JPS6013147B2 - radar receiving device - Google Patents

radar receiving device

Info

Publication number
JPS6013147B2
JPS6013147B2 JP51077729A JP7772976A JPS6013147B2 JP S6013147 B2 JPS6013147 B2 JP S6013147B2 JP 51077729 A JP51077729 A JP 51077729A JP 7772976 A JP7772976 A JP 7772976A JP S6013147 B2 JPS6013147 B2 JP S6013147B2
Authority
JP
Japan
Prior art keywords
pass filter
receiving device
radar receiving
low
controller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51077729A
Other languages
Japanese (ja)
Other versions
JPS534492A (en
Inventor
洋 岡田
富次 韮沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Keiki Inc
Original Assignee
Tokyo Keiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Keiki Co Ltd filed Critical Tokyo Keiki Co Ltd
Priority to JP51077729A priority Critical patent/JPS6013147B2/en
Publication of JPS534492A publication Critical patent/JPS534492A/en
Publication of JPS6013147B2 publication Critical patent/JPS6013147B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明はしーダ装置において海面反射妨害抑制装置に
対するS/N(信号対雑音比)の劣化の改善を図ったし
−ダ受信装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a radar receiver that is designed to improve the deterioration of S/N (signal-to-noise ratio) with respect to a sea surface reflection interference suppression device in a radar device.

従来よりレーダ装置における海面からの反射による妨害
、すなわち海面反射妨害のために、物標の探知が困難で
あるとか、物標が消失してレーダの検策機能が失なわれ
るという問題が生じていた。
In the past, interference with radar equipment due to reflections from the sea surface, that is, interference with sea surface reflections, has caused problems such as difficulty in detecting targets or loss of radar detection functions due to targets disappearing. Ta.

この海面反射妨害を抑制する一つの方法としては、対数
増中器と海面反射妨害による妨害信号成分を遮断するた
めの固定された遮断周波数を有する高城炉波器で回路構
成されたレーダ受信装置が用いられてきた。しかし、こ
のようなしーダ受信装置では海面反射による妨害信号成
分の存在しない受信の領域の信号対雑音比(以下SノN
という)が悪くなり、物標の検出能力が劣化するという
欠点を有していた。本発明は上述のレーダ受信装置にお
ける欠点に鑑みて創案されたものであり、対数増中器と
高城炉波器とを備えたし−ダ受信装慣に於ける高城炉波
器の遮断周波数を変化せしめることにより海面反射によ
る妨害信号成分の存在領域での妨害除去効果を損なわな
いと共に海面反射の存在しない受信信号領域でのS/N
の劣化の改善がし得るレーダ受信装置を提供することを
目的とする。
One method for suppressing this sea surface reflection disturbance is to use a radar receiving device configured with a circuit consisting of a logarithmic intensifier and a Takagi reactor wave generator with a fixed cutoff frequency for blocking the interference signal component caused by the sea surface reflection disturbance. has been used. However, in such a radar receiver, the signal-to-noise ratio (hereinafter referred to as SNO) in the reception area where there is no interference signal component due to sea surface reflection
) and the target detection ability deteriorates. The present invention has been devised in view of the above-mentioned drawbacks of the radar receiving device, and is designed to reduce the cutoff frequency of the Takagi wave generator in a radar receiver equipped with a logarithmic intensifier and a Takagi wave generator. By changing the S/N ratio, the interference removal effect in the area where interference signal components due to sea surface reflection exist is not impaired, and the S/N ratio is maintained in the received signal area where sea surface reflection does not exist.
An object of the present invention is to provide a radar receiving device that can improve the deterioration of the radar.

レーダ装置に於いて使用される対数増中器と高城炉波器
から構成されるレーダ受信装置では、海面反射妨害抑制
のために高城炉波器の遮断周波数いまト送信パルスのパ
ルス中をヶとすれば一般に、ら3とコご m となるように選ばれる。
In a radar receiving device consisting of a logarithmic intensifier and a Takagi reactor waver used in radar equipment, the cut-off frequency of the Takagi reactor waver is set at a certain point during the pulse of the transmitted pulse in order to suppress sea surface reflection interference. Then, in general, ra3 and kogom are selected.

第{1)式で与えられる遮断周波数を用いれば高域炉波
器通過後の受信信号の信号対海面反射妨害比(以下S/
Cという)が改善されるものの、海面反射の存在しない
領域ではSノNの劣化が生ずる。この海面反射の存在し
ない領域でのSノNの劣化を改善するためには、ち《↓
{21に高城炉波器の遮断周波数らを選択すれ
ばよいことが実験的に確かめられている。
By using the cutoff frequency given by equation {1), the signal-to-sea reflection interference ratio (hereinafter S/
However, in areas where there is no sea surface reflection, S/N deteriorates. In order to improve the deterioration of SNO in areas where there is no sea surface reflection,
It has been experimentally confirmed that it is sufficient to select the cutoff frequency of the Takagi reactor in {21}.

