JPS60130981A - Beam current detecting circuit - Google Patents

Beam current detecting circuit

Info

Publication number
JPS60130981A
JPS60130981A JP58240076A JP24007683A JPS60130981A JP S60130981 A JPS60130981 A JP S60130981A JP 58240076 A JP58240076 A JP 58240076A JP 24007683 A JP24007683 A JP 24007683A JP S60130981 A JPS60130981 A JP S60130981A
Authority
JP
Japan
Prior art keywords
current
circuit
cathode
beam current
parasitic capacitance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58240076A
Other languages
Japanese (ja)
Other versions
JPH0582788B2 (en
Inventor
Atsushi Matsuzaki
敦志 松崎
Mitsumasa Saito
光正 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP58240076A priority Critical patent/JPS60130981A/en
Priority to US06/683,802 priority patent/US4703345A/en
Priority to CA000470505A priority patent/CA1250364A/en
Priority to GB08432204A priority patent/GB2151889B/en
Publication of JPS60130981A publication Critical patent/JPS60130981A/en
Priority to GB08710108A priority patent/GB2192117B/en
Publication of JPH0582788B2 publication Critical patent/JPH0582788B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To detect accurately a beam current by providing a current supply circuit to the current side of a cathode of a cathode-ray tube and a current lead-in circuit to the ground side so as to subtracts a current applied from the current supply circuit from the current of the current lead-in circuit. CONSTITUTION:A drive circuit of the cathode of the cathode-ray tube 1 is divided into two systems; one is the current supply circuit 3a supplying current only and the current lead-in circuit 3b leading in the current only. When a high frequency signal is inputted as the signal, charge/discharge is applied to a parasitic capacitance 10. A charging current Ic to the parasitic capacitance 10 is supplied from the current supply circuit 3a. The addition of a current Ic from the parasitic capacitance 10 to a beam current Ib is led to the current lead-in circuit 3b. Thus, the beam current Ib is detected by subtracting the current Ic applied from the current supply circuit 3a from the current (Ib+Ic) lead-in to the current lead- in circuit 3b.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、陰極線管のカソード電流を検出することでビ
ーム電流を検出するビーム電流検出回路・に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a beam current detection circuit that detects a beam current by detecting a cathode current of a cathode ray tube.

背景技術とその問組点 従来、■発熱による陰極線管の促成、■過ビーム電流に
よるX線発射の防止、■高圧発生回路の過負荷防止のた
めに、APL回路(自1J)I輝度制限回路)が提案さ
れている。即ち、高圧電流を検出することでビーム電流
を検出し、この検出信号を輝度調節回路に負帰還するこ
とによって陰極細管のビーム電流を制限するものである
BACKGROUND TECHNOLOGY AND ITS QUESTIONS Conventionally, APL circuit (1J) I brightness limiting circuit was used to: ■ accelerate the cathode ray tube due to heat generation, ■ prevent X-ray emission due to excessive beam current, and ■ prevent overload of the high voltage generation circuit. ) has been proposed. That is, the beam current is detected by detecting a high voltage current, and the beam current of the cathode thin tube is limited by negatively feeding back this detection signal to the brightness adjustment circuit.

このようなABL回路は、例えば赤・緑及び青色用の陰
極線管を有してなる3管式プロジェクターにおいても同
様に設けられる。この場合従来においては、第1図に示
すように、検出回路(2)により、赤・緑及び青色用の
陰極線管(IR)、(IG)及び(1B)に流れる合計
高圧電流を検出し、これにより制御するものであった。
Such an ABL circuit is similarly provided, for example, in a three-tube projector having red, green, and blue cathode ray tubes. In this case, conventionally, as shown in FIG. 1, the detection circuit (2) detects the total high voltage current flowing through the red, green and blue cathode ray tubes (IR), (IG) and (1B), This was used for control.

