JPS60130527A - Production of solid pharmaceutical - Google Patents

Production of solid pharmaceutical

Info

Publication number
JPS60130527A
JPS60130527A JP23767183A JP23767183A JPS60130527A JP S60130527 A JPS60130527 A JP S60130527A JP 23767183 A JP23767183 A JP 23767183A JP 23767183 A JP23767183 A JP 23767183A JP S60130527 A JPS60130527 A JP S60130527A
Authority
JP
Japan
Prior art keywords
cmc
powder
repose
bulk density
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23767183A
Other languages
Japanese (ja)
Inventor
Toshihiko Sugano
敏彦 菅野
Haruo Matsumura
松村 春雄
Tetsuo Morita
哲郎 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichirin Chemical Industries Ltd
Original Assignee
Nichirin Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichirin Chemical Industries Ltd filed Critical Nichirin Chemical Industries Ltd
Priority to JP23767183A priority Critical patent/JPS60130527A/en
Publication of JPS60130527A publication Critical patent/JPS60130527A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain industrially and advantageously a solid pharmaceutical, by treating sodium carboxymethyl cellulose (CMC-Na) with an alkali and then an acid, purifying the resultant CMC, drying the purified CMC, and pulverizing the dried CMC, and incorporating the resultant CMC powder having improved bulk density, angle of repose and powder fluidity as a disintegrating agent in a composition. CONSTITUTION:Sodium carboxymethyl cellulose (CMC-Na) having 0.2-1.2 substitution degree of carboxymethyl groups per flucose unit is treated with an alkali and then an acid, and the resultant converted CMC is purified, dried and pulverized to give CMC powder having 400-700g/l bulk density and 35-45 degrees angle of repose. The alkali agent in an amount of 10-120wt% based on the CMC-Na and in 15-60wt% concentration based on water must be used to treat the CMC-Na at 30-80 deg.C. Thus, the aimed CMC powder having a high bulk density, small angle of repose and improved powder fluidity is obtained with advantages of disintegration and compression moldability as they are. If the above-mentioned powder is incorporated as the disintegrating agent, a solid pharmaceutical having improved disintegration property and pressure moldability is obtained with improved operability.

Description

【発明の詳細な説明】 本発明は製剤時の作業性が良く、崩壊性、加圧成形性の
優れた固形薬剤に関するものであり、詳しくはグルコー
ス単位当りカルボキシメチル置換度が02〜12のカル
ボキシメチルセルロースナトリウム(以下Na−CMC
という)をアルカリ剤で処理した後、酸処理によりカル
ボキシメチルセルロース(以下H=CMCaいう)に変
換し、精製乾燥粉砕して得られるH −CM C粉末を
薬効成分を含む組成物に配合し成製することを特徴とす
る固形薬剤の製法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a solid drug that is easy to work with during preparation, has excellent disintegration properties, and is excellent in pressure moldability. Sodium methylcellulose (hereinafter referred to as Na-CMC)
After treating H-CMC with an alkaline agent, converting it to carboxymethylcellulose (hereinafter referred to as H=CMCa) with an acid treatment, purifying it, drying it, and pulverizing it, and blending the resulting H-CMC powder into a composition containing a medicinal ingredient. The present invention relates to a method for producing a solid drug characterized by:

従来、錠剤、丸剤、カプセル剤、顆粒剤、細粒剤等の医
療用固形糖剤には服用後、胃や腸の消化液中ですみやか
に崩壊し薬効成分の吸収を速めるために、崩壊剤の添加
が必要である。又農薬、殺菌消毒剤、漂白剤等の固形薬
剤に於いても速効を期するため崩壊剤が添加されている
Conventionally, solid sugar preparations for medical use such as tablets, pills, capsules, granules, and fine granules have disintegrated to quickly disintegrate in the digestive juices of the stomach and intestines after taking them, speeding up the absorption of medicinal ingredients. It is necessary to add an agent. Disintegrants are also added to solid drugs such as agricultural chemicals, disinfectants, and bleaching agents to ensure quick action.

