JPS60130715A - Color display device - Google Patents

Color display device

Info

Publication number
JPS60130715A
JPS60130715A JP58239351A JP23935183A JPS60130715A JP S60130715 A JPS60130715 A JP S60130715A JP 58239351 A JP58239351 A JP 58239351A JP 23935183 A JP23935183 A JP 23935183A JP S60130715 A JPS60130715 A JP S60130715A
Authority
JP
Japan
Prior art keywords
color
display device
color display
light source
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58239351A
Other languages
Japanese (ja)
Other versions
JPH0642029B2 (en
Inventor
Tomio Sonehara
富雄 曽根原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Suwa Seikosha KK
Original Assignee
Seiko Epson Corp
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Suwa Seikosha KK filed Critical Seiko Epson Corp
Priority to JP58239351A priority Critical patent/JPH0642029B2/en
Publication of JPS60130715A publication Critical patent/JPS60130715A/en
Priority to US07/036,204 priority patent/US4870484A/en
Publication of JPH0642029B2 publication Critical patent/JPH0642029B2/en
Priority to US08/717,472 priority patent/USRE36792E/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0038Linear indentations or grooves, e.g. arc-shaped grooves or meandering grooves, extending over the full length or width of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0045Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it by shaping at least a portion of the light guide
    • G02B6/0046Tapered light guide, e.g. wedge-shaped light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0066Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form characterised by the light source being coupled to the light guide
    • G02B6/007Incandescent lamp or gas discharge lamp
    • G02B6/0071Incandescent lamp or gas discharge lamp with elongated shape, e.g. tube
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133609Direct backlight including means for improving the color mixing, e.g. white
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2229/00Details of cathode ray tubes or electron beam tubes
    • H01J2229/89Optical components associated with the vessel
    • H01J2229/8926Active components, e.g. LCD's, indicators, illuminators and moving devices

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

PURPOSE:To obtain a color display device which has high color purity and superior color reproducibility by using a light source which has a light emission peak in the main wavelength region of transmission spectral characteristics of each color element of a color filter. CONSTITUTION:An R, a G, and a B color filters 1 are arranged corresponding to respective fine picture elements of a liquid-crystal optical shutter 6. Luminous flux from a three-wavelength light emitting fluorescent tube which has a light emission peak in the main wavelength region (R, G, B) of transmission spectral characteristics of the filters 1 is passed through a optical guide plate 8 made of transparent resin to obtain plane luminous flux, which is incident to the color filters 1 through a liquid-crystal shutter 6, obtaining a sharp image with high color purity.

Description

【発明の詳細な説明】 本発明は光シヤツターと、可視光波長域の波長選択透過
性を有するカラーフィルターと光源から成るカラー液晶
表示装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a color liquid crystal display device comprising a light shutter, a color filter having wavelength selective transmittance in the visible wavelength range, and a light source.

フルカラーを表示できるカラー表示装置は第1図に示す
ように、カラーフィルター1を設置された光シヤツター
2と光源3から構成され、表示情報によシ変調された光
4を視認する。5は反射板である。構成上、光源全光シ
ャッターの背面側に置く透過タイプが多いが、光源を元
シャッターの手前に置く反射タイプも可能である。カラ
ーフィルターと元シャッターは、第2図(a)、(b)
に示すように(a)加色混合の場合、B(赤)、G(緑
)、B(青)全平面内に分散し、(b)減色混合の場合
は、C(シアン)、Y(イエロー)、M(マゼンタ)を
、重ねて配置している。いずnの方法もカラーフィルタ
ーとその変調全行う光シヤツターによジ、光源光の不用
な波長領域を減衰させ、表示しようとする色、明るさに
対応したスペクトル全合成する手法である。
As shown in FIG. 1, a color display device capable of displaying full color is composed of a light shutter 2 equipped with a color filter 1 and a light source 3, and visually recognizes light 4 modulated by display information. 5 is a reflecting plate. Due to their construction, most transmission types place the light source behind the all-light shutter, but reflective types, in which the light source is placed in front of the original shutter, are also possible. The color filter and original shutter are shown in Figure 2 (a) and (b).
As shown in (a) in the case of additive color mixing, B (red), G (green), and B (blue) are dispersed in the entire plane, and (b) in the case of subtractive color mixing, C (cyan), Y ( yellow) and M (magenta) are arranged one on top of the other. The second method also uses a color filter and its modulated light shutter to attenuate unnecessary wavelength regions of the light source light, and performs total spectral synthesis corresponding to the color and brightness to be displayed.

