JPS60131919A - Annealing device for iron core of electric apparatus - Google Patents
Annealing device for iron core of electric apparatusInfo
- Publication number
- JPS60131919A JPS60131919A JP58239180A JP23918083A JPS60131919A JP S60131919 A JPS60131919 A JP S60131919A JP 58239180 A JP58239180 A JP 58239180A JP 23918083 A JP23918083 A JP 23918083A JP S60131919 A JPS60131919 A JP S60131919A
- Authority
- JP
- Japan
- Prior art keywords
- zone
- heating
- cooling zone
- iron core
- iron cores
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/34—Methods of heating
- C21D1/42—Induction heating
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/0006—Details, accessories not peculiar to any of the following furnaces
- C21D9/0018—Details, accessories not peculiar to any of the following furnaces for charging, discharging or manipulation of charge
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Articles (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明に、主として、小形電動機や小形変圧器等の電気
機器鉄心の焼鈍に用いられる誘導加熱による焼鈍装置に
関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention mainly relates to an annealing apparatus by induction heating used for annealing cores of electrical equipment such as small electric motors and small transformers.
従来例の構成とその問題点
電気機器の鉄心は、磁気特性改善のため焼鈍を施こすこ
とが多い。この焼鈍は、一般に電気抵抗発熱や油又はガ
スの燃焼熱によって加熱する方法の熱処理装置を使用す
る。この熱処理装置(以下炉と云う)には、バッチ処理
型と連続処理型があるが、一般には雰囲気加熱法である
ため、加熱時間のみならず冷却時間も長時間になり、父
、エネルギー効率から24時間の連続作業を強いられて
いる。我々は先に誘導加熱法を採用した焼鈍方法(特願
昭57−212201号)や装置(例えば特願昭58−
16433号)を提案している。これらの方法や装置は
、誘導加熱法を採用しているため、鉄心が直接発熱する
ことから、雰囲気加熱法の炉によム焼鈍に比較し、大巾
な時間短縮が可能であり。Conventional Structures and Problems The iron cores of electrical equipment are often annealed to improve their magnetic properties. This annealing generally uses a heat treatment device that heats by electric resistance heat generation or combustion heat of oil or gas. This heat treatment equipment (hereinafter referred to as a furnace) comes in batch processing and continuous processing types, but since it generally uses an atmospheric heating method, not only the heating time but also the cooling time are long, and energy efficiency is a problem. They are forced to work continuously for 24 hours. We have previously developed an annealing method using induction heating (Japanese Patent Application No. 57-212201) and equipment (for example, Japanese Patent Application No. 58-212201).
No. 16433). Since these methods and devices employ induction heating, the iron core generates heat directly, so compared to furnace annealing using atmosphere heating, it is possible to significantly shorten the time.
かつ、必ずしも24時間の連続作業をしなくてもよい利
点がある。この誘導加熱法では、その第一の利点が消費
電力の節約にあり、従来の電気抵抗全熱炉に比較し、約
60%の電力でよい、1特にソレノイド型の加熱コイル
中にコイルの長さ方向と鉄心積層方向を一致させて加熱
した場合、加熱する周波数や投入電力量によっても異な
るが、−例を上げれば、1.4〜1.8 KHzで、鉄
心1KIP当り6KWの電力投入ではコイル効率が約9
6%である。Another advantage is that it does not necessarily require continuous work for 24 hours. The first advantage of this induction heating method is the saving of power consumption, which requires about 60% of the power compared to a conventional electric resistance full-heat furnace. When heating is performed with the core lamination direction aligned with the core lamination direction, the heating frequency varies depending on the heating frequency and the amount of power input, but for example, at 1.4 to 1.8 KHz and 6KW power input per 1 KIP of the core. Coil efficiency is about 9
It is 6%.
これは第1図に示すように鉄心1′t−コイル2の長さ
方向に連続に密着して投入した場合である。This is the case when the iron core 1't and the coil 2 are inserted in close contact with each other in the length direction as shown in FIG.
