JPS60131494A - Fast breeder reactor - Google Patents

Fast breeder reactor

Info

Publication number
JPS60131494A
JPS60131494A JP58238803A JP23880383A JPS60131494A JP S60131494 A JPS60131494 A JP S60131494A JP 58238803 A JP58238803 A JP 58238803A JP 23880383 A JP23880383 A JP 23880383A JP S60131494 A JPS60131494 A JP S60131494A
Authority
JP
Japan
Prior art keywords
convection
reactor
annular gap
fast breeder
shielding plug
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58238803A
Other languages
Japanese (ja)
Inventor
康弘 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58238803A priority Critical patent/JPS60131494A/en
Publication of JPS60131494A publication Critical patent/JPS60131494A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は高速増殖炉に係り、特に炉容器と遮蔽プラグと
の間に形成される環状間隙部に発生すや自然対流に起因
する熱応力の抑11113および上記間隙部の・放射線
ストリーミング防止手段に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a fast breeder reactor, and particularly to a method for reducing thermal stress caused by natural convection that occurs in an annular gap formed between a reactor vessel and a shielding plug. 11113 and a means for preventing radiation streaming in the gap.

〔・発明の技術的背景〕[・Technical background of the invention]

一般に、液体ナトリウム等の液体金属を冷却材とする高
速増殖炉は炉心出口の冷却材温度が非常に高温どなるた
め、厳しい高温構造が要求される。
In general, fast breeder reactors that use liquid metal such as liquid sodium as a coolant require a strict high-temperature structure because the coolant temperature at the core exit is extremely high.

第1図は従来の高速増殖炉の概略構成を示す図で、図中
・符号1は炉容器である。この炉容器1内には炉心2・
が収容されているとともに、液体ナトリウム等の冷却材
3が同図に示す液位まで蓄えられている。・そして、こ
の冷却材3は入口配管4から炉容器1内の下部に流入し
、炉心2内を上方に流れて加熱され、出口配管5から流
出するようになっている。炉容器1の上端開口部は遮蔽
プラグ6によって閉塞されており、この遮蔽プラグ6は
支持構造物7の上部に設置された支持スペーサ8によっ
て支持されている。そして、炉嚇器1内の冷却材液面よ
り遮蔽プラグ6の下面にかけて形成されたカバーガス空
間9内にはアルゴンガス等のカバーガスが充填されてい
る。このカバーガスは冷却材液面からの熱を受けるばか
りでなく、遮蔽ブラグ6の内部が断熱構造となっている
ため、この部分からの放熱量が低く抑えられ、がなりの
高温状態に保持されている。
FIG. 1 is a diagram showing a schematic configuration of a conventional fast breeder reactor, and the reference numeral 1 in the figure is a reactor vessel. Inside this reactor vessel 1 is a reactor core 2.
A coolant 3 such as liquid sodium is stored up to the liquid level shown in the figure. -Then, this coolant 3 flows into the lower part of the reactor vessel 1 from the inlet pipe 4, flows upward in the reactor core 2, is heated, and flows out from the outlet pipe 5. The upper end opening of the furnace vessel 1 is closed by a shielding plug 6, which is supported by a support spacer 8 installed on the upper part of a support structure 7. A cover gas space 9 formed from the coolant liquid level in the furnace alarm 1 to the lower surface of the shielding plug 6 is filled with a cover gas such as argon gas. This cover gas not only receives heat from the coolant liquid level, but also because the inside of the shielding plug 6 has an insulating structure, the amount of heat dissipated from this part is suppressed to a low level, and it is maintained at a very high temperature. ing.

