JPS60132621A - Gas separation membrane - Google Patents

Gas separation membrane

Info

Publication number
JPS60132621A
JPS60132621A JP24275983A JP24275983A JPS60132621A JP S60132621 A JPS60132621 A JP S60132621A JP 24275983 A JP24275983 A JP 24275983A JP 24275983 A JP24275983 A JP 24275983A JP S60132621 A JPS60132621 A JP S60132621A
Authority
JP
Japan
Prior art keywords
polysiloxane
formula
membrane
gas separation
separation membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24275983A
Other languages
Japanese (ja)
Inventor
Akira Omori
晃 大森
Hiroshi Inukai
宏 犬飼
Nobuyuki Tomihashi
信行 富橋
Naoaki Izumitani
泉谷 直昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Daikin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd, Daikin Kogyo Co Ltd filed Critical Daikin Industries Ltd
Priority to JP24275983A priority Critical patent/JPS60132621A/en
Publication of JPS60132621A publication Critical patent/JPS60132621A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To obtain a gas separation membrane high in the transmission coefficient and separation factor of oxygen, by using polysiloxane having a fluorine- containing group in the main chain or its crosslinked polymer. CONSTITUTION:Polysiloxane obtained by the dehydro-condensation reaction of a compound represented by formula is used as a stock material. Similar polysiloxane may be obtained by other synthetic methods. This polysiloxane is dissolved in a solvent such as toluene or xylene and, if crosslinking is performed later, a crosslinking reaction catalyst is added to said solvent and a membrane is formed so as to adjust the thickness thereof to 1-50mum according to a usual membrane preparing method. In order to enhance the strength of the membrane, the formed membrane is crosslinked before use. Crosslinking reaction is performed at a room temp. 150 deg.C for 30min-20hr. The crosslinking reaction catalyst is used so as to be added to polysiloxane in an amount of 1-10wt%.

Description

【発明の詳細な説明】 本発明は、気体分離膜に関する。[Detailed description of the invention] The present invention relates to gas separation membranes.

従来、気体分離膜を粗い空気より酸素を濃縮し、燃焼、
医療、醗酵等に利用することが行われている。
Conventionally, gas separation membranes were used to concentrate oxygen from rough air, and then burn it.
It is used for medical purposes, fermentation, etc.

この気体分離膜としては、例えば側鎖にフルオロアルキ
ル基を含有するポリシロキサンが公知である(特開昭5
6−6121号公報)。この気体分離膜は、従来からあ
る気体分離膜の耐熱性等を改良する目的で作られたもの
でおるが、酸素の透過係数や分離係数が小さく実用的で
はない。
As this gas separation membrane, for example, polysiloxane containing a fluoroalkyl group in the side chain is known (Japanese Unexamined Patent Publication No.
6-6121). This gas separation membrane was created for the purpose of improving the heat resistance and other properties of conventional gas separation membranes, but its oxygen permeability coefficient and separation coefficient are small, making it impractical.

本発明の目的は、酸素の透過係数および分離係数の大き
な気体分離膜を提供することである。
An object of the present invention is to provide a gas separation membrane with a large oxygen permeability coefficient and separation coefficient.

かかる本発明の要旨は、主鎖中にフルオロアルキレン基
またはフルオロオキシアルキレン基を含有するポリシロ
キサンまたはその架橋体からなる気体分離膜に存する。
The gist of the present invention resides in a gas separation membrane made of a polysiloxane containing a fluoroalkylene group or a fluorooxyalkylene group in its main chain or a crosslinked product thereof.

上記フルオロアルキレン基は、通常式二Cl1F211
− (式中、11は1−15の整数を示す。)で表わされる
基であり、フルオロオキシアルキレン基は、通常式: またば1を示す。) で表わされる基である。
The above fluoroalkylene group usually has the formula 2Cl1F211
- (In the formula, 11 represents an integer of 1-15.) A fluorooxyalkylene group usually represents the formula: ) is a group represented by