崩壊剤として使用されるものには、未変性でんぷん、5
ta−Rx 1500 (物理的変性テンぷん)、EC
G505(カルボキシメチルセルロースカルシウム)、
NS−300(H−CMC)、L−I+pc(低ftt
換度ヒドロキシプロピルセルロース)、Po1ypla
sdon X L(クロスリンク−ポリビニルピロリド
ン)等がある。しかしこれらの崩壊剤は未だ充分に要求
を満足させるものではない。即ち未変性でんぷん、物理
加工でんぷんは充分な崩壊速度を固形薬剤に与えるため
には比較的冬瓜の添加を必要とするが、一方多量の添加
は錠剤硬度を著しく低下させ実用上の障害となる。L 
−1−11) Cは打錠成型性は比較的よいが、。
Those used as disintegrants include unmodified starch, 5
ta-Rx 1500 (physically modified starch), EC
G505 (carboxymethylcellulose calcium),
NS-300 (H-CMC), L-I+pc (low ftt
hydroxypropyl cellulose), Polypla
Examples include sdon XL (cross-linked polyvinylpyrrolidone). However, these disintegrants still do not fully satisfy the requirements. That is, unmodified starch and physically processed starch require the addition of relatively much winter melon in order to provide a solid drug with a sufficient disintegration rate, but on the other hand, addition of a large amount significantly reduces tablet hardness and becomes a practical obstacle. L
-1-11) C has relatively good tablet formability.

粉体流動性が悪く、崩壊促進効果も比較的弱く、あまり
使用されていない。クロスリンクポリビニルピロリドン
は多量添加は必要としないが高圧成型時にキャッピング
を起し易い。
It has poor powder fluidity and relatively weak disintegration promoting effect, so it is not used much. Although it is not necessary to add a large amount of cross-linked polyvinylpyrrolidone, it tends to cause capping during high-pressure molding.

カルボキシメチルセルロースカルシウムは無味無臭の白
色粉末で崩壊性、圧縮成型性も比較的良好で、崩壊剤と
しては現在量も多く使用されている。しかし薬効成分に
よっては含有するカルシウム塩との相互作用が懸念され
る場合がある。H−CMCは現在てはNS−300にチ
リン化学工業株式会社製)のみが市販されている力く崩
壊性、圧縮成型性が良好で、且つカルボキシメチルセル
ロースカルシウムと異り薬効成分との相互作用の懸念も
少ないが現在市場にて入手し得るNS−300は嵩密度
が小さく、安息角が大で粉体流動性に劣り、特に添加量
を増加した場合に薬剤混合組成物の流動性を阻害し、打
錠時にホッパーでの均一流出を悪くするなど作業性に問
題を生ずることがある。この事は近時極めて高速度で打
錠を行なう場合、特に重要である。又、嵩密度の小さい
事は近年製造量の増加してきた、細粒剤、顆粒剤、カプ
セル剤等に使用されたとき、粒度が大きくなり、又一定
容凰のカプセルへの児頭が困難になる事が多く、嵩密度
が大で且つ流動性に優れたH−CMCの開発がめられて
いたが、現在までこの要望に答えるものは発表されてい
ない。
Carboxymethyl cellulose calcium is a tasteless and odorless white powder that has relatively good disintegration and compression moldability, and is currently used in large amounts as a disintegrant. However, depending on the medicinal ingredients, there may be concerns about interactions with the calcium salts they contain. H-CMC is currently only commercially available as NS-300 (manufactured by Chirin Kagaku Kogyo Co., Ltd.). It has strong disintegration properties and good compression moldability, and unlike carboxymethyl cellulose calcium, it has no interaction with medicinal ingredients. Although there are few concerns, the NS-300 currently available on the market has a low bulk density and a large angle of repose, resulting in poor powder fluidity, and particularly when the amount added is increased, it may impede the fluidity of drug mixture compositions. However, this may cause problems in workability, such as impairing uniform flow in the hopper during tabletting. This is especially important when tabletting is performed at extremely high speeds these days. In addition, the low bulk density means that when used in fine granules, granules, capsules, etc., whose production volumes have increased in recent years, the particle size becomes large and it becomes difficult to form fetal heads into capsules of a certain volume. Therefore, there has been a desire to develop H-CMC that has a high bulk density and excellent fluidity, but to date no product has been published that meets this demand.

