JPS6013229A - Industrial colorimeter - Google Patents

Industrial colorimeter

Info

Publication number
JPS6013229A
JPS6013229A JP58120725A JP12072583A JPS6013229A JP S6013229 A JPS6013229 A JP S6013229A JP 58120725 A JP58120725 A JP 58120725A JP 12072583 A JP12072583 A JP 12072583A JP S6013229 A JPS6013229 A JP S6013229A
Authority
JP
Japan
Prior art keywords
sample
light
illumination
line
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58120725A
Other languages
Japanese (ja)
Other versions
JPH0349056B2 (en
Inventor
Shigeru Suga
須賀 ▲しげる▼
Kiyoshi Chagi
茶木 清
Tetsuya Kimura
哲也 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suga Test Instruments Co Ltd
Original Assignee
Suga Test Instruments Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suga Test Instruments Co Ltd filed Critical Suga Test Instruments Co Ltd
Priority to JP58120725A priority Critical patent/JPS6013229A/en
Publication of JPS6013229A publication Critical patent/JPS6013229A/en
Publication of JPH0349056B2 publication Critical patent/JPH0349056B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4738Diffuse reflection, e.g. also for testing fluids, fibrous materials
    • G01N21/474Details of optical heads therefor, e.g. using optical fibres

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Fastening Of Light Sources Or Lamp Holders (AREA)
  • Inking, Control Or Cleaning Of Printing Machines (AREA)

Abstract

PURPOSE:To perform accurate colorimetry, by separately changing the lighting angles and lighting directions of a plurality of light source parts. CONSTITUTION:A plurality of, e.g., four light sources 1...1''' are connected to independent power sources, respectively. In comparison with the case where only one light source 2 is used in an optical system, illuminance four times larger than in said case is obtained. Since the effect of external light is hard to receive, a dark room is not required. Colorimetry can be performed accurately in the open state. Since the lighting angle can be changed depending on the state of the surface of a sample, the incident angles of the light beams from two facing light sources are made to be, e.g., 20 deg., and the angles of the other two are made to be, e.g., 45 deg. with respect to the highly glossy surface. Therefore, the effect of the texture of the surface of the sample and the effect of the state of the sample on a line are not received. Thus the accurate colorimetry can be performed.

Description

【発明の詳細な説明】 本発明は、カラー鋼板、カラーアルミニウムなどの着色
、塗装、印刷工程或いは繊維の染色など着色工程ライン
において、室内照明下の開放環境のなかで移動する試料
を連続的に正確に測色して僅かな色違いをも検知してラ
イン上の製品の色管理を行なう測色計に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention is a method for continuously moving samples in an open environment under indoor lighting in a coloring process line such as coloring, painting, printing of colored steel plates, colored aluminum, etc. or dyeing of fibers. The present invention relates to a colorimeter that accurately measures color, detects even slight color differences, and manages the colors of products on the line.

従来性われる測色方法は、JISZ8722(物体色の
測定方法)に規定されるように、試料を45°または0
°の入射角で照射して生ずる拡散反射光を受光して正確
な測色を行なう原理によるが、試料を照射する光が厳密
に一定でないと正確な測色ができないから暗室で測色す
るかまたは試料に光学系を密着して外光を入れないよう
にする必要がある。このような技術事情のなかで、動く
物体を測色する方法及び装置の例は未だ無い。しかるに
、近時着色工程にあって搬送ラインによって流れる物体
の色管理を行なう必要が多く動く物体の測色技術が重要
となってきた。
The conventional color measurement method is to hold the sample at 45° or 0
The principle is to perform accurate color measurement by receiving the diffusely reflected light that is generated by irradiating the sample at an incident angle of 50°. However, accurate color measurement cannot be performed unless the light irradiating the sample is strictly constant, so it is recommended to measure color in a dark room. Alternatively, it is necessary to place the optical system in close contact with the sample to prevent external light from entering. Under such technical circumstances, there are still no examples of methods and devices for color measuring moving objects. However, in recent years, it has become necessary to control the color of objects flowing through a conveyance line during the coloring process, and color measurement techniques for moving objects have become important.