第1図において、石は高圧電圧、(3R) 、 (3G
)及び(3B)は夫々ドライブ回路である。
In Figure 1, the stones are connected to high voltages, (3R), (3G
) and (3B) are drive circuits, respectively.

しかしこの場合には、陰極線管の発光能力を最大限に発
挿させることが難しい。例えば、各陰極線管(IR) 
、 (IG)及び(1B)に夫々1mALかビーム電流
を流せない場合を考えてみる。この場合、検出電流1m
Aで輝度レベル、即ちビーム電流を制限するようにすれ
ば、白・赤・緑及び青色画面のとき、夫々の陰極線管(
zR)、(IG)及び(1B)に流れるビーム電流は第
2図Aに示すレベルで制限されるので、陰極線管破壊等
の不都合は生じない。しかしながら、白画面の場合、夫
々の陰極線管(1R)(1G)及び(1B)に流れるビ
ーム電流は1畝より大幅に少なく、夫々の陰極線管(I
R) 、 (IG)及び(1B)の発光能力が充分に発
揮されない。これに対して、例えば検出電流2.21で
輝度レベル、即ちビーム電流を制限するようにすれば、
白・赤・緑及び青色画面のとき、夫々の陰極線管(1R
)、(IG)及び(1B)に流れるビーム電流は第2図
Bに示すレベルで制限されるので、白画面の場合の輝度
は2.2倍となり発光能力を充分に発揮させることがで
きるが、赤・緑及び青色画面において陰極線管(IR)
 、 (IG)及び(1B)には夫々ビーム電流が2.
2mAまで流れることとなり陰極線管破壊等の不都合を
生じる。
However, in this case, it is difficult to maximize the light emitting capability of the cathode ray tube. For example, each cathode ray tube (IR)
Let us consider the case where a beam current of 1 mAL cannot be passed through each of (IG) and (1B). In this case, the detection current is 1m
If A limits the brightness level, that is, the beam current, each cathode ray tube (
Since the beam currents flowing through (zR), (IG) and (1B) are limited to the level shown in FIG. 2A, problems such as damage to the cathode ray tube will not occur. However, in the case of a white screen, the beam current flowing through each cathode ray tube (1R), (1G), and (1B) is significantly less than one ridge, and the beam current flowing through each cathode ray tube (I
R), (IG) and (1B) are not fully exhibited. On the other hand, if the brightness level, that is, the beam current, is limited by the detection current of 2.21, for example,
For white, red, green and blue screens, each cathode ray tube (1R
), (IG), and (1B) are limited to the level shown in Figure 2B, so the brightness in the case of a white screen is 2.2 times, and the light emitting ability can be fully demonstrated. , cathode ray tube (IR) in red, green and blue screens
, (IG) and (1B) each have a beam current of 2.
The current flows up to 2 mA, causing problems such as destruction of the cathode ray tube.

そこで、陰極線管(IR) 、C,IG)及び(1B)
の安全性を確保しながら、その発光能力を最大限に発輝
させるために、夫々のカソード電流を検出することでビ
ーム電流を検出し、それら検出電流に基づいて輝度レベ
ルを制限することが考えられる。
Therefore, cathode ray tube (IR), C, IG) and (1B)
In order to maximize the light-emitting ability while ensuring the safety of the beam, it is possible to detect the beam current by detecting the respective cathode currents and limit the brightness level based on these detected currents. It will be done.