通常、ここに用いるカラーフィルターは、染料や顔料の
波長選択透過性舎利用したものであるが、第3図に示す
ように透過特性がブロードなため、色純度の高い色再現
は難しい。カラーCRT(陰極線管)との表色範囲の比
較全第4図に示す。このx、1表色系では座標が馬蹄形
の外側にある程、単色光に近い、純度の高い色となる。
Usually, the color filter used here is one that utilizes the wavelength-selective transmittance of dyes or pigments, but as shown in FIG. 3, the transmittance characteristics are broad, making it difficult to reproduce colors with high color purity. A comparison of the color range with a color CRT (cathode ray tube) is shown in Figure 4. In this x, 1 color system, the farther the coordinates are outside the horseshoe shape, the more pure the color becomes, closer to monochromatic light.

また月、G、B三原色を結ぶ三角形で囲まわる範囲がこ
の三原色から理論上合成できる色範囲を表している。こ
の点から少しでも大きな三角形であることが色再現性を
向上させる。カラーCRTの場合(第4図破線)、螢光
体による鋭いスペクトル発光であるために良好な色再現
性を得ている。一方カラーフィルターは染料、顔料の光
吸収を用いているため、発光形の表示に比べ、透過スペ
クトルがブロードになり易く(第3図)、第4図−線の
ように表色範囲が限られてしまう。また耐熱性、耐光性
を満足する染料、顔料を選択すると、さらに色純度が低
下し、表色範囲も限定されるという問題があった。
Furthermore, the range surrounded by the triangle connecting the three primary colors of Moon, G, and B represents the color range that can be theoretically synthesized from these three primary colors. From this point of view, making the triangle as large as possible improves color reproducibility. In the case of a color CRT (broken line in FIG. 4), good color reproducibility is obtained because of the sharp spectrum of light emitted by the phosphor. On the other hand, since color filters use the light absorption of dyes and pigments, the transmission spectrum tends to be broader than that of luminescent displays (Figure 3), and the color range is limited as shown in the line in Figure 4. I end up. Furthermore, when dyes and pigments that satisfy heat resistance and light resistance are selected, color purity further decreases and the color range is also limited.

本発明はこのような欠点に鑑みて考案されたもので、染
料、顔料だけでは得ら九ない色純度の高い、色再現性に
優れたカラー表示装置を提供することを目的としている
The present invention was devised in view of these drawbacks, and an object of the present invention is to provide a color display device with high color purity and excellent color reproducibility that cannot be obtained using dyes and pigments alone.

本発明の基本的な概念は、カラーフィルターの透過特性
がブロードなままでも、光源光の発光スペクトルをカラ
ーフィルターの透過特性に対し補完するように与えるこ
とによって色純度の高い原色を得ることにある。
The basic concept of the present invention is to obtain primary colors with high color purity by providing the emission spectrum of the light source so as to complement the transmission characteristics of the color filter, even if the transmission characteristics of the color filter remain broad. .

この原理全もう少し詳しく説明する。This principle will be explained in more detail.

第5図は、本発明に用いる光源の分光特性の一例である
。R,G、Bよジなるフィルタに対して、よりシャープ
なRp、Gp、Bp のピークを有する光源を用いる。
FIG. 5 shows an example of the spectral characteristics of the light source used in the present invention. For R, G, and B filters, a light source with sharper Rp, Gp, and Bp peaks is used.

この光源は見かけ上は白色になるようにRPとGPとB
pi調整しである。例えばGで言うと、フィルタ透過後
のスペクトルは光源のスペクトルよりもさらに狭帯域化
している。第5図の破線はフィルタ透過後のR,G、B
E原色を示している。これによりカラーフィルターの各
色要素の色純度は高くなくとも、光源の特性が反映され
て透過光の色純度は向上することになる。
This light source is RP, GP and B so that it appears white.
The pi is adjusted. For example, in the case of G, the spectrum after passing through the filter has a narrower band than the spectrum of the light source. The broken lines in Figure 5 are R, G, and B after passing through the filter.
E indicates primary colors. As a result, even if the color purity of each color element of the color filter is not high, the characteristics of the light source are reflected and the color purity of transmitted light is improved.

従って白色光源を三原色のピーク発光から合成し、さら
にその三原色のピーク発光特性全カラーフィルターの透
過特性と合わせるという本発明の新しい設計理念により
、飛躍的に鮮かな色再現が可能となるのである。
Therefore, the new design concept of the present invention, in which a white light source is synthesized from the peak emission of three primary colors, and the peak emission characteristics of the three primary colors are combined with the transmission characteristics of all color filters, makes it possible to reproduce dramatically brighter colors.