発明者は、以上説明した産業界の動向に鑑み、着色工程
ラインにある動く物体の測色方法について検討を重ねた
。着色工程ラインにあって色管理を要する例は、カラー
金属板、塗装または印刷板、染色繊維などである。これ
ら動く物体を測色する場合に悪影響を考えられる要因は
次の通シである。すなわち、(1)試料表面の方向性、
(2)試料表面の組織(テクスチャー)、(3)ライン
上の試料状態、(4)試料表面と光学系との接触問題、
(5)測色時の外光の影響、(6)従来の光学系の照明
と受光の条件である。次にこれら各要因を具体的に見る
と、(1)については、鋼板、アルミニウム板などの金
属板表面は製造工程の関係で縦横に大きな方向性があり
、その表面に着色、塗装または印刷した試料にも縦横に
強い方向性があられれ5、また織物は縦糸横糸の関係で
強い方向性がある。このような試料がライン上を移動す
る場合は方向によって生ずる反射光の変動のために正確
に測色できない。(2)については、シボ状、繊維層状
の表面或いは起毛のある織物表面は照明光の入射角まだ
は見る角度によって違って見える現象がある。これは表
面組織の起伏によって影になる部分がありまだ光源の光
を正反射する状態が複雑であるために生ずる現象である
。このような試料を一定の角度で照明すると色の違いを
再現できないために視感と合わない測色結果を生じ正し
い色管理を行なうことができない。(3)については、
着色工程ライン上の試料は毎分数十mから数mまで各種
の移動速度で流れ、試料裏面が空間であるために上下動
(ブレ)がおきる。しかし試料表面に付着する着色層の
ために上から押さえることができず、したがって上下動
を止めることはできない。また試料の重さ及びたるみな
どの原因によるライン方向の傾きを生ずることがある。
In view of the industrial trends described above, the inventor has repeatedly studied a method for measuring the color of a moving object on a coloring process line. Examples of coloring process lines that require color management include colored metal plates, painted or printed plates, and dyed fibers. The following factors are considered to have an adverse effect when measuring the color of these moving objects. That is, (1) directionality of the sample surface;
(2) texture of the sample surface, (3) condition of the sample on the line, (4) contact problem between the sample surface and the optical system,
(5) the influence of external light during colorimetry; and (6) the illumination and light reception conditions of the conventional optical system. Next, looking specifically at each of these factors, regarding (1), the surface of metal plates such as steel plates and aluminum plates has large vertical and horizontal directions due to the manufacturing process, and the surface is colored, painted, or printed. The sample also has strong directionality in the warp and width5, and the fabric has strong directionality due to the warp and weft relationships. When such a sample moves along a line, accurate color measurement is not possible due to variations in reflected light that occur depending on the direction. Regarding (2), there is a phenomenon in which a textured surface, a fiber layered surface, or a raised fabric surface looks different depending on the incident angle of illumination light and the viewing angle. This is a phenomenon that occurs because there are shadow areas due to the undulations of the surface structure, and the state in which the light from the light source is reflected regularly is complicated. If such a sample is illuminated at a fixed angle, color differences cannot be reproduced, resulting in color measurement results that do not match visual perception, making it impossible to perform correct color management. Regarding (3),
The sample on the coloring process line flows at various moving speeds from tens of meters to several meters per minute, and vertical movement (shaking) occurs because the back surface of the sample is open space. However, because of the colored layer that adheres to the sample surface, it is impossible to press down from above, and therefore it is impossible to stop the sample from moving up and down. Also, the line direction may be tilted due to factors such as the weight and sag of the sample.

このような状態にある場合には、従来の照明と受光の光
学条件では試料との距離の変化による受光量の変化が影
響して色管理が不可能である。(4)については、例え
ば陽極酸化皮膜処理、塗装処理、印刷、染色などの工程
におけるライン上の試料表面は処理が未完成状態にあり
かつ傷つき易い不安定状態にある。したがって、試料表
面に光学系を密着しなければならない従来の測色法を適
用できない。(5)については、従来の測色計によると
きは厳しい規定条件を持つ照射光以外の光を遮る必要が
あるが、ライン上の試料を測色する場合は照射光以外の
光を遮ることは不可能である。(6)については、従来
法の光学条件は入射角45°の照明に対する垂直方向の
拡散反射光の受光または垂直照明に対する拡散反射光の
受光であるが、この従来方式では(2) (3) (4
) (5)の問題を解決することはできない。
In such a state, color management is impossible under conventional illumination and light reception optical conditions due to changes in the amount of light received due to changes in the distance to the sample. Regarding (4), for example, the sample surface on the line in processes such as anodic oxidation film treatment, painting treatment, printing, dyeing, etc. is in an unfinished state and is in an unstable state where it is easily damaged. Therefore, conventional colorimetric methods that require the optical system to be in close contact with the sample surface cannot be applied. Regarding (5), when using a conventional colorimeter, it is necessary to block any light other than the irradiated light, which has strict specified conditions, but when measuring the color of a sample on a line, it is not necessary to block any light other than the irradiated light. It's impossible. Regarding (6), the optical conditions of the conventional method are the reception of diffusely reflected light in the vertical direction with respect to illumination with an incident angle of 45°, or the reception of diffusely reflected light with respect to vertical illumination, but in this conventional method, (2) (3) (4
) Problem (5) cannot be solved.