一方、第2図に示すように、鉄心1を積層方向が送り方
向に対して垂直になるよう変形ソレノイドコイル2に投
入した場合のコイル効率は約60%となる。以上のこと
から、誘導加熱法の第1の利点を活かすには第1図のよ
うなソレノイドコイル中に、コイルの長さ方向に鉄心積
層方向を一致させ投入してやる必要がある。ところが、
この場合。On the other hand, as shown in FIG. 2, when the iron core 1 is inserted into the deformable solenoid coil 2 so that the stacking direction is perpendicular to the feeding direction, the coil efficiency is about 60%. From the above, in order to take advantage of the first advantage of the induction heating method, it is necessary to insert the core into a solenoid coil as shown in FIG. 1 with the core lamination direction aligned with the length direction of the coil. However,
in this case.
鉄心同志は連続して密着しているため、冷却帯から投入
した雰囲気ガスが鉄心内径側に流れにくく、又、鉄心の
冷却は外周側からのみ行なわれるため、冷却時間が長く
なる欠点がある。第3図に、誘導加熱法による炉の一例
を示す。加熱帯3と冷却帯4が連続していて、加熱帯3
の外側には加熱コイル2が配置されている。一方、鉄心
1の送り装置(コンベア)6は、加熱帯側の入口6より
、加熱3、冷却帯4全通し、冷却帯個当ロアまで連続し
ている。鉄心1はこの送り装置6の上に乗せられ。Since the cores are in close contact with each other, it is difficult for the atmospheric gas introduced from the cooling zone to flow toward the inner diameter of the core, and since the core is cooled only from the outer circumference, the cooling time is longer. FIG. 3 shows an example of a furnace using the induction heating method. The heating zone 3 and the cooling zone 4 are continuous, and the heating zone 3
A heating coil 2 is arranged outside. On the other hand, the feeding device (conveyor) 6 for the iron core 1 is continuous from the inlet 6 on the heating zone side to the heating zone 3, the entire cooling zone 4 passage, and the cooling zone individual lower. The iron core 1 is placed on this feeding device 6.
入口6より炉内にそう入され、焼鈍される。又、鉄心1
は、焼鈍時に高温になるため、雰囲気ガスを投入、酸化
を防止する必要がある。この雰囲気ガスは、例えばN2
やD×ガス(C0,CO2H2及びN2で構成されてい
る)が使用され、冷却帯4の一部8から投入され、炉の
入口側6や出口側7から排出される。この炉の場合、鉄
心1同志は加熱効率から密着しているため、冷却帯4の
一部8から投入された雰囲気ガスは、鉄心1の内径側に
流れ込みにくい。鉄心1の冷却は、冷却帯4の炉壁から
の熱放散及び、雰囲気ガスとの接触によって起こる。従
って、鉄心1の外周側のみならず、内径側にも雰囲気ガ
スが十分流入する必要がある。It is inserted into the furnace through the inlet 6 and annealed. Also, iron core 1
Because the temperature becomes high during annealing, it is necessary to introduce atmospheric gas to prevent oxidation. This atmospheric gas is, for example, N2
and Dx gas (consisting of C0, CO2H2 and N2) is used, which is introduced from a part 8 of the cooling zone 4 and discharged from the inlet side 6 and the outlet side 7 of the furnace. In the case of this furnace, since the iron cores 1 are in close contact with each other for heating efficiency, the atmospheric gas introduced from the part 8 of the cooling zone 4 is difficult to flow into the inner diameter side of the iron core 1. Cooling of the iron core 1 occurs by heat dissipation from the furnace wall of the cooling zone 4 and contact with atmospheric gas. Therefore, it is necessary for the atmospheric gas to sufficiently flow not only into the outer circumferential side of the iron core 1 but also into the inner circumferential side.
父、雰囲気ガスは、鉄心1の酸化防止が本来の目的であ
り、加熱帯2に於こも内径側への流入が不足すると鉄心
1に付着している打抜油の分解ガスの排出が十分に行な
われず、かつ鉄心1の持ち込み酸素の残留により、酸化
や変色が起り、不具合である。The original purpose of the atmospheric gas is to prevent oxidation of the iron core 1, and if there is insufficient flow into the inner diameter of the heating zone 2, the decomposition gas of the punching oil adhering to the iron core 1 will not be sufficiently discharged. However, due to the residual oxygen brought into the iron core 1, oxidation and discoloration occur, which is a problem.