減色混合系についても同様な理論は成立する。A similar theory holds true for subtractive color mixing systems.

これは、加法混色系が丘波長域、G波長域、B波長域に
限定さ牡た波長の元’r71[1算するのに対し、白色
系からR波長域、G波長域、B波長域の成分t−順次減
算する違いであり、元となる光源の発光スペクトルがR
波長域、G波長域、゛B波長域で狭帯域のピーク発光を
していれば、透過する光はY・O−Mの減法混合系であ
っても、狭帯域の単色光に近い光となるからである。
This is because the additive color system is limited to the Oka wavelength range, G wavelength range, and B wavelength range. The component t- is the difference that is sequentially subtracted, and the emission spectrum of the original light source is R
If the peak emission occurs in a narrow band in the wavelength range, G wavelength range, and B wavelength range, the transmitted light will be close to narrow band monochromatic light even if it is a subtractive mixture of Y/O-M. Because it will be.

以下、芙施例をあけ本発明を詳説する。The present invention will be explained in detail below with reference to Examples.

第6図は三波長域発元型螢光管の発光スペクトル全示し
たものである。R,G−B・波長領域に鋭いピーク発光
をしていることがわかる。第7図は第6図の光源系が第
6図のカラーフィルター全透過した後のスペクトル全表
している。一点鎖線はR,実線はG、破線はBを各々示
すものである。
FIG. 6 shows the entire emission spectrum of a three-wavelength band type fluorescent tube. It can be seen that sharp peak light emission occurs in the R, G-B wavelength region. FIG. 7 shows the entire spectrum after the light source system shown in FIG. 6 has completely passed through the color filter shown in FIG. The dashed-dot line represents R, the solid line represents G, and the broken line represents B.

三波長域発元型螢光・U音用いると第7図に示すように
、カラーフィルター透過後も鋭いピーク発光であり、色
純度の高い三原色に視覚される。
When three-wavelength band type fluorescence/U-sound is used, as shown in FIG. 7, sharp peak light is emitted even after passing through a color filter, and it is perceived as three primary colors with high color purity.

三波長域発元型螢光管のピーク発光波長は使用する螢光
体によって変化させることができるが、白色を得るため
にFT、、G、B波長域に対応した610.540,4
50nm付近に発光ピークを有している。
The peak emission wavelength of a three-wavelength emission type fluorescent tube can be changed depending on the phosphor used, but in order to obtain white color, it is necessary to use 610.540.4 that corresponds to the FT, G, and B wavelength ranges.
It has an emission peak around 50 nm.

第8図は第3図のカラーフィルターを用いた系において
、各種光源による表色範囲を示すものである。実線は三
波長域発元型螢光管、破線に7・ロリン酸カルシウム系
の白色螢光管、一点鎖H*c。
FIG. 8 shows the color ranges of various light sources in a system using the color filter of FIG. 3. The solid line is a three-wavelength band type fluorescent tube, and the broken line is a 7-calcium phosphate white fluorescent tube, and a single-dot chain H*c.

工、 Jf、C光源を用いた場合を示している。これか
らも明らかなように、単純な白色螢光管では表色範囲が
小さく色再現性に乏しい。また標準的なブロードなスペ
クトルを持つC光源に比較しても三波長域発元型螢光管
を光源とすることによって表色範囲が犬きく拡大されて
いる。
The figure shows the case where the Jf, Jf, and C light sources are used. As is clear from this, a simple white fluorescent tube has a small color range and poor color reproducibility. Furthermore, compared to a standard C light source with a broad spectrum, the color range is greatly expanded by using a three-wavelength fluorescent tube as the light source.

第9図はこの応用例として、液晶の電気光学効果を用い
た液晶光シャッター■と三波長域発元型螢光管の、透明
な樹脂からなる導光板0によるカラー表示装置を示す。
As an example of this application, FIG. 9 shows a color display device using a liquid crystal optical shutter (2) using the electro-optic effect of liquid crystal, a three-wavelength band type fluorescent tube, and a light guide plate 0 made of a transparent resin.

液晶光シャッターは微少な画素の配列をなし、その画素
に対応してR,G。
The liquid crystal optical shutter has an array of minute pixels, and the R and G colors correspond to each pixel.