如 本発明に係る気体分1fll!膜の原料となるポrギサ
ンは、公知の方法(特囲昭58−92594号公報参照
)で調製することができ通常式: (式中、R1およびR2上−またけ相異なる炭素数l〜
15のアルキル基あるいは炭素数2〜15のフルオロア
ルキルまたはフルオロオキシで表わされる化合物全重合
することにより、また式: (式中、R1は前記と同じ。) で表わされる化合物を式(a)で表わされる化合物と反
応式せ、式: (式中、R1、R2およびRfは前記と同じ。)で表わ
される化合物?i−1、次いでこの化合物に含有される
一C1を一〇H基に変換し、式:(式中、R1、R2オ
jヒRfiljiJ、%3と同じ。)で表わされる化合
物を得、この式(d)で表わされる化合物を式(a)で
表わされる化合物と同様に重合して得ることができる。
Just 1 flll of gas according to the present invention! Porgysan, which is a raw material for the membrane, can be prepared by a known method (see Japanese Patent Application Publication No. 58-92594) and is usually prepared by the following formula: (wherein R1 and R2 have different carbon numbers l to
By fully polymerizing a compound represented by 15 alkyl groups or fluoroalkyl or fluorooxy having 2 to 15 carbon atoms, a compound represented by formula: (wherein R1 is the same as above) can be synthesized by formula (a). What is the reaction formula for the compound represented by the formula: (wherein R1, R2 and Rf are the same as above)? i-1, then 1C1 contained in this compound is converted to 10H group to obtain a compound represented by the formula: (in the formula, R1, R2 is the same as %3), and this The compound represented by formula (d) can be obtained by polymerizing in the same manner as the compound represented by formula (a).

弐(a)で表わされる化合物と式(b)で表わされる化
合物を反応させる際の反応割合は、気体分離膜の酸素と
窒業の分離係数を大きくする上で、式(a)で表わされ
る化合物が50モル%以上であることが好ましい。
2) The reaction rate when reacting the compound represented by (a) with the compound represented by formula (b) is as shown in formula (a) in order to increase the separation coefficient between oxygen and nitrogen of the gas separation membrane. Preferably, the amount of the compound is 50 mol% or more.

上記式(b)で表わされる化合物のほか式:3 (式中、R3は−H,(CH2)y CH=CH2(但
し、rはθ〜3の整数。〕、−(CH2)s00ccH
=CH2(但し、Sは1〜5の整数。) 、 −(CH
2) sゾ゛ 00CC=CH2(但し、Sはnrs記と同じ。〕、−
QC8R2g +1 (但し、s Id、前if3ト同
1:、。〕、−0OCs R2s ++ (但し、Sは
前記と同じ。〕を示す。) で表わされる化合物を式(b)で表わされる化合物と同
様にしてポリシロキサン中に含有させることもできる。
In addition to the compound represented by the above formula (b), formula: 3 (wherein R3 is -H, (CH2)y CH=CH2 (where r is an integer between θ and 3), -(CH2)s00ccH
=CH2 (However, S is an integer from 1 to 5.), -(CH
2) szo゛00CC=CH2 (However, S is the same as in nrs.), -
The compound represented by QC8R2g +1 (s Id, if3 same 1:, .), -0OCs R2s ++ (however, S is the same as above) is referred to as the compound represented by formula (b). It can also be incorporated into polysiloxane in a similar manner.

式(e)で表わされる化合物は官能&を有するので、こ
れを利用してポリシロキサン全架橋することができ、気
体分離膜の機械的強度勿上げることができる。式(C)
で表わされる化合物は、通常式(a)で表わされる化合
物に対して15モル%以下の社比で用いら・れる。
Since the compound represented by formula (e) has the functional &, it can be used to completely crosslink the polysiloxane, thereby increasing the mechanical strength of the gas separation membrane. Formula (C)
The compound represented by formula (a) is usually used in an amount of 15 mol% or less relative to the compound represented by formula (a).

未満に一〇H基を有する式(a)で表わきれる化合物等
の重合は、通常脱水縮合反応を利用して行なう。
Polymerization of compounds represented by formula (a) having less than 10 H groups is usually carried out using a dehydration condensation reaction.

この脱水縮合反応は、触媒の存在下、無溶媒で行うこと
ができるし、ベンゼンやトルエン等を溶媒として行うこ
ともできる。無溶媒で反応を行う場合は、生成する水を
減圧下除去しながら、溶[を用いる場合は、生成する水
を溶媒と共沸させて除去しながら行うのが便利である。
This dehydration condensation reaction can be carried out in the presence of a catalyst without a solvent, or can be carried out using benzene, toluene, or the like as a solvent. When carrying out the reaction without a solvent, it is convenient to remove the produced water under reduced pressure, and when using a solvent, it is convenient to carry out the reaction while removing the produced water by azeotroping with the solvent.

触媒としては、パラトルエンスルホン酸、トリフルオロ
酢酸・テトラメチルグアニジン塩、2−エチルヘキサン
酸・テトラメチルグアニジン塩等が例示できる。
Examples of the catalyst include para-toluenesulfonic acid, trifluoroacetic acid/tetramethylguanidine salt, and 2-ethylhexanoic acid/tetramethylguanidine salt.