発明の目的
本発明は上記の問題点に鑑みてなされたもので、雰囲気
ガスが鉄心内径側にも十分流入するような炉を提供する
ものである。OBJECTS OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and it is an object of the present invention to provide a furnace in which atmospheric gas can sufficiently flow into the inner diameter side of the iron core.
発明の構成
本発明は、電気機器鉄心の焼鈍炉として、加熱帯側と冷
却帯側の鉄心の送り装置を分割し、それぞれが異なった
速度で移動可能とした拾遺を持ったもので、誘導加熱法
の利点を十分に活し、かつ良好な品質の鉄心を製造する
熱処理装置を供給するものである。Components of the Invention The present invention is an annealing furnace for electrical equipment iron cores, which has a feature in which the feeding devices for the iron cores on the heating zone side and the cooling zone side are divided and can be moved at different speeds. The purpose of the present invention is to provide a heat treatment equipment that takes full advantage of the advantages of the method and produces iron cores of good quality.
実施例の説明 以下、本発明の実施例を添付図面を参照して説明する。Description of examples Embodiments of the present invention will be described below with reference to the accompanying drawings.
まず本発明ハ、誘導加熱法による鉄心の焼鈍炉において
、鉄心の送り装置の工夫により。First, the present invention is achieved by devising an iron core feeding device in an iron core annealing furnace using an induction heating method.
雰囲気ガスの流れを良くすることが可能である実験結果
に基づきなされたものである。本発明の一実施例を第4
図に示す。この図は炉全上方より見た図であり、炉は、
加熱帯3と冷却帯4が連続して配置されているいわゆる
連続型炉であり、鉄心の送り装置51d、例えば耐熱性
の良い鋼材にて構成されたチェーンコンベアであり、加
熱帯3から冷却帯4へと配置され、冷却帯内部にて分割
され重複部9から新たな送り装置5bが冷却帯個当ロア
へと配置されている。鉄心は加熱帯側入口6にて投入チ
ェーンコンベア5a上に乗せられ、一定速度にて加熱帯
3へ送り込まれ、加熱コイル2によって自己発熱し昇温
する。次に冷却帯4へと送■
り込まれ、そこで取出しヂチェーンコンベア6bに乗り
替え、冷却帯内にてガス投入口8より投入された雰囲気
ガス、例えばN2ガスや炉壁からの熱放散によって冷却
され炉外に出ロアより取出される。尚、チェーンコンベ
アの分割位置は加熱帯3と冷却帯4の境界1Oでも良い
。This was done based on experimental results showing that it is possible to improve the flow of atmospheric gas. A fourth embodiment of the present invention
As shown in the figure. This figure is a view from above the furnace, and the furnace is
This is a so-called continuous type furnace in which the heating zone 3 and the cooling zone 4 are arranged in series, and the core feeding device 51d is a chain conveyor made of heat-resistant steel, for example, and the heating zone 3 is connected to the cooling zone. 4, and is divided inside the cooling zone, and a new feeding device 5b is disposed from the overlapping portion 9 to the cooling zone individual lower. The iron core is placed on the input chain conveyor 5a at the heating zone side inlet 6, fed into the heating zone 3 at a constant speed, and is heated by the heating coil 2 to raise its temperature. Next, it is fed into the cooling zone 4, where it is taken out and transferred to the chain conveyor 6b. It is cooled and taken out of the furnace through the lower. Incidentally, the splitting position of the chain conveyor may be the boundary 1O between the heating zone 3 and the cooling zone 4.
この炉においては、チェーンコンベアが炉内にて2分割
されており、かつ、それぞれの移動速度が容易に制御可
能としである。加熱帯3においては。In this furnace, the chain conveyor is divided into two parts within the furnace, and the moving speed of each part can be easily controlled. In heating zone 3.
加熱効率上から鉄心同志が密着していることが好ましい
が、一方、冷却帯4においては、冷却速度上並びに雰囲
気ガスの流れの上から鉄心間にすき間、例えば10〜3
0a程度があることが好ましい。こレバ、2分割し−た
チェーンコンベア5a。From the viewpoint of heating efficiency, it is preferable that the iron cores are in close contact with each other, but on the other hand, in the cooling zone 4, there should be a gap between the iron cores, for example, 10 to 3
It is preferable that it is about 0a. This lever is a chain conveyor 5a divided into two parts.