第3図はその原理図を示すものである。同図において、
(4jはカラー映像信号Svの供給される端子であり、
これからの映像信号Svは信号処理回路(5)K供給さ
れ、その出力側より赤・緑及び青原色信号R,G及びB
が得られる。そして、各色信号R%G及びBは夫々ドラ
イブ回路(3R)、(3G)及び(3B)を介して陰極
線管(IR)、(IG)及び(1B)のカソードに供給
される。夫々の陰極線管(1R)、(1G)及び(1B
)のアノードにはフライバックトランス(61より高圧
HVが供給される。また、陰極線管(1R)(1G)及
び(1B)のカソードには夫々電流検出回路(7R) 
、 (7G)及び(7B)が接続される。そして、これ
ら検出回路(7R) 、 (7G)及び(7B)より得
られる夫々のカソード電流の検出信号sH、SG及びS
Bは、夫々ダイオード(8R) 、 (8G)及び(8
B)を介して比較器(9)の一方の入力に供給される。
FIG. 3 shows the principle diagram. In the same figure,
(4j is a terminal to which the color video signal Sv is supplied,
The future video signal Sv is supplied to a signal processing circuit (5)K, and from its output side red, green, and blue primary color signals R, G, and B are supplied.
is obtained. The color signals R%G and B are supplied to the cathodes of cathode ray tubes (IR), (IG) and (1B) via drive circuits (3R), (3G) and (3B), respectively. Each cathode ray tube (1R), (1G) and (1B
High voltage HV is supplied from the flyback transformer (61) to the anode of the cathode ray tube (1R) (1G) and (1B).
, (7G) and (7B) are connected. The detection signals sH, SG and S of the cathode current obtained from these detection circuits (7R), (7G) and (7B) are
B are diodes (8R), (8G) and (8G), respectively.
B) to one input of the comparator (9).

即ち、検出信号SR、sG及びsBのうち最大のものが
供給される。
That is, the largest one of the detection signals SR, sG, and sB is supplied.

この比較器(9)の他方の入力には設定レベルVREF
が供給される。そして、その比較誤差信号Scが信号処
理回路(5)に供給され、この信号Scに基づいて輝度
レベル、即ち各色信号R,G及びBのレベルが制限され
、ビーム電流が制限される。この例において、上述した
と同様に各陰極線管(IR)、(IG)及び(1B)に
夫々1mALかビーム電流を流せない場合を考えてみる
。この場合、検出電流1mAで輝度レベル、即ちビーム
電流を制限するようにすれば、白・赤・緑及び青色画面
のとき、夫々の陰壊等を生じる不都合がな(、また例え
ば白色画面のとき、第1図例のものに比べ夫々陰極線管
(1R)(1G)及び(1B)の発光輝度は2.2倍と
なる。このように、第3図例のようにすることに′より
、陰極線管(IR)、(IG)及び(1B)の安全性を
確保しながら1.その発光能力を最大限に発揮させるこ
とができる。
The other input of this comparator (9) has a set level VREF.
is supplied. Then, the comparison error signal Sc is supplied to a signal processing circuit (5), and based on this signal Sc, the brightness level, that is, the level of each color signal R, G, and B, is limited, and the beam current is limited. In this example, consider a case where a beam current of 1 mAL cannot be passed through each of the cathode ray tubes (IR), (IG), and (1B), as described above. In this case, if the brightness level, that is, the beam current, is limited by a detection current of 1 mA, there will be no inconvenience such as shadow destruction for white, red, green, and blue screens (and, for example, for white screens). , the luminance of the cathode ray tubes (1R), (1G), and (1B) is 2.2 times higher than that of the example in Figure 1.In this way, by doing as in the example in Figure 3, While ensuring the safety of cathode ray tubes (IR), (IG), and (1B), 1. It is possible to maximize their light-emitting ability.

しかし、このようにカソード電流を検出することでビー
ム電流を検出するものにおいては、カソードまわりやリ
ードなどの寄生容量(例えば8pF〜15pF )によ
り、カソード電流にこの寄生容量を充電する充電電流が
含まれてしまい検出電流はビーム電流より多くなってし
まい、正しくビーム電流を検出できず、正しくABL動
作をさせることができない不都合がある。即ち、第5図
において、帥を寄生容量とするとき、この寄生容量QO
IがIcなる電流で充電され、カソード検出電流は、ビ
ーム電流Ibにこの電流Icが加算されたものとなる。
However, in systems that detect beam current by detecting cathode current, due to parasitic capacitance (e.g. 8pF to 15pF) around the cathode and leads, the cathode current includes a charging current that charges this parasitic capacitance. As a result, the detected current becomes larger than the beam current, which causes the inconvenience that the beam current cannot be detected correctly and the ABL operation cannot be performed correctly. That is, in FIG. 5, when the capacitor is a parasitic capacitance, this parasitic capacitance QO
I is charged with a current Ic, and the cathode detection current is the sum of the beam current Ib and this current Ic.