本発明は、以上説明したように動くライン上の物体の測
色に従来の測色方式を適用するときは当然発生すべき問
題を解消して正確な測色を行いうる工業用測色計を提供
する。すなわち、本発明の要旨はそれぞれ独立した電源
に連なる光源を有する複数個の照明光源部の照明角度と
照明方向をそれぞれ別個に変えうるようにして、他の光
の影響を無視できるように明るく照明し、かつ垂直方向
の拡散反射光を受光するようにして、試料面の方向性搬
送ラインのブレなど測色を不正確にする要因の影響を無
くシ、かつ測色の光学系を試料面に密着する必要をなく
した。
As explained above, the present invention provides an industrial colorimeter that can perform accurate colorimetry by solving the problems that naturally occur when applying conventional colorimetry methods to colorimetry of objects on a moving line. provide. That is, the gist of the present invention is to enable the illumination angle and illumination direction of a plurality of illumination light source sections each having a light source connected to an independent power source to be changed separately, so that the illumination can be brightly illuminated so that the influence of other light can be ignored. In addition, by receiving diffuse reflected light in the vertical direction, it eliminates the influence of factors that make colorimetry inaccurate, such as blurring of the directional conveyance line on the sample surface. Eliminates the need for close contact.

本発明の実施例を図によって説明する。第1図は本発明
に係る測色計の部分断面側面図、第2図はm平面図であ
る。第1,2図に おいて、照明方向可変ガイドノール(以下単にガイドレ
ール8.8’ )が形成する上端円周及び下端円周は何
れも水平位にあって球帯の上下端を形成し、かつこれら
円周状ガイドレールを結合する4個の照明角度可変ガイ
ドレール(以下単にガイドレールg 、 g/、 g/
/。
Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a partially sectional side view of a colorimeter according to the present invention, and FIG. 2 is a plan view thereof. In Figures 1 and 2, the upper and lower circumferences formed by the variable illumination direction guide knoll (hereinafter simply referred to as guide rail 8.8') are both in a horizontal position, forming the upper and lower ends of the spherical belt, and Four variable illumination angle guide rails (hereinafter simply referred to as guide rails g, g/, g/) connect these circumferential guide rails.
/.

9#という)はガイドレール8,81に対して直角をな
しかつガイドレール8,81を上端円周及び下端円周と
する球帯面に沿う曲線をなしまたガイドレール8,8/
に沿うて自由に摺動すると共に特定位置に固定すること
ができる。
9#) is a curved line that is perpendicular to the guide rails 8, 81 and follows a spherical zone surface with the guide rails 8, 81 as the upper and lower circumferences, and the guide rails 8, 8/
It can slide freely along the line and can be fixed at a specific position.

この摺動によって照明方向を自由に変えうる。This sliding movement allows the direction of illumination to be changed freely.