すなわち、海面反射の存在しない領域では第【1}式に
よる遮断周波数foを用いると、SノNが約×旧低下す
る。
That is, in a region where there is no sea surface reflection, when the cutoff frequency fo according to equation [1} is used, the S/N decreases by about x.

しかし、第■式による遮断周波数らを用いると、S/N
は約止旧低下する(ほとんど低下しない)ことが確認さ
れた。ただし、送信パルスのパルス幅では80〔nS〕
「250〔nS〕または1。2〔〆S〕とする。
However, if we use the cutoff frequency et al. according to the formula (■), the S/N
It was confirmed that there is a decline (almost no decline) in terms of aging. However, the pulse width of the transmission pulse is 80 [nS]
``250 [nS] or 1.2 [〆S].

この技術的背景に基づいて、本発明は高城炉波器の遮断
周波数を海面反射妨害を受ける領域と受けない領域につ
いて、可制制御しようとするものである。
Based on this technical background, the present invention attempts to control the cutoff frequency of the Takagi wave generator in areas where it is subject to sea surface reflection interference and areas where it is not.

以下に図面に基ずし、て本発明の望ましい実施例を説明
する。
Preferred embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明のレーダ受信装置を備えたし−ダ装置の
回路概要を示すブロック図であり、送信器1および空中
線2によりパルス変調された電波が空間に放射される。
FIG. 1 is a block diagram showing a circuit outline of a radar device equipped with a radar receiving device of the present invention, in which pulse-modulated radio waves are radiated into space by a transmitter 1 and an antenna 2.

物漢や海面などから反射された電波は空中線2を介して
レーダ受信装置3に入力される。この空中線2から受信
信号は、まず対数増中器4で増中検波され、対数増中器
鼻の出力は高城炉波器5に加えられる。高域炉波器5は
制御器6からの制御信号により遮断周波数が可変される
ように構成されており、制御器6は対数増中器4の出力
を得て制御信号出力を作りだし「海面反射領域で前記{
1}式を満足する遮断周波数、海面反射のない領域で前
記第■式を満足する遮断周波数に高城炉波器5の遮断周
波数で可変せしめる制御を行なう。第2図は第1図に示
す高城炉波器5の回路例を示すもので、入力端7,了′
および出力端8,舞′を有する四端子回路で「 コンデ
ンサCoと電界効果トランジスタTrをもって高城炉波
器を回路構成する。
Radio waves reflected from people, the sea surface, etc. are input to a radar receiving device 3 via an antenna 2. The signal received from the antenna 2 is first detected by a logarithmic intensifier 4, and the output of the logarithmic intensifier nose is applied to a Takagi reactor waver 5. The blast reactor wave generator 5 is configured such that its cutoff frequency is varied by a control signal from a controller 6, and the controller 6 obtains the output of the logarithmic intensifier 4 and produces a control signal output. In the area {
Control is performed to vary the cut-off frequency of the Takagi wave generator 5 to a cut-off frequency that satisfies the formula 1} and a cut-off frequency that satisfies the formula (2) above in a region where there is no sea surface reflection. FIG. 2 shows an example of the circuit of the Takagi furnace wave generator 5 shown in FIG.
In a four-terminal circuit having output terminals 8 and 1', a Takagi reactor is configured with a capacitor Co and a field effect transistor Tr.

電界効果トランジスタTrのゲート端Gには制御信号端
9が接続される。電界効果トランジスタTrの導通抵抗
、すなわちドレィンーソース間抵抗をRoとすると、こ
の回路の伝達関数YくS)は「SCoRo Y(S)=▽耳玉雨 で与えられ、遮断周波数にが ち=交; {3} となる高域炉波特性を示す。
A control signal terminal 9 is connected to the gate terminal G of the field effect transistor Tr. If the conduction resistance of the field effect transistor Tr, that is, the resistance between the drain and the source is Ro, the transfer function Y(S) of this circuit is given by ``SCoRo Y(S)=▽Earball Rain, and the cutoff frequency is different=cross; 3}.

従って制御信号端9へ印加する制御信号で電界効果トラ
ンジスタTrの導通抵抗Roを可変することで、第鰍式
から明らかな如く、遮断周波数らを可変するものである
。第3図は第1図に示す制御器6の一実施例を表す回路
ブロック図である。
Therefore, by varying the conduction resistance Ro of the field effect transistor Tr with the control signal applied to the control signal terminal 9, the cutoff frequency etc. can be varied, as is clear from the second equation. FIG. 3 is a circuit block diagram showing one embodiment of the controller 6 shown in FIG. 1.