Bカラーフィルター■が設置されている。三波長域発元
製螢光管の光束は、導光板を経由して面光源となシ、液
晶光シャッターとカラーフィルターに入射する。液晶光
シャッターは画像情報に応じ透過光量をコントロールす
るので、出射光■は着色し、フルカラー表示が実現され
る。この例では光源に三波長域発元型螢光管を用いてい
るため、第8図で説明したように、非常に鮮かなフルカ
ラー画像を再現することができる。
A B color filter ■ is installed. The light beam from the three-wavelength fluorescent tube passes through the light guide plate, becomes a surface light source, and enters the liquid crystal light shutter and color filter. Since the liquid crystal optical shutter controls the amount of transmitted light according to image information, the emitted light (2) is colored, achieving full-color display. In this example, since a three-wavelength band type fluorescent tube is used as the light source, an extremely vivid full-color image can be reproduced, as explained with reference to FIG.

第10図は光源に三波長域発元型CRTを用いた場合の
相対発光スペクトルを示している。R波長域、G波長域
、B波長域に対応したピーク発光をしていることがわか
る。これはカラーテレビジョン用螢光体、例えばP22
(JEDEC)を配合し塗付する方法、あるいは−画素
よりも等しいか小さな微少R,G、B点光源を配列形成
する方法で実現している。第10図破線はEl、 G、
 B三原色のカラーフィルター透過後のスペクトルを示
している。このようにR,G、B発光するCRTを光源
とした場合、透過光スペクトルを第3図のカラーフィル
ターの透過特性よりも狭帯域化することが可能となり、
色純度の高い三原色を得ることができる。またこのCR
Tは全面発光すればよいので、電子線扛走査されるだけ
で十分でfbD、精度の高いコンバーゼンス、フォーカ
スは不要である。第11図はR,G、B発光の偏平型C
RT■を光源とした、液晶カラー表示装置である。R9
G、BJiJ光体はフェースプレート■に配合塗付され
、白色面光源となっている。この光th5iは第10図
の発光スペクトルを有するため、前述したようにカラー
フィルターの波長選択性と相乗しで彩かな色を再現でき
る。
FIG. 10 shows the relative emission spectrum when a three-wavelength band type CRT is used as the light source. It can be seen that the peak light emission corresponds to the R wavelength range, G wavelength range, and B wavelength range. This is a phosphor for color television, such as P22.
This is achieved by mixing and applying (JEDEC) or by arranging minute R, G, and B point light sources that are equal to or smaller than a pixel. The broken lines in Figure 10 indicate El, G,
It shows the spectrum of the B primary color after passing through a color filter. In this way, when a CRT that emits R, G, and B light is used as a light source, it is possible to make the transmitted light spectrum narrower than the transmission characteristics of the color filter shown in Figure 3.
Three primary colors with high color purity can be obtained. Also this CR
Since T only needs to emit light from the entire surface, scanning with an electron beam is sufficient, and fbD, highly accurate convergence, and focus are not required. Figure 11 shows a flat type C that emits R, G, and B light.
This is a liquid crystal color display device that uses RT■ as a light source. R9
The G and BJiJ light bodies are mixed and coated on the face plate (■), making it a white surface light source. Since this light th5i has the emission spectrum shown in FIG. 10, it is possible to reproduce vivid colors by synergistically with the wavelength selectivity of the color filter as described above.

R,G、B発光デバイスとして内部発光[CLデバイス
も使用することができる。その−例として分散型交流K
Lデバイスの場合を説明する。第1表に示すようにZ 
n S 系の螢光体にドーパントを混合することによっ
て、R,G、Bの発光が可能である。
Internal light emitting [CL devices can also be used as R, G, B light emitting devices. As an example, distributed exchange K
The case of L device will be explained. As shown in Table 1, Z
By mixing a dopant with an n S -based phosphor, R, G, and B light emission is possible.

第 1 、 表 これらの螢光体+ドーパンIf高誘電率材料(例えばシ
アノ・エチル・セルロース等)に分散すせ、両側全゛電
極でaさんだ構造の分散WKLデバイスを使用した。螢
光体+ドーパントを第1表に示す中から、特定の配合比
で配合し、R,G、B波長域にピークを有する光源とす
ることができる。
First, a dispersion WKL device was used in which these phosphors and dopant were dispersed in a high dielectric constant material (for example, cyano, ethyl, cellulose, etc.), and the structure was sandwiched between electrodes on both sides. A light source having peaks in the R, G, and B wavelength regions can be obtained by blending the phosphor and the dopant in a specific blending ratio from those shown in Table 1.

このようにして得られたKL″jt源は、R,G。The KL″jt sources thus obtained are R,G.

B発光CRTの場合と同様、平担なスペクトルを有する
光源に比べ色再現性に優乳ている。
As with the case of B-emission CRT, color reproducibility is superior to that of a light source with a flat spectrum.