一方、炉容器1と遮蔽プラグ6との間には遮蔽プラグ6
がスームズに回転できるよう20〜25mm程度の環状
囲1iji部1oが形成されている。この環状間隙部1
O内のカバーガスは熱源が下方にあるため上部にいくほ
ど温度が低くなっており、特に最上部では常温近くまで
冷却され、環状間隙部10壁面、すなわち炉容器1内周
面および遮蔽プラグ6外周面の平均温度は冷却材液面近
くのカバーガスの゛温度と′比較してか゛なりの低い温
度に保たれている。このため、冷却材液面近くのカバー
ガスと環状間隙部10内のカバーガスとの間には密度差
が生じ、環状間隙部1oで冷却された密度の大きい重い
ガスと冷却材液面近くの密度の小さい軽いガスとの間に
自然対流が発生する。ところが、この自然対流は環状間
隙部10内の中央では上昇し、側壁では下降するような
二次元的な流れを必ずしも形成せず、第2図に示すよう
に遮蔽プラグ6外周面の周方向に回転するような流れ1
1゜12を形成するため、炉容器1の周方向に不均一な
温度分布が生じ、炉容器1等の構造材に大きな熱応力が
作用して熱変形を起こすおそれがある。
On the other hand, a shielding plug 6 is provided between the furnace vessel 1 and the shielding plug 6.
An annular surrounding part 1o of about 20 to 25 mm is formed so that it can rotate smoothly. This annular gap 1
Since the heat source is located at the bottom of the cover gas, the temperature of the cover gas in O becomes lower as it goes to the top.In particular, at the top, it is cooled to near room temperature, and the cover gas inside the annular gap 10, that is, the inner peripheral surface of the furnace vessel 1 and the shielding plug 6, is cooled down to near room temperature. The average temperature of the outer peripheral surface is kept at a much lower temperature than the temperature of the cover gas near the coolant liquid level. Therefore, a density difference occurs between the cover gas near the coolant liquid surface and the cover gas in the annular gap 10, and the dense heavy gas cooled in the annular gap 1o and the cover gas near the coolant liquid surface Natural convection occurs between the gas and the light gas with low density. However, this natural convection does not necessarily form a two-dimensional flow that rises at the center of the annular gap 10 and descends at the side walls, and as shown in FIG. rotating flow 1
1.degree. 12, a non-uniform temperature distribution occurs in the circumferential direction of the furnace vessel 1, and there is a risk that large thermal stress will act on the structural members of the furnace vessel 1 and the like, causing thermal deformation.

そこで、従来ではこの自然対流の抑制を目的として、環
状間隙部1Oの下端部又は中間部に対流抑制構造を設け
る等の提案がいくつかなされている。
Therefore, several proposals have been made in the past for the purpose of suppressing this natural convection, such as providing a convection suppressing structure at the lower end or middle part of the annular gap 10.

〔背景技術の問題点〕[Problems with background technology]

しかしながら、従来のこの種の提案は原理的にはいずれ
も、環状間隙部10の間隙幅を極めて小さくして自然対
流を抑制しようとするものであり、このために大形製缶
構造物である炉容器1及び遮蔽プラグ6は製作上非常に
厳しい寸法公差が要求されるという問題があった。また
、原子炉の大形化に伴い環状間隙部1Oの高さが高くな
ると、環状間隙部10の下端部のみを閉塞しても自然対
流を十分に抑制できないという問題があった。
However, in principle, all of the conventional proposals of this type aim to suppress natural convection by extremely reducing the gap width of the annular gap 10, and for this purpose, large can manufacturing structures are required. There was a problem in that the furnace vessel 1 and the shielding plug 6 required very strict dimensional tolerances in manufacturing. Further, when the height of the annular gap 10 increases as the size of the nuclear reactor increases, there is a problem that natural convection cannot be sufficiently suppressed even if only the lower end of the annular gap 10 is closed.

〔発明の目的〕[Purpose of the invention]

本発明は以上の事情に基づいてなされたものであり、そ
の目的は簡単な構造で炉容器と遮蔽プラグ間の環状間隙
部に発生する自然対流を有効に抑制でき、しかも炉容器
及び遮蔽プラグ等を製作するうえで高度な寸法精度を必
要とせず、信頼性の極めて高い高速増殖炉を提徂するこ
とにある。
The present invention has been made based on the above circumstances, and its purpose is to effectively suppress natural convection occurring in the annular gap between the furnace vessel and the shielding plug with a simple structure, and to effectively suppress the natural convection that occurs in the annular gap between the furnace vessel and the shielding plug. The objective of this project is to propose an extremely reliable fast breeder reactor that does not require a high degree of dimensional accuracy to manufacture.

〔発明の概要〕[Summary of the invention]

本発明は上記の目的を達成するために、炉容器と遮蔽プ
ラグ間に形成される環状間隙部に円筒状の対流リングを
設け、この対流リングの内側に突出した環状部を形成す
るとともにこの環状部の下方に周方向に区画された複数
の対流室を形成したことを特徴とするものである。
In order to achieve the above object, the present invention provides a cylindrical convection ring in the annular gap formed between the furnace vessel and the shielding plug, forms an annular part protruding inside the convection ring, and It is characterized by forming a plurality of convection chambers partitioned in the circumferential direction below the section.

〔発明の実施例〕[Embodiments of the invention]

以下、第3図ないし第5図を参照して本発明の詳細な説
明する。
Hereinafter, the present invention will be explained in detail with reference to FIGS. 3 to 5.