照明光源部1,1’、1“、1/lはそれぞれガイドレ
ール9,9’、9“、y″に取り付けられ、かつ各ガイ
ドレールに沿うて上端円周(ガイドレール8)及び下端
円周(ガイドレール81)の間を摺動しうると共に特定
位置に固定することができる。この摺動によって照明角
度を自由に変えることができる。上端及び下端が、イド
レールを含む平行2千面に垂直な中心線を上に受光部4
を固定する。中心線tは球帯の中心Cを通シ、受光部4
に内蔵する積分球5レンズ6及び受光器間ロアは中心線
を上にあるものとする。各照明光源部内には1個の光源
2があり、その光はレンズ3を経て平行光となシ中心C
を通る。ライン試料11はガイドローラ10上を矢印方
向に動く。4個の照明光源はそれぞれ独立した電源に連
なる。
The illumination light source parts 1, 1', 1", 1/l are respectively attached to guide rails 9, 9', 9", y", and the upper end circumference (guide rail 8) and lower end circumference are arranged along each guide rail. It can slide between the peripheries (guide rails 81) and can be fixed at a specific position.This sliding allows you to freely change the illumination angle. Light receiving part 4 with vertical center line up
to be fixed. The center line t passes through the center C of the sphere, and the light receiving part 4
The center line of the integrating sphere 5 lens 6 and the lower inter-light receiver built in the lens shall be on the upper side. There is one light source 2 in each illumination light source section, and its light passes through a lens 3 and becomes parallel light.
pass through. The line sample 11 moves on the guide roller 10 in the direction of the arrow. Each of the four illumination light sources is connected to an independent power source.

以上本発明の詳細な説明しだが、次に本発明の使用実施
における特長を挙げて説明する。
Having described the present invention in detail above, the features of the present invention will now be described.

試料表面の測色目標位置と中心Cとを一致するように本
発明測色計をセットする。ライン試料がその表面にシが
かあるか或いは起毛の多い織物である場合に、例えば1
組の相対する光源を入射角45°の照明とし他の相対す
る2光源を入射角20°の照明とすると、垂直方向で受
光する受光器の開口Tから見ると影になる部分が無いか
ら、着色または染色工程において試料の色を一致させる
だめの管理は正確に行うことができる。
The colorimeter of the present invention is set so that the color measurement target position on the sample surface coincides with the center C. For example, if the line sample has a wrinkled surface or is a fabric with a lot of naps,
If one set of opposing light sources is illuminated with an incident angle of 45° and the other two opposing light sources are illuminated with an incident angle of 20°, there is no shadow when viewed from the aperture T of the light receiver that receives light in the vertical direction. In the coloring or dyeing process, it is possible to accurately control the color matching of the sample.

4個の照明光源はそれぞれ独立した電源に連なるから、
すべての従来法の光学系が1個の光源を使用するに比べ
て4倍の照度を持つことになる。まだ試料表面の状態に
よって照明角度を変えることができるから、高光沢面に
対しては例えば相対する2slの光源照明の入射角を2
0°に他の2個を45°にすることが可能であり、また
試料面の組織の特性に従って、例えばライン方向の2個
の光源の明るさに対し、横方向の2個の光源をよシ明る
くするなど照度を調節することができる。
Each of the four lighting sources is connected to an independent power source, so
All conventional optical systems will have four times the illuminance compared to using a single light source. Since the illumination angle can still be changed depending on the condition of the sample surface, for example, for a high gloss surface, the incident angle of the opposing 2sl light source illumination should be set to 2.
It is possible to set the two light sources at 0° and the other two at 45°, and depending on the characteristics of the tissue on the sample surface, for example, the brightness of the two light sources in the horizontal direction can be set to be different from the brightness of the two light sources in the line direction. You can adjust the illuminance by making it brighter.

本発明の光学系は、従来法の光学系と異なシ試料表面と
接触する必要がなく、第1図における受光器先端の開口
1を自由に上下することができ、試料の測定目標箇所に
おける視野の広さを適当に選択することができる。
The optical system of the present invention differs from conventional optical systems in that it does not need to come into contact with the sample surface, and the aperture 1 at the tip of the light receiver in FIG. The width can be selected appropriately.

試料表面を至近距離から直接照明する4個の光源はそれ
ぞれ独立した電源に連なるから1個の光源をミラーで反
射して2方向から照明する従来方式と比較すると、試料
面上の明るさは4倍以上の照度となり、ライン例設置さ
れている室内照明の数百倍の照度で試料が照明される。
The four light sources that directly illuminate the sample surface from a close distance are connected to independent power supplies, so compared to the conventional method in which one light source is reflected by a mirror and illuminated from two directions, the brightness on the sample surface is 4. The illuminance is more than twice as high, and the sample is illuminated with an illuminance hundreds of times higher than the indoor lighting installed in the line example.