第12図は光源としてr、、go(発光ダイオード)を
用いた場合の切欠き見取図である。LEDは輝度を得る
ためと多くの配線を防ぐためにアレイ■t′構成してい
る。LJnDは第2表のR,G、B発光する5種類を用
いている。
FIG. 12 is a cutaway diagram when r, , go (light emitting diodes) are used as light sources. The LEDs are arranged in an array t' in order to obtain brightness and to avoid a large amount of wiring. LJnD uses the five types shown in Table 2 that emit R, G, and B light.

第 2 表 こnらは第12図に示すように光拡散板■によって混色
さ11、導光@、oで面光源化し、白色光として液晶光
シャッター■に入射する。液晶光シャッターには、R,
G、Bカラーフィルター■が各画素毎に設置され、フル
カラーの画像表示がされる。
As shown in FIG. 12, these light beams are converted into a surface light source by color mixing 11 and light guide @, o by the light diffusing plate (2), and enter the liquid crystal light shutter (2) as white light. The liquid crystal light shutter has R,
G and B color filters are installed for each pixel to display a full-color image.

LEDの発光は第15図に示す発光スペクトルを持って
いるので、第4図に示すカラーフィルターの透過特性と
合わせると実効的VC3C6位さらに狭帯域発光するこ
とになり、色純度、色再現範囲が拡大する。
The light emitted by the LED has the emission spectrum shown in Figure 15, so when combined with the transmission characteristics of the color filter shown in Figure 4, the effective VC3C6 will emit light in a narrower band, resulting in improved color purity and color reproduction range. Expanding.

第14図は光源に低速電子線励起の螢光管を用いた場合
の例を示す。画発元するフェースプレート■の内面に第
6表に示す螢光体を配合し、白色面光源を得ている。
FIG. 14 shows an example in which a low-speed electron beam excitation fluorescent tube is used as the light source. The phosphor shown in Table 6 is blended on the inner surface of the face plate (■) which is the source of the image, to obtain a white surface light source.

第14図に示すように低速電子線励起による螢光管はフ
ィラメント■からの熱電子全加速電極■で加速し、フェ
ースプレート内面の螢光体を励起する。基本的には螢光
表示管と同じ構造である。
As shown in FIG. 14, the fluorescent tube is excited by low-speed electron beams, and the thermionic electrons from the filament (2) are accelerated by the electrode (2), which excites the fluorescent substance on the inner surface of the face plate. Basically, it has the same structure as a fluorescent display tube.

この光源の発光スペクトル全第15図に示す。The entire emission spectrum of this light source is shown in FIG.

第3図に示すカラーフィルターの透過特性と組み合わせ
ることによって、R,G、B発光は、さらに狭帯域化し
、色純度、色再現性が拡大する。
By combining this with the transmission characteristics of the color filter shown in FIG. 3, the R, G, and B emission bands are further narrowed, and color purity and color reproducibility are expanded.

以上のように、本発明はカラーフィルターの透過スペク
トル全光源の発光スペクトルによってさらに狭帯域化し
、色純度、色再現性を向上させている。従ってR,G、
B発光する発光体を平面的に配置し、光拡散板等で混合
し白色化しても良いし、発光体を配合しR,G、’B混
合発光する方法をとっても良い。
As described above, in the present invention, the transmission spectrum of the color filter is further narrowed by the emission spectrum of the entire light source, thereby improving color purity and color reproducibility. Therefore, R,G,
B-light emitting bodies may be arranged in a plane and mixed with a light diffusing plate or the like to produce white light, or a method may be used in which light emitters are blended to emit R, G, and 'B mixed light.

また、R,G、Bに発光ピークを持つ光源全主体に説明
をしたが、単色もしくは、複数色のカラー表示装置にも
本発明は応用される。例えば、黄色と黒の間での表示切
換を行うとすれば、カラーツーイルターとしては第15
図破線に示す透過特性金持てばよい。更に光源としてピ
ーク発光波長が透過特性の主波長と一致するものを用い
nば(第15図破線)視認される光のスペクトルは、カ
ラーフィルター単独よりもさらに狭帯域化する。この結
果、色純度は上がジ、彩かな表示を得ることができる。
Furthermore, although the explanation has been made regarding all light sources having emission peaks in R, G, and B, the present invention can also be applied to monochromatic or multi-color color display devices. For example, if you want to switch the display between yellow and black, the 15th
It is sufficient to have the transmission characteristics shown by the broken line in the figure. Furthermore, if a light source whose peak emission wavelength matches the dominant wavelength of the transmission characteristic is used (as shown by the broken line in FIG. 15), the spectrum of the visible light becomes even narrower than when a color filter is used alone. As a result, the color purity is excellent and a colorful display can be obtained.