第3図に於て、制御器6は対数増中器で増中検波された
受信信号が入力端1川こ与えられると、出力端16から
制御信号を第2図に示す制御信号端9に与える。低域炉
波器12は増中検波された受信信号Ebのうち海面反射
妨害の低周波成分Ecを抽出する所定の低域遮断周波数
を有し、判定器14は抽出された妨害信号となる低域炉
波器12の出力信号Ecに対する所定の関値を比較基準
として有し「閥値を越える信号Ecが与えられる時間中
に対応したパルス中の短形信号を判定信号Edとして出
力す。
In FIG. 3, when the controller 6 receives a received signal that has been intensified detected by a logarithmic intensifier and is given to one input terminal, the controller 6 transmits a control signal from an output terminal 16 to a control signal terminal 9 shown in FIG. give. The low frequency detector 12 has a predetermined low cutoff frequency for extracting the low frequency component Ec of the sea surface reflection disturbance from the received signal Eb subjected to the intensification detection, and the determiner 14 has a predetermined low cutoff frequency for extracting the low frequency component Ec of the sea surface reflection disturbance from the received signal Eb subjected to the intensification detection. A predetermined function value for the output signal Ec of the area wave generator 12 is used as a comparison standard, and a rectangular signal in the pulse corresponding to the time period in which the signal Ec exceeding the threshold value is given is output as the determination signal Ed.

波形整形回路15は判定信号Edを入力とし、高城炉波
器5への過渡的な影響、例えば不要信号の発生の除去や
急激な遮断周波数の変化を防止するために、前記短形信
号の後緑の立下りが予じめ定められた一定の勾配で減衰
するような信号に波形変換して出力端子16から高城炉
波器5の制御信号端9に制御信号Eeとして出力する。
このようにして回路構成された制御器6の各部の信号波
形Ea〜Eeおよび第1図に示すレーダ受信装置3の出
力信号波形を第4図に示す。第4図においてaは送信パ
ルスEa,bは受信信号Eb,cは低域炉波器12の出
力信号Ec,dは判定出力信号Ed,eは制御信号Ee
を第3図に対応して表し、fは第1図のレーダ受信装置
3の出力信号Efを表わす。
The waveform shaping circuit 15 inputs the determination signal Ed, and in order to prevent transient influences on the Takagi wave generator 5, such as eliminating generation of unnecessary signals and sudden changes in the cut-off frequency, the waveform shaping circuit 15 inputs the determination signal Ed. The waveform is converted into a signal in which the falling edge of green attenuates at a predetermined constant slope, and the signal is output from the output terminal 16 to the control signal terminal 9 of the Takagi wave generator 5 as a control signal Ee.
FIG. 4 shows the signal waveforms Ea to Ee of each part of the controller 6 configured in this way and the output signal waveform of the radar receiver 3 shown in FIG. 1. In FIG. 4, a is the transmitted pulse Ea, b is the received signal Eb, c is the output signal Ec of the low frequency wave generator 12, d is the judgment output signal Ed, and e is the control signal Ee.
is expressed corresponding to FIG. 3, and f represents the output signal Ef of the radar receiving device 3 of FIG.

ここで第4図に示す信号波形を用いて第3図に示す制御
器6の動作を説明する。パルス変調された送信出力の反
射波として空中線を介して対数増中器で増中検波された
第4図bの受信信号Ebには時間tcで示される範囲の
海面反射による妨害信号成分と、これに重畳された物標
の反射信号成分が含まれ、これが送信パルスEaの送出
周期をもって繰り返される。
Here, the operation of the controller 6 shown in FIG. 3 will be explained using the signal waveform shown in FIG. 4. The received signal Eb in FIG. 4b, which is detected by a logarithmic intensifier via an antenna as a reflected wave of the pulse-modulated transmission output, includes an interference signal component due to sea surface reflection in a range indicated by time tc, and this The reflected signal component of the target object superimposed on the signal is included, and this is repeated with the transmission period of the transmission pulse Ea.

この受信信号Ebは低域炉波器12に通されて物標の反
射信号が取り除かれ、海面反射による妨害の低周波成分
のみが抽出され、低域炉波器12の力信号Ecとして判
定器14に与えられる。判定器14は閥値として判別基
準値Sを有し、出力信号Ecに対して短形パルスとなる
判別出力信号Edを与える。この判別出力信号Edは波
形整形回路15で、その立下りが一定の減衰勾配をもつ
台形パルスとなる制御信号Eeに変換され、この制御信
号Eeが第1図に示す高城炉波器6、すなわち第2図に
示す高城炉波器の電界効果トランジスタTrのゲート端
に印加される。このため制御信号Eeの立上りで高城炉
波器の遮断周波数ら‘ま、(ち3土2卒)に制御され、
一定減衰勾酌の立7下りで徐々に(も《÷)に可変せら
れ、海面反射妨害成分の存在しない範囲でのSノN比の
改善が達成され「且つ海面反射妨害成分の存在する領域
では、充分高いSノC比を得ることができる。
This received signal Eb is passed through the low-pass wave generator 12 to remove the reflected signal from the target object, and only the low-frequency component of interference due to reflection from the sea surface is extracted. given to 14. The determiner 14 has a determination reference value S as a threshold value, and provides a determination output signal Ed that is a rectangular pulse with respect to the output signal Ec. This discrimination output signal Ed is converted by a waveform shaping circuit 15 into a control signal Ee whose falling edge becomes a trapezoidal pulse with a constant attenuation slope, and this control signal Ee is converted into a control signal Ee which is a trapezoidal pulse whose falling edge is a trapezoidal pulse having a constant attenuation slope. It is applied to the gate end of the field effect transistor Tr of the Takagi wave generator shown in FIG. Therefore, at the rising edge of the control signal Ee, the cutoff frequency of the Takagi reactor is controlled to be
The constant attenuation gradient is gradually changed to (《÷) at the falling edge, and an improvement in the S/N ratio is achieved in the range where the sea surface reflection disturbance component does not exist. In this case, a sufficiently high S/C ratio can be obtained.