本実施例の装置はライン上の測定目標箇所に対して自由
な方向と角度を設定できる4個の照明光源を有し、かつ
この光源は独立電源に連なるから、3個で照明すること
も2個または1個による照明も可能である。
The device of this embodiment has four illumination light sources that can set the direction and angle freely with respect to the measurement target location on the line, and these light sources are connected to an independent power source, so it is possible to illuminate with three light sources. Individual or single illumination is also possible.

以上本発明の使用実施における特長を挙げたがさらに効
果を主としてまとめると次の通りである。
The advantages of using the present invention have been listed above, and the main effects are summarized as follows.

試料表面の照度が室内照明の影響を受けることがない程
度に明るくて、従来法のように外光の影響を受けないか
ら、暗室は不要であり開放状態で正確に測色することが
できる。
The illuminance on the sample surface is bright enough that it is not affected by indoor lighting, and unlike conventional methods it is not affected by external light, so a dark room is not required and color can be measured accurately in an open state.

照明方向及び照明角度を測定試料の種類、状態に応じて
自由に条件設定できるから、従来法の欠点である試料表
面の組織の影響及びライン上の試料状態の影響を受ける
ことがない。
Since the illumination direction and illumination angle can be freely set according to the type and condition of the measurement sample, there is no influence from the structure of the sample surface or the condition of the sample on the line, which are disadvantages of conventional methods.

試料表面の構造に応じて照明角度、照明方向及び光源照
度を変えてその試料に最適の条件で照明することができ
るから、試料からの表面反射光は均一であり、これを垂
直方向から受光するから試料面が上下方向に±5問以内
のブレをおこしラインが±1.5°以内の傾きを持つと
しても測定値に影響することなく正確に測色できる。
Since the illumination angle, illumination direction, and light source illuminance can be changed according to the structure of the sample surface to illuminate the sample under the optimal conditions, the surface reflected light from the sample is uniform, and this light is received from the vertical direction. Even if the sample surface shakes within ±5 degrees in the vertical direction and the line has an inclination within ±1.5 degrees, accurate color measurement can be performed without affecting the measured value.

4方向から試料表面を照射するために、試料表面の方向
性及び組織の影響による影になる部分が無くなり均一な
照明状態となる。均一な照明下における試料を垂直方向
から受光するだめに正確に測色できる。
Since the sample surface is irradiated from four directions, there are no shadows caused by the directionality of the sample surface and the tissue, resulting in a uniform illumination state. Accurate color measurement is possible by receiving light from the vertical direction of the sample under uniform illumination.

ライン上の試料が塗料であれば塗られた直後の状態染色
物であれば濡れたままの状態であっても、光学系が接触
しないから試料表面に影響を与えることなく測定するこ
とができる。
If the sample on the line is paint, it can be measured just after it has been applied, or if it is dyed, even if it is still wet, the optical system does not come into contact with it, so it can be measured without affecting the sample surface.

照明光源の点灯個数を自由に選択できることは、使用目
的に応じて例えば試料表面の方向性を強調して試料表面
の状態を検出するなど応用範囲を拡大することもできる
The ability to freely select the number of illumination light sources to turn on can also expand the range of applications, such as detecting the state of the sample surface by emphasizing the directionality of the sample surface, depending on the purpose of use.

本発明による工業用測色計の性能を従来の測色計と比較
した結果を説明する。測定試料は、工場ラインで生産さ
れるカラー鋼板と道路標識板に使用される再帰反射性を
有する反射ソートとを用いた。
The results of comparing the performance of the industrial colorimeter according to the present invention with a conventional colorimeter will be explained. The measurement samples used were a colored steel plate produced on a factory line and a reflective sort with retroreflectivity used for road sign boards.

測定1(従来の測色計による) 通常の試料位置(光学系の試料台の位置)で測定した値
と、試料をその位置から水平に5叫離して測定した値と
の間で色差をめ、又試料台に対して1,5°傾斜するよ
うに試料の片側を持上げて測定した値と通常の試料位置
で測定した値との間で色差を計算した。
Measurement 1 (using a conventional colorimeter) Find the color difference between the value measured at the normal sample position (the position of the sample stage of the optical system) and the value measured with the sample 5 cm horizontally away from that position. Also, the color difference was calculated between the value measured by lifting one side of the sample so as to be inclined at 1.5 degrees with respect to the sample stage and the value measured at the normal sample position.