本発明者はH−CMCの崩壊性、圧縮成型性に侵れ薬効
成分の阻害をしないという卓越した性質に着目し、その
欠点である、嵩密度、安息角、粉体流動性の改良された
H−CMCを開発すへく研究を行った結果、Na−CM
Cをアルカリ剤で処理した後、酸処理によりH−CMC
に変換し、更に精製、−゛乾燥、粉砕して得られるH 
−CM Cはその特徴である崩壊性、圧縮成型性の長所
を保持しつつ、嵩密度が大で安息角が小さく粉体流動性
にも優れており、添加量を増加しても薬剤混合わ)体の
流動性を阻害しない事を発見した。
The present inventor focused on the outstanding properties of H-CMC in that it does not interfere with the disintegration and compression moldability and does not inhibit the medicinal ingredients. As a result of extensive research on developing H-CMC, Na-CM
After treating C with an alkali agent, H-CMC is formed by acid treatment.
H obtained by converting into H
-CMC retains its characteristic advantages of disintegration and compression moldability, while also having a large bulk density, a small angle of repose, and excellent powder fluidity, making it difficult to mix drugs even when the amount added is increased. ) It was discovered that it does not inhibit the fluidity of the body.

本発明で得られるH −CM Cは嵩密度400〜70
0 y/l 、安息角35〜45度であり従来市販のH
−CMC(NS−:300 )の嵩密度300〜4 (
10y/l 、安息角50度前後に比し、粉体流動性は
極めてすぐれている。従って本発明のH−CMCを崩壊
剤として使用し打錠した場合、添加■を増加しても薬剤
混合粉体の流動性は良好で打錠時にホンパーでのブリッ
ジ現象を起こさす打錠機への児頭が円滑に行われる事を
発見し本発明に到ったのである。
H-CMC obtained in the present invention has a bulk density of 400 to 70
0 y/l, the angle of repose is 35 to 45 degrees, and conventionally commercially available H
-CMC (NS-:300) bulk density 300~4 (
10 y/l and an angle of repose of around 50 degrees, the powder fluidity is extremely excellent. Therefore, when the H-CMC of the present invention is used as a disintegrant and tablets are compressed, the fluidity of the drug mixed powder is good even when the amount of addition (■) is increased. They discovered that the head of the fetus can be moved smoothly, leading to the present invention.

ここでいう嵩密度及び安息角は下記の方法で測定したも
のである。
The bulk density and angle of repose mentioned here are measured by the following method.

(嵩密度) zoomtメスシリンダーを用意し、粉体試料を2 g
 Q ml目盛まで徐々に投入し、層積する。メスンリ
ンダー底部と床面の距離が5cmになる様持ち上げて手
を離し、シリンダーを落下させる。この操作を10回繰
り返した後の容積(mt)を読み取った後、粉体試料の
重量を測る。
(Bulk density) Prepare a zoom graduated cylinder and add 2 g of powder sample.
Q Gradually add up to the ml mark and stack. Lift the cylinder so that the distance between the bottom of the cylinder and the floor is 5 cm, release your hand, and let the cylinder fall. After repeating this operation 10 times and reading the volume (mt), the weight of the powder sample is measured.

嵩密度(g/l)−[重1LCf)/容ji (ml 
)]、 X 1,000(安息角) 三輪式円筒回転法安息角測定器による。
Bulk density (g/l) - [weight 1LCf)/volume ji (ml
)], X 1,000 (angle of repose) Based on a three-wheeled cylindrical rotation method angle of repose measuring instrument.