第3図ないし第5図は本発明の一実施例を示す図で、図
中第1図と同一部分には同一符号が付されている。本実
施例においては、第3図に示すように炉容器1と遮蔽プ
ラグ6間に形成される環状間隙部10に円筒状の対流リ
ング13が炉容器1上端のフランジ部に係合して設けら
れている。この対流リング13は第4図に示すように、
その内側に突出した環状部14が形成されている。そし
て、この環状部14の下方には周方向に区画された複数
の対流室15が形成されており、これらの対流室15内
で自然対流がそれぞれ発生するようになっている。また
、□多対流室15間の隔壁16には対流リング13の下
方および半径方向側を開放した切欠き溝17が設けられ
ており、各対流室15内で生じた自然対流による熱応力
を吸収するようになっている。
3 to 5 are diagrams showing one embodiment of the present invention, in which the same parts as in FIG. 1 are given the same reference numerals. In this embodiment, as shown in FIG. 3, a cylindrical convection ring 13 is provided in an annular gap 10 formed between the furnace vessel 1 and the shielding plug 6 so as to engage with a flange at the upper end of the furnace vessel 1. It is being This convection ring 13, as shown in FIG.
An annular portion 14 protruding inwardly is formed. A plurality of convection chambers 15 partitioned in the circumferential direction are formed below this annular portion 14, and natural convection occurs within each of these convection chambers 15. In addition, the partition wall 16 between the multiple convection chambers 15 is provided with a cutout groove 17 that opens the lower and radial sides of the convection ring 13 to absorb thermal stress due to natural convection generated within each convection chamber 15. It is supposed to be done.

次に作用を説明す杭用2図に示したように環状間隙部1
0で発生ずる自然対流は、通常2つの大きな循環流11
.”12となって発生し、この循環流11及び12の上
昇流発生位置と下降流発生位置との間に大きな温度差が
生じ、熱応力や熱変形を引き起こす原因となっている。
Next, as shown in Figure 2 for piles to explain the action, the annular gap 1
The natural convection that occurs at
.. 12, and a large temperature difference occurs between the upward flow generation position and the downward flow generation position of the circulating flows 11 and 12, causing thermal stress and thermal deformation.

このような循環流により生ずる温度差は一般にその循環
流の数(ベアの数)□に依存する□ことが知られており
、循環流数が多いほど温度差は小さくなる。本実施例で
は第5図に示すように自然対流が対流リング13の各対
′流室15内で発生するので、自然対流の数が増加し、
温度差を緩和することができる。したがって、本実施例
によれば環状間隙部1oに対流リング13を設けるだけ
で自然対流を抑制できるので、従来のように炉容器1あ
るいは遮蔽プラグ6等に対して厳しい寸法精度を要求す
ることもない。また、対流リング13の内周面に複数の
突出した環状部14を設けることにより、ここを透過す
る放射線を低減することもできる。なお、上記実施例で
は各対流室15間の隔壁16に切欠き1R17が設けら
れている対流リング13を示したが、必ずしも切欠き溝
17を必要とせず、必要とするか否かは高速増殖炉の運
転条件あるいは対流室15の数等によって決定される。
It is known that the temperature difference caused by such circulating flows generally depends on the number of circulating flows (the number of bears), and the larger the number of circulating flows, the smaller the temperature difference. In this embodiment, as shown in FIG. 5, natural convection occurs within each convection chamber 15 of the convection ring 13, so the number of natural convection increases.
Temperature differences can be alleviated. Therefore, according to this embodiment, natural convection can be suppressed simply by providing the convection ring 13 in the annular gap 1o, so that strict dimensional accuracy is not required for the furnace vessel 1 or the shielding plug 6, etc. as in the conventional case. do not have. Further, by providing a plurality of protruding annular portions 14 on the inner circumferential surface of the convection ring 13, it is also possible to reduce radiation passing through the annular portions 14. In addition, in the above embodiment, the convection ring 13 is shown in which the notch 1R17 is provided in the partition wall 16 between each convection chamber 15, but the notch groove 17 is not necessarily required, and whether it is necessary or not depends on high-speed growth. It is determined by the operating conditions of the furnace, the number of convection chambers 15, etc.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように本発明によれば、炉容器
と遮蔽プラグ間に形成される環状間隙部に円筒状の対流
リングを設け、この対流リングの内側に突出した環状部
を形成するとともにこの環状部の下方に周方向に区画さ
れた複数の対流室を形成した構、成としたので、炉容器
と遮蔽プラグ間の環状間隙部に発生する自然対流を抑制
でき、しかも炉容器及び遮蔽プラグ等を製作するうえで
高度な寸法精度を必要とせず、信頼性の極めて高い高速
増殖炉を提供できる。
As is clear from the above description, according to the present invention, a cylindrical convection ring is provided in the annular gap formed between the furnace vessel and the shielding plug, and an annular portion protruding inside the convection ring is formed. Since a plurality of convection chambers are formed in the circumferential direction below this annular part, natural convection occurring in the annular gap between the furnace vessel and the shielding plug can be suppressed, and the furnace vessel and shielding A highly reliable fast breeder reactor can be provided without requiring a high degree of dimensional accuracy in manufacturing plugs and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の高速増殖炉の縦断面図、第2図は従来の
環状間隙部に発生する自然対流のモデルを示す図、第3
図ないし第5図は本発明の一実施例を示す図で、第3図
は環状間隙部の拡大縦断面図、第4図は対流リングの断
面図、第5図は対流リングの各対流室に発生する自然対
流を示す図である。 1・・・炉容器、2・・・炉心、4・・・入口配管、5
・・・出口配管、6・・・遮蔽プラグ、10・・・環状
間隙部、13・・・対流リング、14・・・環状部、1
5・・・対流室、16・・・隔壁、17・・・切欠き溝
。 出願人代理人 弁理士 鈴江武彦 第1図 第2図 第3図 第4図 第5図
Figure 1 is a longitudinal cross-sectional view of a conventional fast breeder reactor, Figure 2 is a diagram showing a model of natural convection that occurs in a conventional annular gap, and Figure 3 is a diagram showing a model of natural convection that occurs in a conventional annular gap.
5 to 5 are diagrams showing one embodiment of the present invention, in which FIG. 3 is an enlarged vertical sectional view of the annular gap, FIG. 4 is a sectional view of the convection ring, and FIG. 5 is each convection chamber of the convection ring. FIG. 2 is a diagram showing natural convection that occurs in 1... Furnace vessel, 2... Core, 4... Inlet piping, 5
... Outlet piping, 6... Shielding plug, 10... Annular gap, 13... Convection ring, 14... Annular part, 1
5... Convection chamber, 16... Partition wall, 17... Notch groove. Applicant's Representative Patent Attorney Takehiko Suzue Figure 1 Figure 2 Figure 3 Figure 4 Figure 5