さらに、光シヤツターは主に液晶の電気光学デバイス(
例えばTNモード、ゲク、トーホストモード、動的散乱
モード等、駆動方法では、マルチブレクゾング法、能動
デバイスアレイ等がある)について説明したが、結晶の
電気光学効果(例えばチタン酸鉛、ジルコン酸ランタン
等)、強誘電セラタラ々の常傾臀受料阜 久飾〃ロタツ
〃勃早−さ°らには機械的な回転、移動による光シヤツ
ターであっても本発明は応用さnる。
Furthermore, optical shutters are mainly liquid crystal electro-optical devices (
For example, we have explained the electro-optic effect of crystals (for example, lead titanate, zircon The present invention is also applicable to optical shutters using mechanical rotation or movement.

また光源の種類もカラーフィルターの透過スペクトル全
補完するものであれば本発明は有効であり、上記実施例
以外の光源であっても良い。
Further, the present invention is effective as long as the type of light source complements the entire transmission spectrum of the color filter, and light sources other than those in the above embodiments may be used.

本発明は以上述べたように、カラーフィルターの透過ス
ペクトルと対応する主波長領域に、発光のピークが存在
する光源を用いることにより、カラーフィルターの狭帯
域還部特性を補なうものである。この結果、高い色純度
、優れた色再現性が得られるばかりか、カラーフィルタ
ーの染料、顔料の特性がブロードであっても許容される
ため、信頼性の艮いもの、低コストのものが使用でき、
カラー表示装置の信頼性全向上させ、コストを下げる効
果もある。本発明による新しいカラー表示装置の設計手
法は、優れた色再現性全要求されるフルカラー画像ディ
スプレイ分野に%に有効である。
As described above, the present invention compensates for the narrow band recirculation characteristic of the color filter by using a light source whose emission peak exists in the main wavelength region corresponding to the transmission spectrum of the color filter. As a result, not only high color purity and excellent color reproducibility are obtained, but also broad characteristics of color filter dyes and pigments are tolerated, so highly reliable and low-cost products are used. I can do it,
It also has the effect of completely improving the reliability of color display devices and reducing costs. The new color display device design method according to the present invention is highly effective in the field of full-color image displays that require excellent color reproducibility.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は一般的なカラー表示装置の構成図である。(a
)は透過型、(b)は反射型の場合である。 第2図は加色混合(a)、減色混合(b)の時のカラー
表示装置の構成図である。 第3図は典型的なF、G、Eカラーフィルターの透過特
性である。 第4図はOIB、xy色度図における表色範囲?表わし
ている。実線は典型的なカラーフィルターの表色範囲、
破線は典型的なカラーCRTの表色範囲である。 第5図は本発明に用いる光源の発光特性(実線)とカラ
ーフィルター透過後のE、C−、B三原色の発光特性(
破線)全示したものである。 第6図は三波長域発元型螢光省の発光スペクトルの一例
である。 第7図は第6図の三波長域発元型螢光管を光源にして、
第3図の透過特性を持つカラーフィルター4−透過した
後の分光特性を示している。 第8図は第3図のカラーフィルターと各種光源を組み合
わせた際の表色範囲ケ表わしている。実線が三波長域発
元型螢光管、破線は白色螢光管、一点鎖線はO工JO光
源奮用いた場合の表色範囲である。 第9図は三波長域発元型螢光管と液晶光シャッターを用
いたカラー表示装置の斜視図である。 第10図は三波長域発元型CRTの相対発光スベクトル
(実線)とカラーフィルター透過後のRlG、B三原色
の発光スペクトル(破線)を示【7ている。 第11図は三波長域発元型CRTf光源にし、だ液晶カ
ラー表示装置の斜視図である。 第12図はLEjD全光源とした場合の液晶カラー表示
装置tの切欠き見取図である。 第13図は使用しまたLEDの発光スペクトルを示すも
のである。 第14図は低速電子線励起による螢光管を光源とした液
晶カン−表示装置の切欠き見取図である。 第15図は低速電子線励起による螢光管の発光スペクト
ルである。 第16図は黄色のカラーフィルターの透過スペクトル(
実線)と黄色光源の発光スペクトル(破線)を示すもの
である。 以上 出願人 株式会社諏訪精工舎 代理人 弁理士 最 上 務 慣) (b) 第1日 (aJ)(b) 第2図 ト 第3図 第4図 第5図 第7図 第8図 第9図 (制用J 第10図 第11図 第1牛図 第15図 第16国
FIG. 1 is a block diagram of a general color display device. (a
) is a case of a transmission type, and (b) is a case of a reflection type. FIG. 2 is a configuration diagram of a color display device for additive color mixing (a) and subtractive color mixing (b). Figure 3 shows the transmission characteristics of typical F, G, and E color filters. Is Fig. 4 the color range in OIB, xy chromaticity diagram? It represents. The solid line is the color range of a typical color filter,
The dashed line is the color range of a typical color CRT. Figure 5 shows the emission characteristics of the light source used in the present invention (solid line) and the emission characteristics of the three primary colors E, C-, and B after passing through the color filter (
(dashed line) is fully shown. FIG. 6 is an example of the emission spectrum of a three-wavelength band type fluorescent light source. Figure 7 shows the light source using the three-wavelength region type fluorescent tube shown in Figure 6.
The spectral characteristics after passing through the color filter 4 having the transmission characteristics shown in FIG. 3 are shown. FIG. 8 shows the color range when the color filter shown in FIG. 3 and various light sources are combined. The solid line is a three-wavelength range emission type fluorescent tube, the broken line is a white fluorescent tube, and the one-dot chain line is the color range when an O/JO light source is used. FIG. 9 is a perspective view of a color display device using a three-wavelength band type fluorescent tube and a liquid crystal optical shutter. FIG. 10 shows the relative emission vector (solid line) of a three-wavelength band emission type CRT and the emission spectrum (broken line) of the three primary colors RlG and B after passing through a color filter. FIG. 11 is a perspective view of a liquid crystal color display device using a three-wavelength band type CRTf light source. FIG. 12 is a cutaway diagram of the liquid crystal color display device t in the case of using an all-LED light source. FIG. 13 shows the emission spectrum of the LED used. FIG. 14 is a cutaway diagram of a liquid crystal display device using a fluorescent tube excited by slow electron beam as a light source. FIG. 15 shows the emission spectrum of a fluorescent tube caused by low-speed electron beam excitation. Figure 16 shows the transmission spectrum of the yellow color filter (
(solid line) and the emission spectrum (dashed line) of a yellow light source. (b) Day 1 (aJ) (b) Figure 2 To Figure 3 Figure 4 Figure 5 Figure 7 Figure 8 Figure 9 Figure (Regulation J Figure 10 Figure 11 Figure 1 Cow Figure 15 Figure 16 Country