以下本発明を具体的に説明する。The present invention will be specifically explained below.

原料のNa−CMCは粗製品、精製品1.%づれでも良
く、特に限定する必要はなlI)が精製Mを使用しても
再度精製する必要があり、粗製品を使用する方がコスト
面で有利である。Na−CMCの置換度は0.2〜1.
2が良く、0.2以下では親水性基が少なく膨潤倍率が
小さくなり崩壊性が不足する。逆に1.2以上にしても
本発明以上の改良がみられず経済的にも何らメリットを
有しない。使用するアルカリ剤は苛性ソーダ、苛性カリ
のような強アルカリ性のもので安価で大量に入手できる
ものが好ましい。処理系中のアルカリ剤の爪はNa−C
MCに対して10−120重型3%、水に対して15〜
60重量%の濃度で処理することが必要である。
Raw material Na-CMC is crude product, purified product 1. It is not necessary to specifically limit the amount by 1I).Even if purified M is used, it is necessary to purify it again, and it is more advantageous in terms of cost to use a crude product. The degree of substitution of Na-CMC is 0.2 to 1.
2 is good, and if it is less than 0.2, there are few hydrophilic groups, the swelling ratio becomes small, and the disintegrability is insufficient. On the other hand, even if it is set to 1.2 or more, no improvement over the present invention is seen and there is no economic advantage. The alkaline agent used is preferably a strongly alkaline agent such as caustic soda or caustic potash, which is inexpensive and available in large quantities. The alkaline agent in the treatment system is Na-C.
10-120 heavy type 3% for MC, 15~ for water
It is necessary to process at a concentration of 60% by weight.

Na−CMCに対して10重量%以下又は、水に対して
15重量%以下であれば本発明の高密度及び安息角を得
る事ができない。Na−CMCに対して120重量%以
上又は、水に対して60重量%以上ではアルカリ焼けの
ため着色し、白色度が失われ外観上好ましくない。
If the content is less than 10% by weight relative to Na-CMC or less than 15% by weight relative to water, the high density and angle of repose of the present invention cannot be obtained. If it is 120% by weight or more based on Na-CMC or 60% by weight or more based on water, it will be colored due to alkali burning, and the whiteness will be lost, which is unfavorable in terms of appearance.

処理温度は30〜80°Cの範囲にする必要があり、好
ましくは50〜70°Cが最適である。
The treatment temperature must be in the range of 30 to 80°C, preferably 50 to 70°C.

30°C以下では反応時間が長くなり経済的でなく、8
0°C以上になると後工程である精製時の洗浄が困難と
なり時として精製不可能となる。
If it is below 30°C, the reaction time will be long and it will be uneconomical.
If the temperature exceeds 0°C, cleaning during purification, which is a post-process, becomes difficult and purification is sometimes impossible.

処理時間はアルカリ濃度、反応温度によって変わるが1
〜10時間内で行うのが好ましい。
The treatment time varies depending on the alkali concentration and reaction temperature.
It is preferable to carry out within 10 hours.

酸処理において使用する酸は硫酸、塩酸、硝酸などの強
酸類の水溶液が好まれる。この酸処理はNa−CMCを
H−CM Cに変換できれば良く、酸の水溶液以外にも
これら酸の水性アルコール溶液、例えば含水硝酸メタノ
ール溶液等の含水有機溶媒を用いて行っても良い。特に
不揮発性である硫酸を使用することは作業環境上好まし
い。
The acid used in the acid treatment is preferably an aqueous solution of strong acids such as sulfuric acid, hydrochloric acid, and nitric acid. This acid treatment only needs to convert Na-CMC into H-CMC, and may be performed using an aqueous alcohol solution of these acids, for example, a water-containing organic solvent such as a water-containing nitric acid methanol solution, in addition to an aqueous solution of the acid. In particular, it is preferable to use non-volatile sulfuric acid from the viewpoint of the working environment.

