長域の光セ
ンサで構成し、増幅部V種々の周波波数帯域を選択増幅
する増幅器で構成し、プラント制御信号に応じて切替部
7を切替制御して所定の信号のみを演算処理部に入力す
るようにすれば、燃焼条件の変更あるいは変化に対して
、検出視野9着目する検出波長域、AC光の周波数帯域
の少なくとも1つケ追従させることができ、これにエリ
火炎有無判定の判定基準な多角化してより正確な火炎検
出を行なうことができる。又、上記プラント制御信号に
応じて、演算処理部の火炎有無の判定の閾値レベルケ変
化させて燃焼条件の変更あるいは変化に追従させること
もできろ。
In addition, in the description of the above embodiment, an example was explained in which three optical fibers V are used as the photodetector, but the number is not limited to three, and may be two or four or more, and
It is not necessarily limited to optical fibers; other suitable photodetectors can be used. Furthermore, each photoelectric conversion section does not necessarily need to be composed of optical sensors having the same detection wavelength range, but can also be composed of optical sensors having different detection wavelength ranges. In addition, the plant control signal input to the switching control unit is not only used to improve the self-check function (but can also be used as follows: The photoelectric conversion section is composed of optical sensors with various different detection wavelength ranges, the amplification section V is composed of amplifiers that selectively amplify various frequency bands, and the switching section 7 is switched and controlled according to the plant control signal. By inputting only a predetermined signal to the arithmetic processing unit, the detection field of view 9 can be made to follow at least one of the detection wavelength range of interest and the frequency band of AC light in response to changes or changes in combustion conditions. In addition, it is possible to perform more accurate flame detection by diversifying the criteria for determining the presence or absence of flame.Furthermore, the threshold level for determining the presence or absence of flame in the arithmetic processing section can be changed in accordance with the plant control signal. It can also be made to follow changes or changes in combustion conditions.

以上述べたように、本発明では、火炎に対して視野の異
なる複数の導光部を設け、これら導光部からの光をこれ
に応じた電気信号に変換し、これら各電気信号に基づい
て火炎の有無の判定を行なうよ5にしたので、火炎形状
が変化しても確実に火炎を検出することができ、かつ、
機械的なシャッタ2用いることなくセルフチェックを行
なうことができる。
As described above, in the present invention, a plurality of light guide parts with different fields of view are provided for the flame, and the light from these light guide parts is converted into electric signals corresponding to the light guide parts. Since 5 is set to determine the presence or absence of flame, flame can be reliably detected even if the flame shape changes, and
Self-check can be performed without using a mechanical shutter 2.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例に係る火炎検出装置のブロック
図、第2図(I)、(n)、(m)、第3図(I)、(
II)、佃)および第4図(I)、(II)、■)は各
視野における出力信号の特性図である。 l・・・・・・火炎、2・・・・・・ウィンドボックス
、3a。 3b、3c・・・・・・光検出部、4・・・・・・光伝
送部、5a。 5b、5c・・・・・・光電変換部、6g、6b、6c
・・・・・・増幅部、7・・・・・・切替部、8・・・
・・・演算処理部、9・・・・・・切替制御部、a、b
、c・・・・・・視野。
FIG. 1 is a block diagram of a flame detection device according to an embodiment of the present invention, FIGS. 2(I), (n), (m), and FIGS. 3(I), (
II), Tsukuda) and FIGS. 4(I), (II), ■) are characteristic diagrams of output signals in each field of view. l...Flame, 2...Wind box, 3a. 3b, 3c...Photodetection section, 4...Optical transmission section, 5a. 5b, 5c...Photoelectric conversion section, 6g, 6b, 6c
...Amplifying section, 7...Switching section, 8...
... Arithmetic processing unit, 9... Switching control unit, a, b
, c... Field of view.

Claims (1)

【特許請求の範囲】[Claims] 1、火炎の異なる部分の光を導光する複数の導光部と、
との導光部により導光された光をそれぞれ電気信号に変
換する光電変換部と、との光電変換部の各信号に基づき
火炎有無の判定7行なう演算処理物とで構成されること
ケ特徴とする火炎検出装置。
1. A plurality of light guide parts that guide light from different parts of the flame;
Features include a photoelectric conversion section that converts the light guided by the light guide section of and into electrical signals, and a calculation processing object that determines whether there is a flame based on each signal of the photoelectric conversion section of and. flame detection device.
JP23873383A 1983-12-20 1983-12-20 Flame detector Granted JPS60133217A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23873383A JPS60133217A (en) 1983-12-20 1983-12-20 Flame detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23873383A JPS60133217A (en) 1983-12-20 1983-12-20 Flame detector

Publications (2)

Publication Number Publication Date
JPS60133217A true JPS60133217A (en) 1985-07-16
JPH057608B2 JPH057608B2 (en) 1993-01-29

Family

ID=17034447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23873383A Granted JPS60133217A (en) 1983-12-20 1983-12-20 Flame detector

Country Status (1)

Country Link
JP (1) JPS60133217A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6298117A (en) * 1985-10-25 1987-05-07 Babcock Hitachi Kk Flame detector

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5098338U (en) * 1974-01-10 1975-08-15
JPS5359926A (en) * 1976-11-10 1978-05-30 Hitachi Ltd Burner flame detector
JPS5514919U (en) * 1978-07-10 1980-01-30

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5098338U (en) * 1974-01-10 1975-08-15
JPS5359926A (en) * 1976-11-10 1978-05-30 Hitachi Ltd Burner flame detector
JPS5514919U (en) * 1978-07-10 1980-01-30

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6298117A (en) * 1985-10-25 1987-05-07 Babcock Hitachi Kk Flame detector

Also Published As

Publication number Publication date
JPH057608B2 (en) 1993-01-29

Similar Documents

Publication Publication Date Title
US4039844A (en) Flame monitoring system
US4370557A (en) Dual detector flame sensor
US4578583A (en) Solid state ultraviolet flame detector
US4233596A (en) Flare monitoring apparatus
EP0047421B1 (en) Improved fault detection in a flame scanner
EP0474430B1 (en) Flame monitoring method
US4051375A (en) Discriminating flame detector
US20090214993A1 (en) System using over fire zone sensors and data analysis
JPS60133217A (en) Flame detector
JP3423124B2 (en) Combustion monitoring sensor and air ratio control method for combustion device using the same
IE46534B1 (en) Improvements in or relating to flame monitoring apparatus and method
KR101300807B1 (en) Multi-burner ignition detecting system with double signal process part
JPH0629666B2 (en) Flame detector
RU2109345C1 (en) Pyrometric fire detector
Willson et al. Pulverised fuel flame monitoring in utility boilers
JP3258778B2 (en) Flame detection and combustion diagnostic device
JP3113214B2 (en) Flame detector
JPS6339559Y2 (en)
JPH0585811B2 (en)
JPS59137719A (en) Flame detector
JPH07113685A (en) Flame detector
JPS59109715A (en) Flame detecting device
JPS60127427A (en) Flame detecting apparatus
JPH0472126B2 (en)
JPS6136618A (en) Flame detecting device