尚、この第5図において、(1)は−極線管、(3)は
ドライブ回路、(7]は電流検出回路である。
In FIG. 5, (1) is a negative pole ray tube, (3) is a drive circuit, and (7) is a current detection circuit.

発明の目的 本発明は斯る点に鑑み、寄生容量の影響なく、ビーム電
流を正確に検出できるようにしたものである。
OBJECTS OF THE INVENTION In view of the above, the present invention enables beam current to be accurately detected without being affected by parasitic capacitance.

発明の概要 本発明は上記目的を達成するため、陰極線管のカソード
の電流側に電流供給回路を設けると共に、その接地側に
電流引込回路を設け、電流引込回路に引込まれる電流よ
り上記電流供給回路から供給される電流を差引き、その
差電流をビーム電流とするものである。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides a current supply circuit on the current side of the cathode of a cathode ray tube, and also provides a current drawing circuit on the ground side thereof, so that the current is supplied from the current drawn into the current drawing circuit. The current supplied from the circuit is subtracted and the difference current is used as the beam current.

従って、電流引込回路に引込まれた電流はビーム電流と
寄生容量への充′f4Lt流であり、電流供給回路より
供給される電流は寄生容量への充電電流であり、その差
電流はビーム電流となるので、ビf −ム電流を正確に検出することができる。
Therefore, the current drawn into the current drawing circuit is the beam current and the charging current to the parasitic capacitance, and the current supplied from the current supply circuit is the charging current to the parasitic capacitance, and the difference current is the beam current and the charging current to the parasitic capacitance. Therefore, the beam current can be detected accurately.

実施例 以下、第6図以降を参照しながら本発明の一実施例につ
いて説明しよう。
Embodiment Hereinafter, an embodiment of the present invention will be described with reference to FIG. 6 and subsequent figures.

第6図Aは本発明の原理を示すものである。即ち、陰極
線管(1)のカソードのドライブ回路を2系統に分け、
一方は電流の供給のみを行なう電流供給回路(3a)と
し、他方は電流の引込みあみを行なう電流引込回路(3
b)とする。信号として高周波信号が入力すると、寄生
容量00)に充放電がおこる。このような構成において
、寄生容量、001への充電電流Icは、第6図Bに示
すように電流供給回路(3a)より供給される。また、
電流引込回路(3b)には、第6図Cに示すようにビー
ム電流Ibに寄生容量ellからの電流(充電電流と同
じ) Icの加算されたものが引き込まれる。従って、
本発明においては、電流引込回路(3b)に引込まれる
電流(Ib + Ic)より電流供給回路(3a)より
供給される電流Icを差引き、ビーム電流Ibを検出す
る。
FIG. 6A illustrates the principle of the invention. That is, the cathode drive circuit of the cathode ray tube (1) is divided into two systems,
One is a current supply circuit (3a) that only supplies current, and the other is a current draw circuit (3a) that draws current.
b). When a high frequency signal is input as a signal, charging and discharging occur in the parasitic capacitance 00). In such a configuration, the charging current Ic to the parasitic capacitance 001 is supplied from a current supply circuit (3a) as shown in FIG. 6B. Also,
The current drawing circuit (3b) draws the sum of the beam current Ib and the current Ic (same as the charging current) from the parasitic capacitance ell, as shown in FIG. 6C. Therefore,
In the present invention, the beam current Ib is detected by subtracting the current Ic supplied from the current supply circuit (3a) from the current (Ib + Ic) drawn into the current drawing circuit (3b).