以上のようにして得られたH−CM Cを精製、乾燥、
粉砕し200メッシュの篩で分級したものは嵩密度が4
00〜700 y/l 、安息角35〜45度の粉体を
得ることが出来る。
The H-CMC obtained in the above manner was purified, dried,
The bulk density of crushed and classified through 200 mesh sieve is 4.
00 to 700 y/l and a repose angle of 35 to 45 degrees can be obtained.

次に実施例をあげて本発明を説明する。Next, the present invention will be explained with reference to Examples.

〈実施例I〜3〉 リンターパルプ500Fに40%モノクロル酢酸ソーダ
水溶液を700g添加し解砕する。
<Examples I to 3> 700 g of 40% monochloroacetic acid sodium aqueous solution is added to linter pulp 500F and crushed.

これに48%苛性ソーダ320gを加え15°C以下に
冷却し2時間混和した後、これを50°Cにて3時間エ
ーテル化反応を行う。得られた生成物に48%苛性ソー
ダ3001を加え、60°Cにて5時間アルカリ処理を
行う。反応終了後、;3N硫酸61に浸漬し、Na−C
MCをH−CMCに変換する。続いて、硫酸液を脱液し
、更に十分水洗洗浄を行う。次に、この湿潤H−CMC
を乾燥し、日本工業規格200メソシユ篩を95%以上
通過するまで粉砕する。
To this was added 320 g of 48% caustic soda, cooled to below 15°C and mixed for 2 hours, followed by an etherification reaction at 50°C for 3 hours. 48% caustic soda 3001 was added to the obtained product, and alkali treatment was performed at 60°C for 5 hours. After the reaction is completed, immerse in 3N sulfuric acid 61 to remove Na-C.
Convert MC to H-CMC. Subsequently, the sulfuric acid solution is removed, and the product is thoroughly washed with water. Next, this wet H-CMC
is dried and pulverized until 95% or more passes through a Japanese Industrial Standard 200 mesh sieve.

同様に、エーテル化反応に使用する苛性ソーダとモノク
ロル酢酸ソーダの量を変え、置換度の異なるNa−CM
Cを3種類試作し、以下前記と同様にアルカリ処理を行
い下表(1)に示すH−CM C粉末を得た。
Similarly, by changing the amounts of caustic soda and sodium monochloroacetate used in the etherification reaction, Na-CM with different degrees of substitution
Three types of H-CM C powders were prepared and subjected to alkali treatment in the same manner as described above to obtain H-CM C powders shown in Table (1) below.

表 (1) これらのH−CMCは従来市販のH−CMC(NS−3
00)に比し安息角が小さく粉体流動性は極めて良好で
あった。
Table (1) These H-CMCs are conventional commercially available H-CMCs (NS-3
00), the angle of repose was smaller and the powder fluidity was extremely good.

〈実施例4〜6〉 木材パルプ500gに40%モノクロル酢酸ソーダ水溶
液を7507添加し解砕する。これに48%苛性ソーダ
350gを加え15°C以下に冷却し2時間混和した後
、これを50°Cにて3時間エーテル化反応を行う。得
られた生成物に48%苛性ソーダ510gを加え、60
°Cにて3時間アルカリ処理を行う。以下、実施例1〜
3と同様の操作を行いH7CMC粉末を得た。
<Examples 4 to 6> 7,507 g of a 40% monochloroacetic acid aqueous solution was added to 500 g of wood pulp and crushed. To this was added 350 g of 48% caustic soda, cooled to below 15°C and mixed for 2 hours, followed by an etherification reaction at 50°C for 3 hours. Add 510 g of 48% caustic soda to the obtained product,
Alkali treatment is carried out at °C for 3 hours. Below, Example 1~
The same operation as in 3 was performed to obtain H7CMC powder.

又、同様にアルカリ処理が5時間、7時間であるH −
CM C粉末を試作した。これらの性状を以下の表(2
)に示す。
Similarly, H-
A prototype of CMC powder was produced. These properties are shown in the table below (2
).