Claims (2)

【特許請求の範囲】[Claims] (1)炉心と、この炉心を収容する炉容器と、この炉容
器の上端開口部を閉塞する遮蔽プラグとを!する高速増
殖炉において、前記炉容器と遮蔽プラグ間に形成される
環状間隙部に円筒状の対流リングを設け、この対流リン
グの、内側に突出した環状部を形成するとともにこの環
状部の下方に周方向に区画された複数の対流室を形成し
たことを特徴とする高速増殖炉。
(1) A reactor core, a reactor vessel that houses this reactor core, and a shielding plug that closes the upper end opening of this reactor vessel! In a fast breeder reactor that is equipped with A fast breeder reactor characterized by forming a plurality of convection chambers partitioned in the circumferential direction.
(2)前記対流リングは各対流室間の隔壁に切欠き溝を
備えていることを特徴とする特許請求の範囲第1項記載
の高速増殖炉。
(2) The fast breeder reactor according to claim 1, wherein the convection ring has notched grooves in the partition walls between the convection chambers.
JP58238803A 1983-12-20 1983-12-20 Fast breeder reactor Pending JPS60131494A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58238803A JPS60131494A (en) 1983-12-20 1983-12-20 Fast breeder reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58238803A JPS60131494A (en) 1983-12-20 1983-12-20 Fast breeder reactor

Publications (1)

Publication Number Publication Date
JPS60131494A true JPS60131494A (en) 1985-07-13

Family

ID=17035518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58238803A Pending JPS60131494A (en) 1983-12-20 1983-12-20 Fast breeder reactor

Country Status (1)

Country Link
JP (1) JPS60131494A (en)

Similar Documents

Publication Publication Date Title
JPH0313556B2 (en)
US3041263A (en) Molten plutonium fueled fast breeder reactor
US4795607A (en) High-temperature reactor
US4043867A (en) Structure for reducing convection currents within the pressure vessel of a fast reactor
JPS60131494A (en) Fast breeder reactor
JP2003139881A (en) Reactor cooled with supercritical pressure water, channel box, water rod and fuel assembly
US5610956A (en) Fast reactor core
US2905611A (en) Fuel element for a neutronic reactor
JPH0651082A (en) Nuclear reactor of reflector control type
JPS6131440B2 (en)
JPS6151593A (en) Shielding plug device for fast breeder reactor
US3201321A (en) Nuclear reactor
US4676947A (en) Device for thermal protection of a component of a fast-neutron nuclear reactor
JPS58223787A (en) Reactor
JPH0827368B2 (en) Fast breeder reactor
JPS61225687A (en) Fast breeder reactor
JP2837874B2 (en) Liquid metal cooled fast neutron reactor
JPH0411000B2 (en)
JPS6111698A (en) Nuclear reactor
JPS62245187A (en) Fast breeder reactor
JPS6331753B2 (en)
JPS60102592A (en) Fast breeder reactor
JPS6170486A (en) Fast breeder reactor
JPS62187288A (en) Thermal shielding device for fast breeder reactor
JPS604883A (en) Upper mechanism of core