反応温度は、通常50〜150°Cである。The reaction temperature is usually 50 to 150°C.

末端に一〇H基を有する化合物と末端に−C1を有する
化合物は、通常脱塩化水素して反応させる。
A compound having an 10H group at the end and a compound having -C1 at the end are usually dehydrochlorinated and reacted.

この脱塩化水素反応は、通常無?谷媒あるいはジオキサ
ン等のエーテル類を溶媒として行なわれる。
Is this dehydrochlorination reaction usually absent? It is carried out using a dioxane or an ether such as dioxane as a solvent.

無溶媒で反応を行う場合は、反応系内に窒素等不活性ガ
スヲ通じることにより、あるいは、上記脱水反応と同様
反応出金減圧に引くことにより、発生する塩化水素を除
去しながら行うのが便利である。反応温度は、通常lo
〜ioo’cである。
When carrying out the reaction without a solvent, it is convenient to carry out the reaction while removing the generated hydrogen chloride by passing an inert gas such as nitrogen into the reaction system, or by reducing the pressure of the reaction mixture as in the dehydration reaction above. It is. The reaction temperature is usually lo
~ioo'c.

なお、前記の−C1を一〇H基に変換する反応は、通常
NaHC0,やKHCO3等の弱アルカリの飽和水°′
浴溶液木端に−Cgを有する化合物に添加して行なう。
The reaction for converting -C1 to 10H group is usually carried out using saturated water of a weak alkali such as NaHC0 or KHCO3.
This is carried out by adding a compound having -Cg to the bath solution.

通常、反応温度は10〜80″c1反応時間は数分〜5
時間でおる。
Usually, the reaction temperature is 10~80''c1 reaction time is several minutes~5
It's time.

前記調製法で調製式れたポリシロキサンは、通常トルエ
フ、キシレン、へキサフルオロメタキシレン、トリクロ
ロトリフルオロエタン、テトラクロロジフルオロエタン
、ヘキサクロロヘキサフルオロブタン等の溶媒に溶解し
、ポリシロキサンを後で架橋する場合には過酸化物や有
機金属塩等の架橋反応触媒を添加して、通常、薄膜を調
製する方法、例えばバーコーター法、スピンコーター法
、ラングミュア−法、ディップ法等によりガラス、金8
等の平滑板上やポリテトラフルオロエチレン多孔体等の
多孔質支持体上に、通常膜序が1〜50μmになるよう
に製膜きれる。普通、ガラス、金属等の平滑板上に製膜
きれたポリシロキサンは、強度を上げる場合には架橋さ
せた後、板上より剥離して、適当な支持体上に固定して
、また多孔質の支持体上に製膜されたものは、同様に強
度を上ける場合には架橋後、その支持体ごと用いられる
The polysiloxane prepared by the above preparation method is usually dissolved in a solvent such as Toluev, xylene, hexafluorometa-xylene, trichlorotrifluoroethane, tetrachlorodifluoroethane, hexachlorohexafluorobutane, etc., and the polysiloxane is later crosslinked. In some cases, crosslinking reaction catalysts such as peroxides and organic metal salts are added, and thin films are usually prepared by methods such as bar coater method, spin coater method, Langmuir method, dip method, etc.
A film can be formed on a smooth plate such as a polytetrafluoroethylene or a porous support such as a polytetrafluoroethylene porous material so that the film thickness is usually 1 to 50 μm. Normally, polysiloxane that has been formed into a film on a smooth plate such as glass or metal is crosslinked to increase its strength, then peeled off from the plate and fixed on a suitable support. A film formed on a support may be used together with the support after crosslinking if the strength is to be increased.

本発明に係る気体分離膜とは、以上のごとくポリシロキ
サンまたはその架橋体膜だけでなく、これらを塗布、積
層した複合膜をも意味する。
The gas separation membrane according to the present invention means not only polysiloxane or a crosslinked membrane thereof as described above, but also a composite membrane formed by coating or laminating these membranes.