このようにして得られた本発明のレーダ受信装置の出力
信号は第4図fに示される如く、海面反射による妨害成
分は確実に除去され、且つ海面反射のない領域における
物標反射成分のSノN比も損なわれていない。第4図は
本発明に係るレーダ受信菱簿の他の実施例を示すブロッ
ク図である。
As shown in FIG. 4f, the output signal of the radar receiving apparatus of the present invention obtained in this manner is such that the interference component due to sea surface reflection is reliably removed, and the S of the target object reflection component in the area without sea surface reflection is The N/N ratio is also intact. FIG. 4 is a block diagram showing another embodiment of the radar reception log according to the present invention.

なお、第4図において、第1図と同様の機能を果たす部
分については同一の符号を付し、その説明は省略する。
本実施例では、送信器1から出力される送信パルスをゲ
ート信号として制御器6に加えるゲート回路13を設け
ることによって、制御器6が高城炉波器5の遮断周波数
を変化させる時期を制御するようにしている。このゲー
ト回路13は送信器亀から入力される送信パルスEaに
同期してゲート信号Egを出力し、海面反射の存在する
領域に等しいか、それよりも広い時間幅、すなわちゲー
ト幅の期間だけに制御器6から高城炉波器5への判定信
号Edの出力時期を制限するものである。例えば、レー
ダ装置が海岸線付近に設置された固定レーダ局であれば
、予測される海面反射妨害の範囲に対応してゲート中を
適宜に設定する。第5図はかかるゲート回路13によっ
て制御される制御器6のブロック図である。なお、第5
図において第3図と同様の機能を果たす部分については
同一の符号を付し、その説明は省略する。この制御器6
は対数増中器4で増中検波された受信信号Edが入力端
101と与えられるとともに「ゲート回路13からゲー
ト信号Egが与えられるようになっている。したがって
判定器1Wま低域炉波器12によって抽出された出力信
号Ecと所定の閥値との比較結果である判定信号Edを
、ゲート信号Egが与えられているときもこ波形整形回
路15に出力することになる。このように回路構成され
た制御器6の各部の信号波形Ea〜Eeおよび第5図に
示すレーダ受信装置3の出力信号波形を第7図に示す。
In FIG. 4, parts that perform the same functions as those in FIG. 1 are denoted by the same reference numerals, and the explanation thereof will be omitted.
In this embodiment, by providing a gate circuit 13 that applies the transmission pulse output from the transmitter 1 as a gate signal to the controller 6, the controller 6 controls the timing at which the cutoff frequency of the Takagi wave generator 5 is changed. That's what I do. This gate circuit 13 outputs a gate signal Eg in synchronization with the transmission pulse Ea input from the transmitter turtle, and only during a time width equal to or wider than the area where sea surface reflection exists, that is, the period of the gate width. This limits the output timing of the determination signal Ed from the controller 6 to the Takagi wave generator 5. For example, if the radar device is a fixed radar station installed near the coastline, the gate period is appropriately set in accordance with the predicted range of sea surface reflection interference. FIG. 5 is a block diagram of the controller 6 controlled by the gate circuit 13. In addition, the fifth
In the figure, parts that perform the same functions as those in FIG. 3 are designated by the same reference numerals, and their explanation will be omitted. This controller 6
The reception signal Ed detected by the logarithmic intensifier 4 is applied to the input terminal 101, and the gate signal Eg is also applied from the gate circuit 13.Therefore, the determiner 1W and the low frequency amplifier When the gate signal Eg is applied, the judgment signal Ed, which is the comparison result between the output signal Ec extracted by the gate signal Ec and a predetermined threshold value, is output to the waveform shaping circuit 15. In this way, the circuit configuration is as follows. FIG. 7 shows the signal waveforms Ea to Ee of each part of the controller 6 and the output signal waveform of the radar receiver 3 shown in FIG. 5.