表 (2) これらのH−CM Cは従来市販のH−CMC(NS−
:J o 0 )に比し安息角か小さく粉体流動性は極
めて良好であった。
Table (2) These H-CMCs are conventionally commercially available H-CMCs (NS-
:J o 0 ), the angle of repose was smaller and the powder fluidity was extremely good.

〈実施例7〉 粉砕パルプ500gに48%苛性ソーダ320yを添加
見合しマーセル化を行う。次に40%モノクロル酢酸ソ
ーダ水溶液700gを加え3時間15°C以下で1昆合
した後、これを60°Cにて;3時間エーテル化反応を
行う。得られた生成物に48%苛性ソーダ550gを加
え、70 ”Cにて3時間アルカリ処理を行う。以下実
施例〕〜3と同様の操作を行う、得られたH−CMC粉
末の性状は置換度0.52、嵩密度606 f/l 、
<Example 7> Mercerization was carried out by adding 320 y of 48% caustic soda to 500 g of pulverized pulp. Next, 700 g of a 40% monochlorosodium acetate aqueous solution was added and the mixture was mixed at 15°C or lower for 3 hours, followed by an etherification reaction at 60°C for 3 hours. 550 g of 48% caustic soda was added to the obtained product and alkali treatment was carried out at 70"C for 3 hours. The following operations were carried out in the same manner as in Examples 3 to 3. The properties of the obtained H-CMC powder were determined by the degree of substitution. 0.52, bulk density 606 f/l,
.

安息角380度であった。The angle of repose was 380 degrees.

これらのI−1−CM Cは従来市販のI−I −CM
 C(N S−3o 0 )に比し安息角が小さく粉体
流動性は極めて良好であった。
These I-1-CM Cs are conventional commercially available I-I-CMs.
The angle of repose was smaller than that of C(N S-3o 0 ), and the powder fluidity was extremely good.

〈実施例8及び比較例1〉 崩壊剤として実施例1〜7のH−CM C及び比較例に
NS−300を筺用し、模擬錠剤を作製し、錠剤物性及
び粉体混合組成物の流動特性として安息角を測定した。
<Example 8 and Comparative Example 1> H-CM C of Examples 1 to 7 and NS-300 of Comparative Example were used as disintegrants to prepare simulated tablets, and the physical properties of the tablets and the flow of the powder mixture composition were evaluated. The angle of repose was measured as a characteristic.

尚、比較例であるNS−300の性状は、置換度0.5
2、嵩密度392 y/l 、安息角495度である。
In addition, the properties of NS-300, which is a comparative example, are that the degree of substitution is 0.5.
2. The bulk density is 392 y/l and the angle of repose is 495 degrees.

錠剤組成 乳 糖 88.5 崩壊剤 10.0 タ ル り 10 計 100.0 重量% 打錠条件 粉体混合組成物0.7gを15 ronrφの杵を用(
7)打錠圧4 H10s2て成型 錠剤物性は次の方法で測定した。
Tablet Composition Lactose 88.5 Disintegrant 10.0 Tar 10 Total 100.0 Weight % Tableting Conditions 0.7 g of the powder mixture composition was crushed using a 15 ronrφ punch (
7) Tablet compression pressure 4 H10s2 The physical properties of the molded tablet were measured by the following method.

硬 度 モンサノト硬度計 崩壊性 日本薬局方に従って測定 測定温度 37±2°C 試験液 局方第1液(人工胃液) 測定結果を表(3)に示す。Hardness Monsanoto hardness tester Disintegration Measured according to the Japanese Pharmacopoeia Measurement temperature: 37±2°C Test liquid: Pharmacopoeia No. 1 liquid (artificial gastric juice) The measurement results are shown in Table (3).

表 (8) 実施例はわ)体混合組成物の場合でも 安息角カタMS
−300より小さく、粉体流動性に優れ、更に硬度及び
崩壊性において差がなく良好な結果か得られた。
Table (8) Example shows angle of repose Kata MS even in case of body mixture composition
-300, excellent powder fluidity, and no difference in hardness and disintegrability, giving good results.