上記の架橋反応は、通常前述の製膜後、室温ないし15
0″Cの温度で30分ないし20時間かけて行なわれる
。なお、過酸化物や有機金属塩等の架橋反応触媒は、ポ
リシロキサンに対し通常1〜10重量係重量比で用いら
れる。これら架橋反応のための好ましい条件をポリシロ
キサンが有する官能扶別に例示する。
The above crosslinking reaction is usually carried out at room temperature to
The crosslinking reaction is carried out at a temperature of 0"C for 30 minutes to 20 hours. The crosslinking reaction catalyst such as peroxide or organic metal salt is usually used in a weight ratio of 1 to 10 to the polysiloxane. Preferred conditions for the reaction are exemplified by the functional properties of polysiloxanes.

l)水酸基どうしは、オクチル酸亜鉛、ジブチル錫ジラ
ウレート等全触媒として反応温度50〜150°Cで行
なう。
l) The reaction between hydroxyl groups is carried out using a total catalyst such as zinc octylate or dibutyltin dilaurate at a reaction temperature of 50 to 150°C.

2)水素とビニル基は、無触媒で50〜150℃で行な
う。
2) Hydrogen and vinyl groups are mixed at 50 to 150°C without a catalyst.

1 1 1 1 3)メチル基やビニル基は、過酸化物触媒や放射線を利
用して、室温〜150°Cで行なう。
1 1 1 1 3) Methyl groups and vinyl groups are formed at room temperature to 150°C using a peroxide catalyst or radiation.

4)水酸基とアルコキシル基は、前記1)と同様にして
行なう。
4) Hydroxyl groups and alkoxyl groups are prepared in the same manner as in 1) above.

(式中、R4はアルキル基を示す。) 5)カルホン酸エステルどうしは、室温ないし150°
Cで水で加水分解して行なう。
(In the formula, R4 represents an alkyl group.) 5) Carphonic acid esters are mixed at room temperature to 150°
This is done by hydrolyzing with water at C.

1式中、R4は前記と同じ。) 次にポリシロキサンを調製した調製例とこれより得られ
たポリシロキサンから調製した気体分離膜の試験例およ
び移較例を示す。
In formula 1, R4 is the same as above. ) Next, we will show preparation examples in which polysiloxanes were prepared, and test examples and comparative examples of gas separation membranes prepared from the polysiloxanes obtained.

調製例 1〜7 第1表に示すシラ7−ル10yVcl : ] (モz
し)のCF3 C0OH・テトラメチルグアニジン40
.01f金添加し、はげしく攪拌しながら20mm l
(gの減圧下80°Cで8時間該シラノールの爪台を行
った。その後、生成物をyエチルエーテlし50 ml
に溶祖踵この溶液をN a HCO3の飽和水浴液10
0++14中へ鳩下して重合を停止させた。有機層を水
洗伐水層から分離し、有機層のジエチルエーテルをエバ
ポレータで溜去した。得られた残渣全水洗した後減圧乾
燥してゴム状物質を得た。
Preparation Examples 1 to 7 Sila 7-ol 10yVcl shown in Table 1: ] (Moz
CF3 C0OH Tetramethylguanidine 40
.. Add 01f gold and add 20 mm l with vigorous stirring.
The silanol was washed under reduced pressure at 80°C for 8 hours.Then, the product was diluted with ethyl ether and 50 ml
Add this solution to a saturated water bath of NaHCO3 at 10%
Polymerization was stopped by dropping the mixture into 0++14. The organic layer was separated from the water washed layer, and diethyl ether in the organic layer was distilled off using an evaporator. The resulting residue was washed with water and dried under reduced pressure to obtain a rubbery substance.

各調製例の収率は、それぞれ83%、98%、82%9
7%、90%、88%および90%であった。
The yields of each preparation example were 83%, 98%, and 82%9.
They were 7%, 90%, 88% and 90%.

次に調製例1で得られたポリシロキサンのIHおよび1
9pの核磁気共鳴分析(NMR)の結果を示す。溶媒は
アセトン−d6で、’HNMRの場合は内部標準として
(CH+1)43し、1”FNMRの場合は外部標準と
してCF3 C00Hft使用した。
Next, IH and 1 of the polysiloxane obtained in Preparation Example 1
The results of nuclear magnetic resonance analysis (NMR) of 9p are shown. The solvent was acetone-d6, and (CH+1)43 was used as an internal standard in the case of 'HNMR, and CF3 C00Hft was used as an external standard in the case of 1''FNMR.

HNMR 9FNMR 5シ 上記NMR結果および合成法より、調製例1で調製した
重合体は式: %式%(1 で表わされる構造単位を有するものであることがわかる
From the above NMR results and synthesis method, it can be seen that the polymer prepared in Preparation Example 1 has a structural unit represented by the formula: %Formula % (1).