第7図においてaは送信パルスEa,bは受信信号Eb
,cは低域炉波器の出力信号Ec,dは判定出力信号E
d,eは制御信号Eeを第6図に対応して表し、fは第
5図のレーダ受信装置3の出力信号Ef,gはゲート回
路員3のゲート出力信号Egを表わす。
In Fig. 7, a is the transmitted pulse Ea, and b is the received signal Eb.
, c is the output signal Ec of the low-frequency wave generator, and d is the judgment output signal E
d and e represent the control signal Ee corresponding to FIG. 6, f represents the output signal Ef of the radar receiver 3 of FIG. 5, and g represents the gate output signal Eg of the gate circuit member 3.

ここで「第了図に示す信号波形を用いて第6図に示す制
御器6の動作を説明する。パルス変調された送信出力の
反射波として空中線を介して対数増中器で増中検波され
た第7図bの受信信号Ebには時間tcで示される範囲
の海面反射による妨害信号成分ともこれに重畳された物
標の反射信号成分が含まれ、これが送信パルスEaの送
出周期をもって繰り返される。この受信信号Edは低域
炉波器官2に通されて物標の反射信号が取り除かれ〜海
面反射による妨害の低周波成分のみが抽出され、低域炉
波器亀2の出力信号Ecとして判定器14に与えられる
。判定器14は関値としての判別基準値Sを有し、ゲー
ト出力信号Ecと比較判別を行ない、閥値Sを越えるゲ
ート出力信号Ecに対して短形パルスとなる判別出力信
号Edを〜送信パルスEaの立上りに同期して出力され
ると共に海面反射妨害が存在する時間的こ等しいか、ま
たはそれより広いゲート中tgのゲート出力信号Egが
該判定器14に与えられるいるときに、波形整形回路1
5に出力する。この判別出力信号Edは波形整形回路1
5で〜その立下りが一定の減衰勾配をもつ台形パルスと
なる制御信号Eeに変換され、この制御信号Eeが第5
図に示す高城炉波器6、すなわち第2図に示す高域炉波
器の電界効果トランジスタTrのゲート端に印加される
。このため制御信号Eeの立上りで高域炉波器の遮断周
波数Mま、(ら3二;牟)に制御され、一定減衰勾配の
立下りで徐々に(も《÷)に可変せられ、海面反射妨害
成分の存在しない範囲でのS/N比の改善が達成され、
且つ海面反射妨害成分の存在する領域では充分高いSノ
C比を得ることができる。
Here, the operation of the controller 6 shown in FIG. 6 will be explained using the signal waveform shown in FIG. The received signal Eb in FIG. 7b includes an interference signal component due to reflection from the sea surface in the range indicated by time tc, and a reflected signal component from the target superimposed thereon, and this is repeated with the transmission period of the transmission pulse Ea. This received signal Ed is passed through the low-frequency wave generator 2 to remove the reflected signal from the target object and extract only the low-frequency component of interference caused by sea surface reflection, and is output as the output signal Ec of the low-frequency wave generator 2. The decision unit 14 has a discrimination reference value S as a function value, compares it with the gate output signal Ec, and determines that the gate output signal Ec exceeding the threshold value S becomes a rectangular pulse. The determination output signal Ed is output in synchronization with the rising edge of the transmission pulse Ea, and the gate output signal Eg is applied to the determiner 14 during a gate period equal to or wider than the period in which the sea surface reflection disturbance exists. When the waveform shaping circuit 1
Output to 5. This discrimination output signal Ed is the waveform shaping circuit 1
5, its falling edge is converted into a control signal Ee that is a trapezoidal pulse with a constant attenuation slope, and this control signal Ee is
The voltage is applied to the gate end of the field effect transistor Tr of the Takagi furnace wave generator 6 shown in the figure, that is, the high area furnace wave generator shown in FIG. Therefore, at the rising edge of the control signal Ee, the cutoff frequency of the blast reactor waver is controlled to M, (ra32; mu), and at the falling edge of the constant attenuation slope, it is gradually changed to (mo《÷), Improvement of the S/N ratio is achieved in the range where no reflection interference components exist,
In addition, a sufficiently high S/C ratio can be obtained in a region where sea surface reflection disturbance components exist.

このようにして得られた本発明のレーダ受信装置の出力
信号は第7図日こ示される如く、海面反射による妨害成
分は確実に除去され「且つ海面反射のない領域における
物標反射成分のS/N比も損なわれていない。以上の実
施例では高城炉波器5の遮断周波数foを制御器6の制
御信号で連続的に可変制御するものであったが、第8図
に示す如く、前記{1’,(2)式の条件から高域炉波
器5で使用する相異なる遮断周波数fo.,fo2,f
o3事・・・fonを抵抗R,? R2,R3,・・・
,RnのそれぞれとコンデンサCoの時定数で決定し、
制御器6の制御信号によりスイッチSを選択切替して海
面反射を受ける領域と受けない領域の遮断周波数を制御
してもよい。
As shown in FIG. 7, the output signal of the radar receiving apparatus of the present invention obtained in this manner is shown in FIG. /N ratio is not impaired. In the above embodiment, the cutoff frequency fo of the Takagi reactor wave generator 5 was continuously variably controlled by the control signal of the controller 6, but as shown in FIG. From the conditions of equations {1' and (2) above, the different cutoff frequencies fo., fo2, f used in the high area reactor wave generator 5 are determined.
o3 things...fon resistor R,? R2, R3,...
, Rn and the time constant of the capacitor Co,
The cutoff frequency of the region receiving sea surface reflection and the region not receiving it may be controlled by selectively switching the switch S using a control signal from the controller 6.