Claims (8)

【特許請求の範囲】[Claims] (1)透過光量を制御する光シヤツターと複数の色要素
からなるカラーフィルターと光源から成るカラー表示装
置において、カラーフィルターの各色要素の透過分光特
性の主波長領域に発光ピークを有する光源を用いたこと
を特徴とするカラー表示装置。
(1) In a color display device consisting of a light shutter that controls the amount of transmitted light, a color filter consisting of multiple color elements, and a light source, a light source having an emission peak in the dominant wavelength region of the transmission spectral characteristics of each color element of the color filter is used. A color display device characterized by:
(2)該カラー表示装置において、赤、青、緑の波長領
域に発光ピークを有する光源を用いたことを特徴とする
カラー表示装置。
(2) A color display device characterized in that the color display device uses a light source having emission peaks in red, blue, and green wavelength regions.
(3)該カラー表示装置において、光シヤツターは液晶
による電気光学デバイスであること全特徴とする特許請
求の範囲第1〜2項記載のカラー表示装置。
(3) The color display device according to any one of claims 1 to 2, wherein the optical shutter is an electro-optical device using liquid crystal.
(4)該カラー表示装置において、三波長域発元製の螢
光放電管を光源としたことを特徴とする特許請求の範囲
第1〜3項記載のカラー表示装置。
(4) The color display device according to any one of claims 1 to 3, characterized in that the color display device uses a fluorescent discharge tube manufactured by a three-wavelength generator as a light source.
(5)該カラー表示装置において、陰極線管を光源とし
たことを特徴とする特許請求の範囲第1〜5項記載のカ
ラー表示装置。
(5) The color display device according to any one of claims 1 to 5, characterized in that the color display device uses a cathode ray tube as a light source.
(6)該カラー表示装置において、電界発光素子を光源
としたことを特徴とする特許請求の範囲第1〜3項記載
のカラー表示装置。
(6) The color display device according to any one of claims 1 to 3, characterized in that the color display device uses an electroluminescent element as a light source.
(7)該カラー表示装置において、発光ダイオードを光
源としたことを特徴とする特許請求の範囲第1〜6項記
載のカラー表示装置。
(7) The color display device according to any one of claims 1 to 6, characterized in that the color display device uses a light emitting diode as a light source.
(8)該カラー表示装置において、低速電子線励起螢光
管を光源としたこと全特徴とする特許請求の範囲第1〜
3項記載のカラー表示装置。
(8) Claims 1 to 3 are characterized in that the color display device uses a slow electron beam excited fluorescent tube as a light source.
Color display device according to item 3.
JP58239351A 1983-05-13 1983-12-19 Color display Expired - Lifetime JPH0642029B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP58239351A JPH0642029B2 (en) 1983-12-19 1983-12-19 Color display
US07/036,204 US4870484A (en) 1983-05-13 1987-04-08 Color display device using light shutter and color filters
US08/717,472 USRE36792E (en) 1983-05-13 1996-09-20 Color display device using light shutter and color filters