気体分離膜試料は、上記各調製例で得られた重合体ヲそ
れぞれトルエンとメタキシレンヘキサフルオライドの重
量で1:1の混合溶媒に10重量%になるように溶解し
、よく攪拌した後溶液のうちの1011Ilをポリテト
ラフルオロエチレンを延伸して得られた空孔率60%、
空孔の短径0.1〜1μm1長径1−1θ声の多孔体上
に、毎分2000回転で回転するスピンコーターを使用
して塗布することによっって調製した。
Gas separation membrane samples were prepared by dissolving each of the polymers obtained in the above preparation examples in a 1:1 mixed solvent of toluene and meta-xylene hexafluoride to a concentration of 10% by weight, and stirring well. Of these, 1011Il was obtained by stretching polytetrafluoroethylene with a porosity of 60%,
It was prepared by coating on a porous body with pores having a minor axis of 0.1 to 1 μm and a major axis of 1-1θ using a spin coater rotating at 2000 revolutions per minute.

調製例 8〜12 第1表に永すシラノールに同じく第1表に示すニ シランをはげしく攪拌しながら窒素気流中80°C滴下
した(ただし、シラノールとシランは合計101)。
Preparation Examples 8 to 12 Nisilane, also shown in Table 1, was added dropwise to the silanol shown in Table 1 at 80° C. in a nitrogen stream with vigorous stirring (however, the total amount of silanol and silane was 101).

滴下終了後、窒素気流中90〜100°Cではけしく攪
拌しながら12時間反応を行った。その後、室温まで冷
却してから生成物をジエチルエーテルに溶解し、この浴
液をN a HC03の飽和水素溶液、次に水でよく洗
った後有機層を分取し、有機層からジエチルエーテルを
溜夫した。
After the dropwise addition was completed, the reaction was carried out at 90 to 100°C in a nitrogen stream for 12 hours with vigorous stirring. Thereafter, after cooling to room temperature, the product was dissolved in diethyl ether, and the bath solution was thoroughly washed with a saturated hydrogen solution of Na HC03 and then with water, and the organic layer was separated, and diethyl ether was extracted from the organic layer. I was a tameo.

上記残渣に調製例1〜7で使用したと同じCF3COO
H・テトラメチルグアニジン塩0.01gを添加し、2
0 Ml Hgの減圧下ioo°Cで8時間重合を行っ
た。その後、生成物を1.1.2−1−!Iフクロー1
゜2.2−)リフルオロエタン50dに溶解し、この溶
液をN a HC03飽和水溶液100−中へ滴下して
重合を停止させた。その後は、調製例1〜7と同様の手
順で生成物を洗浄、乾燥しゴム状物質を得た。
The same CF3COO used in Preparation Examples 1 to 7 was added to the above residue.
Add 0.01 g of H.tetramethylguanidine salt,
Polymerization was carried out for 8 hours at ioo°C under reduced pressure of 0 Ml Hg. Then, the product is 1.1.2-1-! I owl 1
2.2-) It was dissolved in 50 d of refluoroethane, and this solution was dropped into 100 d of a saturated aqueous solution of Na HC03 to terminate the polymerization. Thereafter, the product was washed and dried in the same manner as in Preparation Examples 1 to 7 to obtain a rubbery substance.

なお、各調製例の収率は、それぞれ93%、93%、9
9%、99%、87%および86%であった。
The yields of each preparation example were 93%, 93%, and 9%, respectively.
They were 9%, 99%, 87% and 86%.

調製例 13 第1表に示す二種のシラノール合計101に’A製例1
〜7と同様の手順で共重合した。重合終了後、生成物を
1.1.2−トリクロロ−1,2,2−1−リフルオロ
エタンに溶解し、後は調製例1〜7と同様の手順で洗浄
、乾燥を行った。
Preparation Example 13 'A Preparation Example 1 to a total of 101 of the two types of silanols shown in Table 1
Copolymerization was carried out in the same manner as in 7. After the polymerization was completed, the product was dissolved in 1.1.2-trichloro-1,2,2-1-lifluoroethane, and washed and dried in the same manner as in Preparation Examples 1 to 7.

気体分離膜試料も1i’i製例1〜7の場合と同様の手
順で調製した。
Gas separation membrane samples were also prepared in the same manner as in 1i'i Preparation Examples 1-7.

調製例 14〜15 第1表に示す二種のシラノール合計9yにビニルシラン の手順で反応感せ、その後も調製例8〜12と同様の手
順で重合、洗浄および乾燥を打った。
Preparation Examples 14-15 A total of 9y of the two types of silanols shown in Table 1 were reacted with vinyl silane, followed by polymerization, washing and drying in the same manner as in Preparation Examples 8-12.