また第6図に示す制御器6の他の回路例としてゲ−回路
13のゲート出力信号を低域炉波器または波形整形回路
に加えるようにしてもよい。また本発明のレーダ受信装
置で用いられた制御器による遮断周波数の可変は、高城
炉波器の時定数を可変することにほかならないから、時
定数回路の可変制御への応用も容易にでき得る。
Further, as another circuit example of the controller 6 shown in FIG. 6, the gate output signal of the gate circuit 13 may be applied to a low frequency wave generator or a waveform shaping circuit. Furthermore, since changing the cutoff frequency by the controller used in the radar receiving device of the present invention is nothing but changing the time constant of the Takagi wave generator, it can be easily applied to variable control of the time constant circuit. .

さらに海面反射妨害波受信領域(時間)が予じめ個定的
に定まるような用途のレーダ受信装置では、例えば第4
図eの制御信号Eeが一定波形信号となるから、このよ
うな場合には制御器によって送信パルスに同期した一定
波形の遮断周波数制御信号を合成してこれを高域炉波器
に印加することにより高城炉波器の遮断周波数を一定波
形周期で変化させるように簡略化することもできる。以
上説明した如く本発明のレーダ受信装置は海面反射妨害
の有無を判別して高城炉波器の遮断周波数を可変せしめ
、これをもって海面反射存在領域におけるSノC比を充
分探れると共に海面反射の存在しない領域におけるS/
N比を改善することができ、海面反射妨害を受けても物
標の検出が何ら影響を受けることのない受信信号出力を
与えるレーダ受信装置を実現し得たものである。
Furthermore, in radar receivers for applications where the sea surface reflected interference reception area (time) is determined individually in advance, for example, the fourth
Since the control signal Ee in Figure e is a constant waveform signal, in such a case, the controller should synthesize a constant waveform cut-off frequency control signal synchronized with the transmitted pulse and apply it to the high-frequency reactor. It is also possible to simplify the cut-off frequency of the Takagi wave generator by changing it at a constant waveform period. As explained above, the radar receiving device of the present invention determines the presence or absence of sea surface reflection interference and varies the cutoff frequency of the Takagi reactor, thereby making it possible to sufficiently detect the S/C ratio in the area where sea surface reflection exists, as well as detecting the presence of sea surface reflection interference. S/ in non-existent area
It has been possible to realize a radar receiving apparatus that can improve the N ratio and provides a received signal output in which detection of a target object is not affected in any way even by interference reflected from the sea surface.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のレーダ受信装置を有するレーダ装置の
回路構成を示すブロック図、第2図は本発明のレーダ受
信装置に於ける高城源波器の一実施例を示す回路図「第
3図は本発明のレーダ受信装置における制御器の実施例
を示す回路ブロック図、第4図は第3図に示す制御器6
の各部の信号波形およびレーダ受信装置の出力信号の波
形図「第5図は本発明に係るレーダ受信装置の他の実施
例を示すブロック図、第6図は第5図に示す制御器のブ
ロック図、第7図は第6図に示す制御器の各部の信号波
形およびレーダ受信装置の信号出力の一例を示す波形説
明、第8図は本発明のレーダ受信装置に於ける高城炉波
器の他の実施例を示す回路図である。 1…・・・送信器、2・・・・・・空中線、3・・・・
・・レーダ受信装置、4…・・・対数増中器、5・・・
・・・高城炉波器、6……制御器、7,7′,10,1
1・・・・・・入力端、8,8′,16…・・・出力端
、9・・・・・係U御信号端、12・・・・・・低域炉
波器、13・・・・・・ゲート回路、14…・・・判別
器、15・・・・・・波形整形回路、Co・・・…コン
デンサ、Tr……電界効果トランジスタ、R,〜Rn・
・・・・・抵抗。 第ー図 第2図 第3図 第5図 第6図 第8図 第4図 第7図
FIG. 1 is a block diagram showing the circuit configuration of a radar device having a radar receiving device of the present invention, and FIG. The figure is a circuit block diagram showing an embodiment of the controller in the radar receiving device of the present invention, and FIG. 4 is the controller 6 shown in FIG.
5 is a block diagram showing another embodiment of the radar receiving device according to the present invention, and FIG. 6 is a block diagram of the controller shown in FIG. 5. 7 is a waveform explanation showing an example of the signal waveform of each part of the controller shown in FIG. 6 and the signal output of the radar receiving device, and FIG. 8 is a waveform explanation of the signal waveform of each part of the controller shown in FIG. 6, and FIG. It is a circuit diagram showing another embodiment. 1... Transmitter, 2... Antenna, 3...
...Radar receiving device, 4... Logarithmic intensifier, 5...
・・・Takagi wave generator, 6... Controller, 7, 7', 10, 1
1... Input end, 8, 8', 16... Output end, 9... Related U control signal end, 12... Low range wave generator, 13... ...Gate circuit, 14 ... Discriminator, 15 ... Waveform shaping circuit, Co ... Capacitor, Tr ... Field effect transistor, R, ~Rn.
·····resistance. Figure - Figure 2 Figure 3 Figure 5 Figure 6 Figure 8 Figure 4 Figure 7