6bの移動速度を加熱帯f115に対し、冷却帯側6を
速くすることで解決できる。又、鉄心は炉内で速度の異
なるチェーンコンベア6a 、 6bK乗換わる際、速
度の差のため、鉄心の転倒やコンベアスリップによる鉄
心の変形等の発生が予想される。This problem can be solved by making the moving speed of the cooling zone 6 faster than that of the heating zone f115. Furthermore, when the iron core is transferred between the chain conveyors 6a and 6bK which have different speeds in the furnace, it is expected that the iron core will fall over or be deformed due to conveyor slip due to the difference in speed.
この場合、第6図に示すように、冷却帯側チェーンコン
ベア6bとの重複部9で加熱帯側チェーンコンベア6a
の端部を水平方向に対して負の傾斜を持った構造にする
と、加熱帯側チェーンコンベア5a上の鉄心は、冷却帯
側チェーンコンベア5bに容易に乗シ換わる。すなわち
、加熱帯側チェーンコンベア6.6aは、コンベア重複
部9で下方へ移動するため、冷却帯側チェーンコンベア
6゜6bに乗り換った鉄心にはもはや接触しない。この
場合の負の傾斜の角度θは任意のもので良いが例えばl
穎度で良い。In this case, as shown in FIG. 6, the heating zone side chain conveyor 6a overlaps with the cooling zone side chain conveyor 6b.
If the end portion of the iron core is configured to have a negative inclination with respect to the horizontal direction, the iron core on the heating zone side chain conveyor 5a can be easily transferred to the cooling zone side chain conveyor 5b. That is, since the heating zone side chain conveyor 6.6a moves downward at the conveyor overlap portion 9, it no longer contacts the iron core transferred to the cooling zone side chain conveyor 6.6b. In this case, the angle θ of the negative inclination may be arbitrary, but for example, l
Good purity.
発明の詳細
な説明した如く本発明の炉を採用すると、冷却帯に投入
した雰囲気ガスが炉全体に流れるため5鉄心の酸化や変
色防止のみならず、冷却効率が向上し、冷却時間の短縮
が可能となる。我々らの実験では、yso’cに昇温し
た后、60分間の冷却により、従来法つまシ、鉄心間が
密着した場合260°Cであった鉄心温度が、本発明の
炉では200 ’Cであシ、これを設備の大きさからみ
ると一例では従来法では18mのものが本発明のもので
は15F11となシ、設備の小型化にも効果が大きい。As described in detail, when the furnace of the present invention is adopted, the atmospheric gas introduced into the cooling zone flows throughout the furnace, which not only prevents oxidation and discoloration of the 5-iron core, but also improves cooling efficiency and shortens cooling time. It becomes possible. In our experiments, after heating to yso'c and cooling for 60 minutes, the core temperature was 260°C in the conventional method when the shim and the iron core were in close contact, but in the furnace of the present invention, the core temperature was reduced to 200'C. Looking at this in terms of the size of the equipment, for example, the conventional method has a length of 18 m, but the present invention has a length of 15F11, which is very effective in reducing the size of the equipment.
第1図、第2図は誘導加熱法による鉄心焼鈍装置の加熱
部の構造を示す断面図、M3図は従来の誘導加熱法によ
る鉄心焼鈍装置の概略構成を示す断面図、第4図は本発
明の実施例Kかかる焼鈍装置の送り装置の上面図、第6
図は本発明の実施例にかかる2分割された送り装置の重
複部を示す基本構成図である。
1・・・・・・鉄心、2・・・・・・誘導加熱コイル、
3・・・・・・加熱帯、4・・・・・・冷却帯、6・・
・・・・送り装置、6a・・・・・・加熱帯側チェーン
コンベア、6b・・・・・・冷却帯側チェーンコンベア
、9・・・・・・重複部。
代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図
12図 ?