測定2(本発明の工業用測色計による)基準の試料位置
(光学系に対して規定の距離に水平に置いた場合)にお
ける測定値に対して、測定1と同様に、水平に5rMl
離しん場合と1.5°傾けた場合との色差をめた。
Measurement 2 (using the industrial colorimeter of the present invention) With respect to the measured value at the reference sample position (when placed horizontally at a specified distance from the optical system), as in Measurement 1, 5 rMl was added horizontally.
The color difference between the case when it was released and the case when it was tilted by 1.5 degrees was measured.

以上の測定結果につきカラー鋼板を第3図に反射シート
を第4図に示す。従来の測色計では5閣離した場合1.
5°傾けた場合の何れにおいても、色差が大きくライン
の測色には使用できない。これに反して本発明の工業用
測色計によると、色差は最大でも0.34であって、ラ
イン上の色管理には精度十分であることが証明された。
The above measurement results are shown in Figure 3 for the color steel plate and Figure 4 for the reflective sheet. With a conventional colorimeter, when 5 degrees are separated, 1.
In both cases when tilted by 5 degrees, the color difference is large and cannot be used for line colorimetry. On the other hand, according to the industrial colorimeter of the present invention, the maximum color difference was 0.34, which proved to be accurate enough for on-line color control.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明測色計の部分断面側面図、第2図は善非
学珈平面図、第3図はカラー鋼板試料の測定結果、第4
図は反射シート試料の測定結果である。 1.1’L1“ 1///・・・・・・照明光源部、2
・・・・・・光源、3・・・・・・レンズ、4・・・・
・・受光部、5・・・・・・積分球、6・・・・・・レ
ンズ、7・・・・・・受光器開口、8,8′・・・・・
・照明方向可変がイドレール、 9 、 9’、9”、9”・・・・・照明角吸uj汝力
゛イ トレール、10・・・・・・ガイドローラ、11
・・・・・・ライン試料、C・・・・・・球帯中心、t
・・・・・・Cを通る垂線。 1
Fig. 1 is a partial cross-sectional side view of the colorimeter of the present invention, Fig. 2 is a top view of the colorimeter, Fig. 3 is the measurement results of a color steel plate sample, and Fig. 4 is a partial cross-sectional side view of the colorimeter of the present invention.
The figure shows the measurement results for a reflective sheet sample. 1.1'L1" 1///...Illumination light source section, 2
...Light source, 3...Lens, 4...
...Receiver section, 5...Integrating sphere, 6...Lens, 7...Receiver aperture, 8, 8'...
・Illumination direction variable is the idle rail, 9, 9', 9", 9"...Illumination angle suction uj you force guide rail, 10...Guide roller, 11
... Line sample, C ... Center of sphere, t
・・・・・・Perpendicular line passing through C. 1

Claims (1)

【特許請求の範囲】[Claims] 搬送ライン上にある試料の測色目標点を通る垂線に沿う
て上下動しかつ固定しうるようにして該測色目標点の垂
線方向拡散反射光を受光する受光部と、該測色目標点を
照明する角度と方向を別個に自由に変えかつ固定しうる
ようにした複数個の照明光源部とから成り該各照明光源
部の光源がそれぞれ独立した電源に連なることを特徴と
する工業用測色計。
a light-receiving unit that can move up and down along a perpendicular line passing through a colorimetric target point of a sample on a conveyance line and can be fixed to receive diffuse reflected light in the perpendicular direction of the colorimetric target point; The industrial metering device comprises a plurality of illumination light source sections whose illumination angles and directions can be independently changed and fixed, and the light sources of each illumination light source section are connected to independent power sources. Color meter.
JP58120725A 1983-07-01 1983-07-01 Industrial colorimeter Granted JPS6013229A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58120725A JPS6013229A (en) 1983-07-01 1983-07-01 Industrial colorimeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58120725A JPS6013229A (en) 1983-07-01 1983-07-01 Industrial colorimeter

Publications (2)

Publication Number Publication Date
JPS6013229A true JPS6013229A (en) 1985-01-23
JPH0349056B2 JPH0349056B2 (en) 1991-07-26

Family

ID=14793453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58120725A Granted JPS6013229A (en) 1983-07-01 1983-07-01 Industrial colorimeter

Country Status (1)