Claims (1)

【特許請求の範囲】 1 レーダ受信装置において、対数増巾器と遮断周波数
を可変できる高域濾波器を縦接続してなる受信増巾回路
と、前記高域濾波器への入力信号のうち海面反射妨害波
に対応する低周波成分のレベルが予じめ定められた閾値
以下のときは前記高域濾波器の遮断周波数f_0をf_
0≒(1〜1.5)/γ(但しγは送信パルスのパルス
巾)となるように制御し、前記低周波成分のレベルが前
記閾値を超えたときは前記高域濾波器の遮断周波数f_
0をf_0≪1/γに変える制御器と、を有することを
特徴とするレーダ受信装置。 2 前記制御器は、受信信号から海面反射妨害波に対応
する低周波成分を抽出する低域濾波器、該低域濾波器か
ら与えられる妨害信号成分に対する閾値出力を与える判
定器、該判定器の閾値出力を前記高域濾波器に遮断周波
数制御信号として印加する波形整形回路とからなること
を特徴とする特許請求の範囲第1項記載のレーダ受信装
置。 3 高域濾波器は、制御器から印加される制御信号によ
りバイアス制御される能動素子の導通抵抗の変化により
遮断周波数を変化せしめることを特徴とする特許請求の
範囲第1項記載のレーダ受信装置。 4 高域濾波器は、制御器から印加される制御信号によ
り選択切替されるスイツチにより複数の相異なる遮断周
波数を可変せしめることを特徴とする特許請求の範囲第
1項記載のレーダ受信装置。 5 レーダ受信装置において、対数増巾器と遮断周波数
を可変できる高域濾波器を縦接続してなる受信増巾回路
と、前記高域濾波器への入力信号のうち海面反射妨害波
に対応する低周波成分のレベルが予じめ定められた閾値
以下のときは前記高域濾波器の遮断周波数f_0をf_
0≒(1〜1.5)/γ(但しγは送信パルスのパルス
巾)となるように制御し、前記低周波成分のレベルが前
記閾値を超えたときは前記高域濾波器の遮断周波数f_
0をf_0≪1/γに変える制御器と、該制御器の前記
高域濾波器の遮断周波数f_0を変える信号を、所定の
期間のみ該高域濾波器に与えるゲート回路とを有するこ
とを特徴とするレーダ受信装置。 6 前記所定の期間は、前記送信パルスの立上りから海
面反射妨害波が存在する時間以上の間である特許請求の
範囲第5項記載のレーダ受信装置。 7 前記制御器は、受信信号から海面反射妨害波に対応
する低周波成分を抽出する低域濾波器、該低域濾波器か
ら与えられる妨害信号成分に対する閾値を前記所定の期
間中に前記高域濾波器に遮断周波数制御信号として印加
する波形整形回路とからなることを特徴とする特許請求
の範囲第5項記載のレーダ受信装置。 8 高域濾波器は、制御器から印加される制御信号によ
りバイアス制御される能動素子の導通抵抗の変化により
遮断周波数を変化せしめることを特徴とする特許請求の
範囲第5項記載のレーダ受信装置。 9 高域濾波器は、制御器から印加される制御信号によ
り選択切替されるスイツチにより複数の相異なる遮断周
波数を可変せしめることを特徴とする特許請求の範囲第
5項記載のレーダ受信装置。
[Scope of Claims] 1. A radar receiving device including a reception amplification circuit formed by vertically connecting a logarithmic amplifier and a high-pass filter whose cut-off frequency can be varied; When the level of the low frequency component corresponding to the reflected disturbance wave is below a predetermined threshold, the cutoff frequency f_0 of the high-pass filter is changed to f_
0≒(1-1.5)/γ (where γ is the pulse width of the transmission pulse), and when the level of the low frequency component exceeds the threshold, the cutoff frequency of the high-pass filter is f_
A radar receiving device comprising: a controller that changes 0 to f_0≪1/γ. 2. The controller includes a low-pass filter that extracts a low-frequency component corresponding to a sea surface reflected interference wave from a received signal, a determiner that provides a threshold output for the interference signal component given from the low-pass filter, and a determiner that provides a threshold output for the interference signal component provided from the low-pass filter. 2. The radar receiving device according to claim 1, further comprising a waveform shaping circuit that applies a threshold output to said high-pass filter as a cut-off frequency control signal. 3. The radar receiving device according to claim 1, wherein the high-pass filter changes the cutoff frequency by changing the conduction resistance of an active element that is bias-controlled by a control signal applied from a controller. . 4. The radar receiving device according to claim 1, wherein the high-pass filter has a plurality of different cut-off frequencies varied by a switch that is selectively switched by a control signal applied from a controller. 5. In a radar receiving device, a reception amplification circuit consisting of a logarithmic amplifier and a high-pass filter whose cut-off frequency can be varied are connected in series, and a reception amplifier circuit that corresponds to sea surface reflected disturbance waves among the input signals to the high-pass filter. When the level of the low frequency component is below a predetermined threshold, the cutoff frequency f_0 of the high-pass filter is changed to f_
0≒(1-1.5)/γ (where γ is the pulse width of the transmission pulse), and when the level of the low frequency component exceeds the threshold, the cutoff frequency of the high-pass filter is f_
0 to f_0≪1/γ, and a gate circuit that applies a signal that changes the cutoff frequency f_0 of the high-pass filter of the controller to the high-pass filter only for a predetermined period. radar receiving device. 6. The radar receiving device according to claim 5, wherein the predetermined period is a time period from the rise of the transmission pulse to a time period during which sea surface reflected interference waves are present. 7. The controller includes a low-pass filter for extracting a low-frequency component corresponding to a sea surface reflected disturbance wave from the received signal, and a threshold value for a disturbance signal component given from the low-pass filter to 6. The radar receiving device according to claim 5, further comprising a waveform shaping circuit that applies a cutoff frequency control signal to the filter. 8. The radar receiving device according to claim 5, wherein the high-pass filter changes the cutoff frequency by changing the conduction resistance of an active element that is bias-controlled by a control signal applied from a controller. . 9. The radar receiving device according to claim 5, wherein the high-pass filter has a plurality of different cut-off frequencies varied by a switch that is selectively switched by a control signal applied from a controller.
JP51077729A 1976-07-02 1976-07-02 radar receiving device Expired JPS6013147B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51077729A JPS6013147B2 (en) 1976-07-02 1976-07-02 radar receiving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51077729A JPS6013147B2 (en) 1976-07-02 1976-07-02 radar receiving device