第7図は本発明の一実施例を示すものであり、第6図A
と対応する部分には同一符号を付して示す。
FIG. 7 shows an embodiment of the present invention, and FIG.
Corresponding parts are indicated with the same reference numerals.

同図において、011は電流供給回路(3a)を構成す
るnpn形トランジスタであり、azは電流引込回路(
3b)を構成するpnp形トランジスタであり、トラン
ジスタ(111及びα2はコンプリメンタリ接続される
。このトランジスタ(111及びα2のベースには信号
が共通に供給され、互いのエミッタの接続点は陰極線管
(1)のカソードに接続される。
In the same figure, 011 is an npn type transistor constituting the current supply circuit (3a), and az is the current drawing circuit (3a).
3b), and transistors (111 and α2 are complementary connected. A signal is commonly supplied to the bases of this transistor (111 and α2), and the connection point of their emitters is connected to the cathode ray tube (1 ) is connected to the cathode of

また、l−ランジスタ01)のコレクタはpnp形トラ
ンジスタQ3のコレクタ・エミッタ、抵抗器α滲を介し
て正の直流電圧子Bが供給される電源端子α9に接続さ
れる。また、電源端子<151は抵抗器(161、pn
p形トランジスタ(171のエミッタ・コレクタ、pn
p形トランジスタQ81のエミッタ・コレクタを介して
npn 形)ランジスタ(19のコレクタに接続される
Further, the collector of the L-transistor 01) is connected to a power supply terminal α9 to which a positive DC voltage element B is supplied via the collector-emitter of a pnp transistor Q3 and a resistor α. In addition, the power terminal <151 is connected to a resistor (161, pn
p-type transistor (emitter-collector of 171, pn
The emitter and collector of the p-type transistor Q81 are connected to the collector of the npn type transistor (19).

また、トランジスタ時及びanのベースは互に接続され
、トランジスタ(181のベースはトランジスタa3の
コレクタに接続される。この場合、トランジスタ0′5
、an及びa&でカレントミラー回路が構成され、トラ
ンジスタα3とトランジスタaη、 tt81には等し
い電流が流れる。
In addition, the bases of transistors 181 and 181 are connected to each other, and the base of transistor 181 is connected to the collector of transistor a3. In this case, transistor 0'5
, an, and a& constitute a current mirror circuit, and equal currents flow through the transistors α3, aη, and tt81.

また、トランジスタ(12+のコレクタはnpn形トラ
ンジスタ■のコレクタ・エミッタ、抵抗器C11lを介
して接地される。また、トランジスタ(1!Jのエミッ
タは抵抗器@を介して接地される。また、トランジスタ
a!Jのベースはそのコレクタに接続されてダイオード
接続とされる。また、トランジスタa!l及び翰のベー
スは互に接続される。この場合、トランジスタa9及び
(2αでカレントミラー回路が構成され、トランジスタ
Uとトランジスタ翰には等しい電流が流れる。
In addition, the collector of the transistor (12+ is grounded via the collector/emitter of the npn transistor ■ and the resistor C11l. Also, the emitter of the transistor (1!J is grounded via the resistor @). The base of a!J is connected to its collector to form a diode connection. Also, the bases of transistors a!l and Kan are connected to each other. In this case, a current mirror circuit is formed by transistors a9 and (2α). , the same current flows through the transistor U and the transistor wire.

また、トランジスタQ21のコレクタはビーム電流検出
用の抵抗器(2,1を介して接地される。
Further, the collector of the transistor Q21 is grounded via a beam current detection resistor (2, 1).

本例はこのように構成され、以下のように動作する。This example is configured as described above and operates as follows.