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58239351A JPH0642029B2 (en) 1983-12-19 1983-12-19 Color display

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP7031028A Division JPH07253577A (en) 1995-02-20 1995-02-20 Color display device
JP7031032A Division JPH07261167A (en) 1995-02-20 1995-02-20 Color display device

Publications (2)

Publication Number Publication Date
JPS60130715A true JPS60130715A (en) 1985-07-12
JPH0642029B2 JPH0642029B2 (en) 1994-06-01

Family

ID=17043450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58239351A Expired - Lifetime JPH0642029B2 (en) 1983-05-13 1983-12-19 Color display

Country Status (1)

Country Link
JP (1) JPH0642029B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62200303A (en) * 1986-02-28 1987-09-04 Canon Inc Color filter
JPH0594831U (en) * 1991-12-11 1993-12-24 日本航空電子工業株式会社 Liquid crystal display device for night vision device
JPH09311331A (en) * 1996-10-28 1997-12-02 Hitachi Ltd Color liquid crystal display device
JP2003015118A (en) * 2001-07-05 2003-01-15 Dainippon Printing Co Ltd Color liquid crystal display
JP2007178683A (en) * 2005-12-27 2007-07-12 Toppan Printing Co Ltd Liquid crystal display and color filter
JP2011076109A (en) * 2004-09-27 2011-04-14 Qualcomm Mems Technologies Inc Color filter for manipulating color in display

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5876877A (en) * 1981-10-31 1983-05-10 株式会社東芝 Liquid crystal display

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5876877A (en) * 1981-10-31 1983-05-10 株式会社東芝 Liquid crystal display

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62200303A (en) * 1986-02-28 1987-09-04 Canon Inc Color filter
JPH0594831U (en) * 1991-12-11 1993-12-24 日本航空電子工業株式会社 Liquid crystal display device for night vision device
JPH09311331A (en) * 1996-10-28 1997-12-02 Hitachi Ltd Color liquid crystal display device
JP2003015118A (en) * 2001-07-05 2003-01-15 Dainippon Printing Co Ltd Color liquid crystal display
JP2011076109A (en) * 2004-09-27 2011-04-14 Qualcomm Mems Technologies Inc Color filter for manipulating color in display
JP2007178683A (en) * 2005-12-27 2007-07-12 Toppan Printing Co Ltd Liquid crystal display and color filter

Also Published As

Publication number Publication date
JPH0642029B2 (en) 1994-06-01

Similar Documents

Publication Publication Date Title
TWI305594B (en)
US4870484A (en) Color display device using light shutter and color filters
US4801844A (en) Full color hybrid TFEL display screen
US7417799B2 (en) Multi-primary color display
US8125152B2 (en) Light source apparatus and liquid crystal display
JP2003315529A (en) Color filter
CN103383506A (en) Photo-luminescence color liquid crystal display
JPH01114884A (en) Color liquid crystal display device
US6802612B2 (en) Configurations for color displays by the use of lenticular optics
JPH09189910A (en) Color display device
JPH0997017A (en) White light source and color display device formed by using the light source
JPS60130715A (en) Color display device
CN106292149A (en) Light source of projector and scialyscope
CN109154768A (en) Light source equipment and projection display apparatus
US20230224438A1 (en) Projection display system
WO2021249513A1 (en) Projection display system
JP4344526B2 (en) Liquid crystal display
JPS59210481A (en) Color liquid crystal display unit
JPH07253577A (en) Color display device
JP2914350B2 (en) Liquid crystal display
JPH09311641A (en) Color display device
JPH0452472B2 (en)
JPH07261167A (en) Color display device
JPS60107022A (en) Color liquid-crystal display device
JP2914349B2 (en) Liquid crystal display