Publications (2)

Publication Number Publication Date
JPS534492A JPS534492A (en) 1978-01-17
JPS6013147B2 true JPS6013147B2 (en) 1985-04-05

Family

ID=13641978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51077729A Expired JPS6013147B2 (en) 1976-07-02 1976-07-02 radar receiving device

Country Status (1)

Country Link
JP (1) JPS6013147B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4242640A (en) * 1978-01-03 1980-12-30 Sperry Corporation Current discharge fast time constant amplifier
JPS5877675A (en) * 1981-11-04 1983-05-11 Furuno Electric Co Ltd Processing circuit for received signal in radar and resembling device
US5020770A (en) * 1988-05-12 1991-06-04 Moberg Clifford A Combination of mold and alloy core pin
DE102016204005A1 (en) * 2016-03-11 2017-09-14 Robert Bosch Gmbh Device for operating a radar sensor

Also Published As

Publication number Publication date
JPS534492A (en) 1978-01-17

Similar Documents

Publication Publication Date Title
US10955527B2 (en) Radar signal processor and radar system
WO2007043475A1 (en) Radar device and inter-rader site adjustment method
US4965581A (en) Real-time rejection circuit to automatically reject multiple interfering hopping signals while passing a lower level desired signal
Gillette et al. Ferrite-based reflective-type frequency selective limiters
JPS6013147B2 (en) radar receiving device
US3995220A (en) Interference pulse suppression circuit for radio receivers
EP1555750A2 (en) Noise eliminator
US4000414A (en) Interference pulse detector circuit
US6975264B2 (en) Signal separating system
US4484182A (en) Intruder detection apparatus for functioning free of disturbance while in close proximity to high-power pulse-moldulated radars
JPH05223918A (en) Signal processor
US5081461A (en) Correlation detector for FM signals
US4535460A (en) Method and apparatus to filter pulsed RF signals
JPS6038669B2 (en) Interference avoidance radar device
JPS60160731A (en) Device for decreasing disturbance of intermodulation of receiver
KR20100135594A (en) Gain and bandwidth control apparatus and method on array antenna for anti-jamming in gps system
JPS6238896B2 (en)
JPH05203721A (en) Radar receiver
JPH01102382A (en) Pulse radar
EP0455411B1 (en) Correlation detector for FM signals
JPS60235076A (en) Radar apparatus
GB2324005A (en) Receiver circuit for a TDMA radio apparatus
RU1841005C (en) Multichannel receiver of monopulse radar station
JPH03115882A (en) Active sonar apparatus
EP0068050A1 (en) Intruder detection apparatus