即ち、寄生容量0())を充電する電流Icはトランジ
スタ旧1から流れ、その電流Icはトランジスタ(13
1から流される。ここで、トランジスタ(131,tl
η及び0にでカレントミラー回路が構成されているので
、トランジスタQ31及びan、1181には電流Ic
が流れ、この電流Icはトランジスタa9に流れ込む。
That is, the current Ic that charges the parasitic capacitance 0()) flows from the transistor old 1, and the current Ic charges the transistor (13
It is washed away from 1. Here, the transistor (131, tl
Since a current mirror circuit is formed by η and 0, current Ic flows through transistors Q31, an, and 1181.
flows, and this current Ic flows into transistor a9.

またここで、トランジスタa9及び翰でカレントミラー
回路が構成されているので、トランジスタ(イ)には電
流Icが流れるようにされる。一方、トランジスタα力
には、ビーム1:流Ibに寄生容量aαからの電流Ic
が加算された電流(Ib + Ic)が流れ込む。そし
て、この電流(Ib +Ic)のうち、トランジスタ噛
を介して電流Icが流れる。そのため、抵抗器イ勺を介
してビーム電流Ibのみが流れる。従って、抵抗器(ハ
)の両端電圧を検出することによりビーム電流Ibのみ
が検出される。
Further, here, since the transistor a9 and the wire constitute a current mirror circuit, a current Ic is caused to flow through the transistor (a). On the other hand, the current Ic from the parasitic capacitance aα in the beam 1: current Ib is applied to the transistor α.
A current (Ib + Ic) that is the sum of these flows. Of this current (Ib + Ic), current Ic flows through the transistor. Therefore, only the beam current Ib flows through the resistor Ib. Therefore, only the beam current Ib is detected by detecting the voltage across the resistor (c).

本例はこのように寄生容量00!の影響な(、ビーム電
流Ibを正確に検出することができる。
In this example, the parasitic capacitance is 0! Due to the influence of (), the beam current Ib can be detected accurately.

発明の効果 以上述べた実施例からも明らかなように、本発明によれ
ば、電流引込回路に引き込まれる電流(ビーム電流と寄
生容量への充電電流)より電流供給回路から供給される
電流(寄生容量への充電電′流)を差引き、その差電流
(ビーム電流)をビーム電流として検出するものである
から、寄生容量の影響なくビーム電流を正確に検出する
ことができる。従って、本発明によるビーム電流検出回
路を用いれば、例えばABL回路を正しく働かせること
ができる。尚、寄生容量を固定値として考えていないの
で、線材や部品配置の相違による容量のバラツキに対し
ても問題なく対応できる。
Effects of the Invention As is clear from the embodiments described above, according to the present invention, the current supplied from the current supply circuit (parasitic Since this method subtracts the current (charging current to the capacitor) and detects the difference current (beam current) as the beam current, the beam current can be accurately detected without the influence of parasitic capacitance. Therefore, by using the beam current detection circuit according to the present invention, for example, an ABL circuit can be operated correctly. Incidentally, since the parasitic capacitance is not considered as a fixed value, it is possible to cope with variations in capacitance due to differences in wire materials and component placement without any problem.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第5図は夫々従来のビーム電流検出回路の説明
のための図、第6図は本発明の原理を示す構成図、第7
図は本発明の一実施例を示す構成図である。 (1)は陰極線管、(3a)は電流供給回路、(3b)
は電流引込回路、ααは奇生容量、(至)は検出用の抵
抗器である。 第1図 第2ra 5、r− 第fi [′/1
Figures 1 to 5 are diagrams for explaining conventional beam current detection circuits, Figure 6 is a configuration diagram showing the principle of the present invention, and Figure 7 is a diagram for explaining the conventional beam current detection circuit.
The figure is a configuration diagram showing an embodiment of the present invention. (1) is a cathode ray tube, (3a) is a current supply circuit, (3b)
is the current drawing circuit, αα is the parasitic capacitance, and (to) is the detection resistor. Fig. 1 2 ra 5, r-th fi ['/1