〈実施例9及び比軟例2〉 崩壊剤として実施例1のH−CM C及び比較例にMS
−300を険用し、薬効成分にアスピリンを用いた13
)体i見合組成物から血打法蚤こよって錠剤を成型した
<Example 9 and comparative example 2> MS was added to H-CMC of Example 1 and comparative example as a disintegrant.
-300 was used extensively and aspirin was used as the medicinal ingredient.13
) Tablets were molded from the composition using a blood punching method.

尚、比較例であるNS−300の性状は、置換度0.5
0、嵩密度3 s o q/l 、安息角49.0度で
ある。
In addition, the properties of NS-300, which is a comparative example, are that the degree of substitution is 0.5.
0, bulk density 3 s o q/l, and angle of repose 49.0 degrees.

次に薬効成分をアスピリンからサナルミン(水酸化アル
ミナ・マグネシウム)Iこイ曳え同様の打錠試験を行っ
た。
Next, a similar tablet compression test was conducted in which the medicinal ingredient was extracted from aspirin by sanarmin (alumina/magnesium hydroxide) I.

わ)体組成及び打錠条件は次の通りである。b) Body composition and tableting conditions are as follows.

粉体組成 アスピリン(三井東圧製)55.0 アビ七ルI)HIOl(旭 化 成 製 ) 250乳
 糖 12.0 崩 壊 剤 5・0 タ ル り 2.5 サナルミン(VJJ和化学製) 50.0乳 糖 44
.5 崩 壊 剤 5.0 打錠条件 打錠機 回転式錠剤機クリーンプレスコレクト24 薄
氷製作所製 成型条件 錠剤径3 nmtφ、打錠圧1.81/七2
回転速度35 rpm 錠剤の硬度及び崩壊時間は前述の方法により測定した。
Powder composition Aspirin (manufactured by Mitsui Toatsu) 55.0 Avinyl I) HIOl (manufactured by Asahi Kasei) 250 Lactose 12.0 Disintegrant 5.0 Talli 2.5 Sanarmin (manufactured by VJJ Wa Kagaku) 50.0 Lactose 44
.. 5 Disintegrant 5.0 Tableting conditions Tableting machine Rotary tablet machine Clean Press Collect 24 Manufactured by Usui Seisakusho Molding conditions Tablet diameter 3 nmtφ, tableting pressure 1.81/72
Rotation speed: 35 rpm Tablet hardness and disintegration time were measured by the method described above.

測定結果を表(4)に示す。The measurement results are shown in Table (4).

表 (4) アルカリ処理により得られたH−CM Cを崩壊剤と1
7で用いた場合は、極めて円滑に打錠操作を行うことか
出来、キャッピング、チノピンク等の発生はみられなか
った。
Table (4) H-CMC obtained by alkali treatment with disintegrant and 1
7, the tableting operation was extremely smooth and no occurrence of capping, chino pink, etc. was observed.

又、硬度、崩壊性も表(4)かポリ−ことく、従来品に
劣らぬ好結果を得ることが出来た。
Furthermore, the hardness and disintegration properties shown in Table (4) were as good as those of conventional products.

手続補正書(方べ) 昭和H年グ月/711 1 事件の表示 昭和58年特許願第237671号3
 補正をする者 事件との関係 特許出願人
Procedural amendment (direction) August 1978/711 1 Indication of case Patent application No. 237671, 1988 3
Relationship with the case of the person making the amendment Patent applicant

Claims (1)