気体分離膜試料は、上記得られた重合体をトルエンとメ
タキシレンヘキサフルオライドの重量でl=1の混合溶
媒に10重量%になるように溶解した後、その溶液にジ
クミルパーオキサイドを重合体に対し5重量%添柳し、
前記と同様の手順で製膜を行い、乾燥後20flHgの
減圧下16時間110°Cに加熱して架橋することによ
シ調製した。
The gas separation membrane sample was prepared by dissolving the above-obtained polymer in a mixed solvent of toluene and meta-xylene hexafluoride (l = 1) to a concentration of 10% by weight, and then adding dicumyl peroxide to the solution. Added 5% by weight to the combined material,
A film was formed in the same manner as above, and after drying, it was heated at 110° C. for 16 hours under a reduced pressure of 20 flHg for crosslinking.

調製例 16 第1表に示すシラノールにビニルシランkmfM例8〜
12と同様の手順で反応させ、その後も調製例8〜12
と同様の手順で重合、洗浄および乾燥を行った。
Preparation Example 16 Vinylsilane kmfM Example 8 to silanol shown in Table 1
12, and then also in Preparation Examples 8 to 12.
Polymerization, washing and drying were carried out in the same manner as above.

気体分離膜試料は、調製例14〜15の場合と同じ手順
で調製した。
Gas separation membrane samples were prepared using the same procedure as in Preparation Examples 14-15.

試験例 上記調製した各気体分離膜試料について、窒素および酸
素が一定体積透過する時間をASTM D14114 
V法(v Method)に準じ下記条件で測定し、そ
の結果から後記の式により酸素の透過係数および分離係
数をめた。結果を第1表に示す。
Test Example For each gas separation membrane sample prepared above, the time required for a constant volume of nitrogen and oxygen to permeate was determined according to ASTM D14114.
Measurement was carried out under the following conditions according to the V Method, and the oxygen permeability coefficient and separation coefficient were calculated from the results using the equations described below. The results are shown in Table 1.

測定条件 使用気体:窒素79谷量%および酸素21容量%の標準
混合ガス。
Measurement conditions Gas used: Standard mixed gas of 79% nitrogen and 21% oxygen by volume.

試験圧力ニー次圧5Kg/・Cd (絶対圧)、二次圧
1 Kg / cノ(絶対圧)。
Test pressure: Secondary pressure: 5 Kg/Cd (absolute pressure), secondary pressure: 1 Kg/Cd (absolute pressure).

気体透過jii : 4 cco 試験時間二上記透過に要した時間(秒)。Gas permeation jii: 4cco Test time 2. Time required for the above permeation (seconds).

気体分離膜面積:185CJ 気体分離膜膜厚:支持体上に付着したポリマー重置を秤
量し、この値をポリマー付 着面積およびポリマー比重で除した 値。
Gas separation membrane area: 185CJ Gas separation membrane thickness: The value obtained by weighing the polymer superimposed on the support and dividing this value by the polymer adhesion area and polymer specific gravity.

透過係数および分M係数の計算式 (式中、Kは透過係数、Qは気体透過量、Lは膜厚、S
は膜面積、Tは時間、ΔPは一次側と二次側の気体の圧
力(但し、分圧漉を示す。)(式中、αは分離係数、K
O2はし素の透過係数、KH2は窒素の透過係数を示す
。) 比較例 10fにKOHO,01Nを加え、窒素気流中攪拌しな
がら120°Cで14時間開環重合を行った。その後、
1、 l、 2−1−ジクロロ−1,2,2−1−リフ
ルオロエタンに溶解し、この溶液を希アルカリ水溶液で
洗浄し、有機層を分取した後1.1.2−トリクロロ−
1゜2.2−トリフルオロエタンを溶去し、ゴム状重合
体9.:Mt−得た。
Calculation formula for permeability coefficient and minute M coefficient (in the formula, K is permeation coefficient, Q is gas permeation amount, L is film thickness, S
is the membrane area, T is the time, ΔP is the pressure of the gas on the primary side and the secondary side (however, it indicates partial pressure filtration) (in the formula, α is the separation coefficient, K
O2 represents the permeability coefficient of fluorine, and KH2 represents the permeability coefficient of nitrogen. ) KOHO,01N was added to Comparative Example 10f, and ring-opening polymerization was performed at 120°C for 14 hours while stirring in a nitrogen stream. after that,
1,1,2-trichloro-1,1,2-trichloro-1,1,2-trichloro-1,1,2-trichloro-1,1,2-trichloro-1,1,2-trichloro-
1゜2.2-Trifluoroethane is eluted and a rubbery polymer 9. :Mt-obtained.