Country Link
JP (1) JPS6013229A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6296828A (en) * 1985-10-23 1987-05-06 Union Giken:Kk Apparatus for measuring amount of reflection
JPH01216222A (en) * 1988-02-24 1989-08-30 Kawasaki Steel Corp Continuous colorimetric device
JPH01250836A (en) * 1988-03-31 1989-10-05 Kao Corp Device and method for analyzing skin surface color tone
JPH02245623A (en) * 1988-12-20 1990-10-01 E I Du Pont De Nemours & Co Portable caloimeter and method for featuring colored surface
JP2006030203A (en) * 2004-07-15 2006-02-02 Byk Gardner Gmbh Inspection device of optical surface characteristics and inspection method using it
JP2008151642A (en) * 2006-12-18 2008-07-03 Toyota Motor Corp Colorimetric device
JP2008164628A (en) * 2004-07-28 2008-07-17 Byk Gardner Gmbh Device for goniometric examination of optical property of surface
WO2011142107A1 (en) * 2010-05-13 2011-11-17 コニカミノルタセンシング株式会社 Illumination optical system, reflection property measurement apparatus and illumination method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6296828A (en) * 1985-10-23 1987-05-06 Union Giken:Kk Apparatus for measuring amount of reflection
JPH01216222A (en) * 1988-02-24 1989-08-30 Kawasaki Steel Corp Continuous colorimetric device
JPH01250836A (en) * 1988-03-31 1989-10-05 Kao Corp Device and method for analyzing skin surface color tone
JPH02245623A (en) * 1988-12-20 1990-10-01 E I Du Pont De Nemours & Co Portable caloimeter and method for featuring colored surface
JP2006030203A (en) * 2004-07-15 2006-02-02 Byk Gardner Gmbh Inspection device of optical surface characteristics and inspection method using it
JP2008164628A (en) * 2004-07-28 2008-07-17 Byk Gardner Gmbh Device for goniometric examination of optical property of surface
JP2008151642A (en) * 2006-12-18 2008-07-03 Toyota Motor Corp Colorimetric device
WO2011142107A1 (en) * 2010-05-13 2011-11-17 コニカミノルタセンシング株式会社 Illumination optical system, reflection property measurement apparatus and illumination method
JP5354098B2 (en) * 2010-05-13 2013-11-27 コニカミノルタ株式会社 Illumination optical system, reflection characteristic measuring apparatus, and illumination method

Also Published As

Publication number Publication date
JPH0349056B2 (en) 1991-07-26

Similar Documents

Publication Publication Date Title
US7391518B1 (en) Device and method for the determination of the quality of surfaces
US6064478A (en) Method of and apparatus for automatic detection of three-dimensional defects in moving surfaces by means of color vision systems
US8259294B2 (en) Method and device for measuring optical characteristic variables of transparent, scattering measurement objects
KR100437024B1 (en) The inspection method of thin film and the same apparatus
US3841761A (en) Method and apparatus for detecting faults in fabric
CN102798637B (en) Device and method for detecting surface quality of printed matters
ITTO930654A1 (en) METHOD AND EQUIPMENT FOR SURVEILLANCE AND CONTROL OF THE THICKNESS OF A THIN FILM
US20010015414A1 (en) Method and arrangement for inspection of surfaces
CA2337433A1 (en) Method and apparatus for optically measuring properties of a moving web
CN101819165A (en) Method and system for detecting defect of patterned substrate
KR960036673A (en) How to recognize and evaluate defects in reflective surface coatings
KR101595581B1 (en) An Optical Device for Observing Millimetric or Submillimetric Structural Details of an Object with Specular Behaviour
US20090097033A1 (en) Microgloss measurment of paper and board
CN103826118B (en) A kind of color TV imaging system spatial discrimination force checking device
JPS6013229A (en) Industrial colorimeter
JP2003028805A (en) Apparatus for evaluating surface state
CN107884414A (en) It is a kind of to reject mirror article surface defect detecting system and the method that dust influences
JPH11211673A (en) Apparatus and method for evaluation of surface property
CA2373682A1 (en) Method and measuring arrangement for measuring paper surface
WO2020232618A1 (en) Surface defect inspection device based on dense independent light sources
JPS6341019B2 (en)
CA1324503C (en) Method and apparatus for the inspection of specularly reflective surfaces
US3554656A (en) Detecting device for visual observation of a moving fabric
US7375335B2 (en) Effect-particle orientation and apparatus therefor
JPH0420846A (en) Method and apparatus for measuring gloss