Claims (1)

【特許請求の範囲】[Claims] 陰極線管のカソードの電流側に電流供給回路を設けると
共に、その接地側に電流引込回路を設け、上記電流引込
回路に引込まれる電流より上記電流供給回路から供給さ
れる電流を差引き、その差電流をビーム電流とするビー
ム電流検出回路。
A current supply circuit is provided on the current side of the cathode of the cathode ray tube, and a current drawing circuit is provided on the ground side thereof, and the current supplied from the current supply circuit is subtracted from the current drawn into the current drawing circuit, and the difference is calculated. Beam current detection circuit that uses current as beam current.
JP58240076A 1983-12-20 1983-12-20 Beam current detecting circuit Granted JPS60130981A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP58240076A JPS60130981A (en) 1983-12-20 1983-12-20 Beam current detecting circuit
US06/683,802 US4703345A (en) 1983-12-20 1984-12-19 Current control apparatus in which the beam current for all three colors is controlled according to average and peak values
CA000470505A CA1250364A (en) 1983-12-20 1984-12-19 Television receiver
GB08432204A GB2151889B (en) 1983-12-20 1984-12-20 Automatic brightness limiting
GB08710108A GB2192117B (en) 1983-12-20 1987-04-29 Automatic brightness limiting for a c.r.t

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58240076A JPS60130981A (en) 1983-12-20 1983-12-20 Beam current detecting circuit

Publications (2)

Publication Number Publication Date
JPS60130981A true JPS60130981A (en) 1985-07-12
JPH0582788B2 JPH0582788B2 (en) 1993-11-22

Family

ID=17054130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58240076A Granted JPS60130981A (en) 1983-12-20 1983-12-20 Beam current detecting circuit

Country Status (1)

Country Link
JP (1) JPS60130981A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57142082A (en) * 1981-01-26 1982-09-02 Rca Corp Device for automatically controlling level of cathode blanking current flowing in image pickup tube

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57142082A (en) * 1981-01-26 1982-09-02 Rca Corp Device for automatically controlling level of cathode blanking current flowing in image pickup tube

Also Published As

Publication number Publication date
JPH0582788B2 (en) 1993-11-22

Similar Documents

Publication Publication Date Title
JP2001061166A (en) Detector of optical sensor signal
US5089754A (en) Protection circuit for a cathode ray tube
JP2001061168A (en) Video display having numerous photosensitive sensors
US5036260A (en) Self biasing protection arrangement for a cathode ray tube
US4703345A (en) Current control apparatus in which the beam current for all three colors is controlled according to average and peak values
US5036257A (en) Projection TV deflection loss protection circuit
JP2001057682A (en) Method for automatic calibration of projection display device
JPS60130981A (en) Beam current detecting circuit
US5111119A (en) Scan loss detector for cathode ray tube
JP2001061167A (en) Detector of optical sensor signal current
US4494145A (en) Temperature compensation circuit in a pickup tube device
US5034665A (en) Deflection loss protection arrangement for a CRT
EP1255402A1 (en) Power-supplying device for an electron gun
US4190865A (en) Video image tube highlight suppression circuit
US3767854A (en) Delay of video amplifier d.c. bias change to accomodate rise/fall of kinescope high voltage after turn on/off of receiver
US7372509B2 (en) Focus voltage amplifier
JPS5844697Y2 (en) Inkiyokusen Kannohogo Cairo
US3411031A (en) Transistor deflection circuit
JPS6244480B2 (en)
JP3536291B2 (en) Spot killer circuit
JP2587521Y2 (en) Display device
KR840000856B1 (en) White balance correction device in television projection
JPS60134570A (en) Multi-tube type television receiver
KR0141136B1 (en) The fluoresence film protection circuit of crt projector
US2763807A (en) Rapid switching of capacitance

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term