【特許請求の範囲】 1グルコース単位当りカルボキンメチル基置換度が0,
2〜1.2のカルボキシメチルセルロースナトリウムを
アルカリ剤で処理した後、酸処理によりカルボキシメチ
ルセルロースに変換し、精製、乾燥、粉砕して得られる
嵩密度400〜700 f/l 、安息角35〜45度
のカルボキシメチルセルロース粉末を薬効成分を含む組
成物に配合し、成形することを特徴とする固形薬剤の製
法 2、使用されるアルカリ剤がカルボキシメチルセルロー
スナトリウムに対して10〜120重4%、水に対して
15〜60重量%の濃度であることを特徴とする特許請
求範囲第1項記載の固形薬剤の製法 3、アルカリ剤による処理が30〜80°Cの温度で行
われることを特徴とする特許請求範囲第1項記載の固形
薬剤の製法
[Claims] The degree of carboxine methyl group substitution per glucose unit is 0,
Bulk density 400-700 f/l, angle of repose 35-45 degrees obtained by treating sodium carboxymethylcellulose of 2-1.2 with an alkali agent, converting it to carboxymethylcellulose by acid treatment, purifying, drying, and pulverizing. Method 2 for manufacturing a solid drug, characterized by blending carboxymethylcellulose powder into a composition containing a medicinal ingredient and molding it, the alkaline agent used is 10 to 120% by weight based on sodium carboxymethylcellulose, and 4% by weight based on sodium carboxymethylcellulose. A method 3 for producing a solid drug according to claim 1, characterized in that the concentration is 15 to 60% by weight, and a patent characterized in that the treatment with an alkaline agent is carried out at a temperature of 30 to 80°C. Method for producing a solid drug according to claim 1
JP23767183A 1983-12-15 1983-12-15 Production of solid pharmaceutical Pending JPS60130527A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23767183A JPS60130527A (en) 1983-12-15 1983-12-15 Production of solid pharmaceutical

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23767183A JPS60130527A (en) 1983-12-15 1983-12-15 Production of solid pharmaceutical

Publications (1)

Publication Number Publication Date
JPS60130527A true JPS60130527A (en) 1985-07-12

Family

ID=17018779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23767183A Pending JPS60130527A (en) 1983-12-15 1983-12-15 Production of solid pharmaceutical

Country Status (1)

Country Link
JP (1) JPS60130527A (en)

Similar Documents

Publication Publication Date Title
JP3718341B2 (en) Low substituted hydroxypropylcellulose and process for producing the same
JP2994956B2 (en) Low-substituted hydroxypropylcellulose, composition thereof and tablet thereof
JP3212534B2 (en) Low substituted hydroxypropylcellulose powder
JP2022051776A (en) Excipient and tablet
EP1192942B1 (en) Base material for dry direct tableting comprising low-substituted hydroxypropyl cellulose
KR20010051514A (en) Low-Substituted Hydroxypropylcelluloses and Process for the Preparation thereof
JP4070402B2 (en) Low substituted hydroxypropylcellulose and process for producing the same
EP1120427B1 (en) Method for the formation of low-substituted hydroxypropyl cellulose particles
JP3850189B2 (en) Solid preparation and production method thereof
WO2008059652A1 (en) Disintegrating agent, and tablet and granule each containing the same
JPS60130527A (en) Production of solid pharmaceutical
JP4774739B2 (en) Kampo extract-containing tablet composition and method for producing the same
JPS6137247B2 (en)
JP3310233B2 (en) Disintegrant for tablets
US7009046B2 (en) Low-substituted hydroxypropyl cellulose and agent serving both as binder and disintegrant for dry direct compression
JPS60139625A (en) Preparation of solid drug
JP4290417B2 (en) Low substituted hydroxypropyl cellulose and dry direct hitting binder and disintegrant
JP3698652B2 (en) Low substituted hydroxypropylcellulose-containing solid preparation and method for producing the same
JPS6354693B2 (en)
JP3212531B2 (en) Low-substituted hydroxypropylcellulose, low-substituted hydroxypropylcellulose disintegrant and production method thereof
JPH10305084A (en) Production of low substitution degree hydroxypropyl cellulose powder
JPH11302183A (en) Chitosan composition and its production
JP4591742B2 (en) Dioctylsodium sulfosuccinate-containing preparation and method for producing the same
TW576840B (en) Production of hydroxypropylcellulose having low degree of substitution
JPH037202B2 (en)