気体分離膜試料は、この重合体を1..1.2− ト’
)クロロ−1,2,2−トリフルオロエタンとメタキシ
レンヘキサフルオライドの重量でl:1の混合液に80
重量%になるように溶解し、後は調製例1〜14の場合
と同じ手順で調製した。その後前記と同様の試験を行い
、第1表に示す結果を得た。
The gas separation membrane sample contained this polymer in 1. .. 1.2- t'
) 80% by weight of a 1:1 mixture of chloro-1,2,2-trifluoroethane and meta-xylene hexafluoride.
% by weight, and the rest was prepared in the same manner as in Preparation Examples 1 to 14. Thereafter, the same test as above was conducted, and the results shown in Table 1 were obtained.

上記表中、(す〜へ)で表わされているシラノールおよ
び(XD〜(X iii )で表わされているシランは
、次のとおりである。なお、シラノール(1) (+X
)およびシラン(×1)〜(xill)は、その置換基
:R1、R2またはR3と11のみ略記する。
In the above table, the silanol represented by (su~he) and the silane represented by (XD~(X
) and silanes (x1) to (xill), only the substituents: R1, R2 or R3 and 11 are abbreviated.

(i) R1およびR2: CH:4.5s=6(If
) R1およびR2: CH2CH2CF2CF2 C
F3.11=6(iii) R1およびR2: CH2
CH2CF2CF3.11 = 8(iV) R1およ
びR2: CH2CF2(CF2)、 CF3、x1=
6MRIおよびR” : CH2CH2(CF2 )8
 CF3 、”1=4(Vi) R’およびR” : 
CH2CH2CH20CH2CF2 CF3、c4F7
.11=6 (Vlll) R1オLUR2: CH2CH2CF2
CF2CF<::二、n=4 一沁 R1およびR2: CH2CH2CF2CF2C
F弓ニ、11=2 18モル%、11=4 16モル%
、n=626モル%、 n=8 28モル%、x1= 10 15モル%、菖ム
=125モル%、11=142モル%の混合物 シラノール(×) CH2CH2CF3 ■ CH2CH2CF:+ Sν0H CH。
(i) R1 and R2: CH:4.5s=6(If
) R1 and R2: CH2CH2CF2CF2C
F3.11=6(iii) R1 and R2: CH2
CH2CF2CF3.11 = 8 (iV) R1 and R2: CH2CF2(CF2), CF3, x1=
6MRI and R”: CH2CH2(CF2)8
CF3, "1=4(Vi) R' and R":
CH2CH2CH20CH2CF2 CF3, c4F7
.. 11=6 (Vlll) R1o LUR2: CH2CH2CF2
CF2CF<::2, n=4 one year R1 and R2: CH2CH2CF2CF2C
F Yuni, 11=2 18 mol%, 11=4 16 mol%
, n = 626 mol%, n = 8 28 mol%, x1 = 10 15 mol%, iris = 125 mol%, 11 = 142 mol% mixture silanol (x) CH2CH2CF3 ■ CH2CH2CF: + Sv0H CH.

1 「 C,JS〆4 C馬 (XI) R” : cI(3 (X:l) R” : CH2CH2(CF2)5 C
F’:(CF、。
1 “C, JS〆4 C horse (XI) R”: cI(3 (X:l) R”: CH2CH2(CF2)5 C
F': (CF,.

(×川)R3: にH2cl(、CF2 CF20にF
2 CFOC3F7以上 特許出願人 ダイキン工業株式会社
(x river) R3: to H2cl (, CF2 to CF20
2 Patent applicant for CFOC3F7 and above Daikin Industries, Ltd.

Claims (1)