上(・)才ソやD □
第3図Figures 1 and 2 are cross-sectional views showing the structure of the heating section of a core annealing device using the induction heating method, Figure M3 is a cross-sectional view showing the schematic structure of a conventional iron core annealing device using the induction heating method, and Figure 4 is the main Embodiment K of the invention A top view of the feeding device of the annealing apparatus, No. 6
The figure is a basic configuration diagram showing an overlapping portion of a feeding device divided into two parts according to an embodiment of the present invention. 1... Iron core, 2... Induction heating coil,
3... Heating zone, 4... Cooling zone, 6...
...Feeding device, 6a... Heating zone side chain conveyor, 6b... Cooling zone side chain conveyor, 9... Overlapping part. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 12? Upper (・) Saisoya D □ Figure 3
Claims (1)
連続して配置し、前記加熱帯と冷却帯の境界又は冷却帯
中で鉄心の送り装置を2分割し、その送り装置と異なっ
た速度で移動可能としてなる電気機器鉄心の焼鈍装置。 @)加熱帯側の送り装置と冷却帯側の送り装置の速度を
個別に設定可能としてなる特許請求の範囲第1項記載の
電気機器鉄心の焼鈍装置。 (3)加熱帯側の送り装置の冷却帯側端部の冷却帯11
111送り装置との重複部において水平方向に対し、負
の傾斜にそって送り装置が移動するよう構成してなる特
許請求の範囲第1項記載の電気機器鉄心の焼鈍装置。[Claims] (1) A heating zone and a cooling zone equipped with vll heat conducting heating coils are arranged in succession, and the core feeding device is divided into two at the boundary between the heating zone and the cooling zone or in the cooling zone, and An annealing device for electrical equipment iron cores that can be moved at different speeds with a feeding device. @) The annealing apparatus for an electrical equipment iron core according to claim 1, wherein the speeds of the feeding device on the heating zone side and the feeding device on the cooling zone side can be set individually. (3) Cooling zone 11 at the end of the cooling zone side of the feeding device on the heating zone side
111. The annealing apparatus for an electrical equipment iron core according to claim 1, wherein the feeding device is configured to move along a negative inclination with respect to the horizontal direction at a portion where it overlaps with the feeding device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58239180A JPS60131919A (en) | 1983-12-19 | 1983-12-19 | Annealing device for iron core of electric apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58239180A JPS60131919A (en) | 1983-12-19 | 1983-12-19 | Annealing device for iron core of electric apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60131919A true JPS60131919A (en) | 1985-07-13 |
Family
ID=17040909
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58239180A Pending JPS60131919A (en) | 1983-12-19 | 1983-12-19 | Annealing device for iron core of electric apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60131919A (en) |
-
1983
- 1983-12-19 JP JP58239180A patent/JPS60131919A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2349569A (en) | Processing of metal strip | |
JPS60131919A (en) | Annealing device for iron core of electric apparatus | |
JP2844616B2 (en) | Induction heating device | |
US2828397A (en) | Induction heating apparatus | |
JP4078407B2 (en) | Aluminum billet induction heating device | |
JPS58222761A (en) | Annealing and cooling method for core | |
US5528019A (en) | High frequency induction heating method for rocker arms | |
JP2003507577A (en) | Annealing equipment | |
JPH0824954B2 (en) | Wire drawing device | |
CN113667801B (en) | Heat treatment method of amorphous alloy | |
JPS61253322A (en) | Induction heating and annealing device for iron core of electrical apparatus | |
JPH0219612B2 (en) | ||
JP2000288646A (en) | Method and device for removal of residual stress from metal worked part | |
JPH0534821B2 (en) | ||
JPH05211749A (en) | Method of annealing iron core for motor | |
JPS5837944Y2 (en) | High frequency heat treatment equipment | |
JPS6030969Y2 (en) | Stepped roller conveyor for cooling wire rods | |
JPS6342333A (en) | Annealing method for iron core | |
JP2008248386A (en) | Heat-treatment method for steel material | |
JPS592105Y2 (en) | Continuous wire softening device | |
JPS62111410A (en) | Method for annealing core | |
JPH03140414A (en) | Method for annealing iron core | |
SU897863A1 (en) | Device for thermomagnetic treatment of permanent magnets | |
JPS6343443B2 (en) | ||
JP4457709B2 (en) | Steel plate heat treatment equipment |