【特許請求の範囲】 1、主鎖中にフルオロアルキレンX−tたはフルオロオ
キシアルキレン基を含有するポリシロキサン葦たはその
架橋体からなる気体分S膜。 2、フルオロアルキレン基が1式: %式% (式中、11は1〜15の整数を示す。)で表わされる
基である特許請求の範囲第1項記戦の気体分離膜。 8、 フルオロオキシアルキレン基が式:(式中、Xは
FまたはCF3、l、mおよび矛は同一または相異なる
1〜8の整数、PはOまたはlを示す。) で表わされる基である特許請求の範囲第1項記載の気体
分離膜。
[Claims] 1. A gaseous S film made of polysiloxane reed or a crosslinked product thereof containing a fluoroalkylene X-t or fluorooxyalkylene group in the main chain. 2. The gas separation membrane according to claim 1, wherein the fluoroalkylene group is a group represented by the following formula: % formula % (in the formula, 11 represents an integer of 1 to 15). 8. The fluorooxyalkylene group is a group represented by the formula: A gas separation membrane according to claim 1.
JP24275983A 1983-12-21 1983-12-21 Gas separation membrane Pending JPS60132621A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24275983A JPS60132621A (en) 1983-12-21 1983-12-21 Gas separation membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24275983A JPS60132621A (en) 1983-12-21 1983-12-21 Gas separation membrane

Publications (1)

Publication Number Publication Date
JPS60132621A true JPS60132621A (en) 1985-07-15

Family

ID=17093842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24275983A Pending JPS60132621A (en) 1983-12-21 1983-12-21 Gas separation membrane

Country Status (1)

Country Link
JP (1) JPS60132621A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0538061A2 (en) * 1991-10-17 1993-04-21 Shin-Etsu Chemical Co., Ltd. Fluorine-containing organosilicon compound and process of producing the same
KR100620612B1 (en) 2004-12-24 2006-09-13 한국화학연구원 Fluorinated new polydimethysiloxane membranes and their preparation
JP2010058062A (en) * 2008-09-04 2010-03-18 Sumitomo Electric Ind Ltd Porous fluororesin membrane, method of manufacturing the same, and filter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0538061A2 (en) * 1991-10-17 1993-04-21 Shin-Etsu Chemical Co., Ltd. Fluorine-containing organosilicon compound and process of producing the same
EP0538061A3 (en) * 1991-10-17 1994-02-16 Shinetsu Chemical Co
KR100620612B1 (en) 2004-12-24 2006-09-13 한국화학연구원 Fluorinated new polydimethysiloxane membranes and their preparation
JP2010058062A (en) * 2008-09-04 2010-03-18 Sumitomo Electric Ind Ltd Porous fluororesin membrane, method of manufacturing the same, and filter

Similar Documents

Publication Publication Date Title
KR910005718B1 (en) Fluorinated pollmeric membranes for separation process
US4666991A (en) Fluorine-containing graft copolymer and adhesive and composite membrane made thereof
US4412054A (en) Antithrombogenic polyurethanes based on fluorinated prepolymers
US4644043A (en) Fluorine-containing polymer for gas separating membrane
FR2650756A1 (en) GAS SEPARATION MEMBRANE
US4759776A (en) Polytrialkylgermylpropyne polymers and membranes
JPWO2002064648A1 (en) Fluorinated compound, fluorinated polymer and method for producing the same
JP2016500402A (en) Hydrophilic fluoropolymer
JP6366813B2 (en) Gas separation asymmetric membrane, gas separation module, gas separation device, and gas separation method
US4810766A (en) Acryloxyorganosiloxane polymer
JPS60132621A (en) Gas separation membrane
JPS5959221A (en) Prearation of composite perrmeable membrane for separating gas
US4549012A (en) Fluorinated cellulose acetate polymers
JPS60132605A (en) Preparation of asymmetric membrane
CN113490543A (en) Polymer and method for producing same, gas separation membrane, gas separation module, and gas separation device using same, and m-phenylenediamine compound
US20220105462A1 (en) m-PHENYLENEDIAMINE COMPOUND, POLYMER AND METHOD FOR PRODUCING THE SAME, AND GAS SEPARATION MEMBRANE, GAS SEPARATION MODULE, AND GAS SEPARATION APPARATUS USING THE POLYMER
US4758348A (en) Copolymer, separating membrane made thereof and method for separating charge transfer interactive substance from a liquid mixture containing the same
WO2020175671A1 (en) Polymer, method for producing same, gas separation membrane using this polymer, gas separation module, gas separation device and m-phenylenediamine compound
WO2021256237A1 (en) Gas separation membrane, gas separation module, gas separation apparatus, and polyimide compound
JPH0436317A (en) Preparation of amorphous modified poly-(2,6-dimethyl-p-oxyphenylene)
EP1603959A1 (en) Functionalized fluoromonomers and their copolymers with vinylidene fluoride
WO2024074906A1 (en) Anion exchange separation article, methods of making, and methods of using
JPH0352926A (en) Amorphous modified poly(2,6-dimethyl-p-oxyphenylene)
JPS60220106A (en) Gas separation membrane material
JPH0389925A (en) Gas separation membrane