JPS60130411A - Rolling method of bar material - Google Patents

Rolling method of bar material

Info

Publication number
JPS60130411A
JPS60130411A JP58238502A JP23850283A JPS60130411A JP S60130411 A JPS60130411 A JP S60130411A JP 58238502 A JP58238502 A JP 58238502A JP 23850283 A JP23850283 A JP 23850283A JP S60130411 A JPS60130411 A JP S60130411A
Authority
JP
Japan
Prior art keywords
rolling
loop
stands
control
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58238502A
Other languages
Japanese (ja)
Other versions
JPH0655322B2 (en
Inventor
Yoshihiro Yamaguchi
喜弘 山口
Yoichi Takahashi
洋一 高橋
Mikio Moriga
森賀 幹夫
Tokuo Mizuta
水田 篤男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP58238502A priority Critical patent/JPH0655322B2/en
Publication of JPS60130411A publication Critical patent/JPS60130411A/en
Publication of JPH0655322B2 publication Critical patent/JPH0655322B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/48Tension control; Compression control
    • B21B37/50Tension control; Compression control by looper control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/16Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling wire rods, bars, merchant bars, rounds wire or material of like small cross-section
    • B21B1/18Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling wire rods, bars, merchant bars, rounds wire or material of like small cross-section in a continuous process

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)

Abstract

PURPOSE:To improve the dimensional accuracy of a product such as bar or wire rod by comparing a measured drooping quantity of loop with its target value and controlling the number of revolutions of a rolling roll so as to eliminate the deviation between both values. CONSTITUTION:An arithmetic control unit 13 indexes the Young's modulus table of a memory unit 14 in accordance with an information, which specifies an interstand condition, outputted from a setting board 12, and decides also the target value delta0 of a loop-drooping quantity corresponding to a target axial force by consulting other inputted data, to output it to a comparator unit 15. The unit 15 compares the target value delta0 with a measured value delta outputted from a drooping quantity detector 10, to input its deviation epsilon to the unit 13. The unit 13 outputs a control signal Cu or Cd so as to make the deviation epsilon zero in accordance with the epsilon. Though the signal Cu is primarily given to rolling rolls 1 on the upstream side, the successive control for all the rolling rolls on the upstream side is successively preformed after the control of rolls 1. The same is performed in regard to the signal Cd.

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野1 本発明は、条材を複数の圧延スタンドに噛み込ませて連
続的に延伸する条材の圧延方法に係り、特に、条材の軸
方向に作用する軸力の制御方法に関する。 [背景1 加熱炉で加熱された適当な長さの条材たとえば条鋼(ビ
レット)を粗圧延列、中間圧延列又ぼ仕上圧延列を順次
に通すうちに、断面積が縮小され速度は次第に速まりな
がら、所定寸法形状の棒鋼。 線材(棒線)に延伸されるが、近年、圧延−1−リの棒
線成品を直接冷間鍛造できるように全長にわたって高い
寸法精度を実現しうる圧延手法が強く望まれている。棒
線成品の一本内の寸法偏差は、圧延スタンドが条材に及
ぼす相互の力関係、即ちスタンド間における条材の張力
又は圧縮力(これらを以下総称しで「軸)月という)に
左右される。そこで、従来より、スタンド間軸力を零な
いし操業性の」ニから微小一定力に設定しそれを制御す
る手法がとられて外た。例えば、S N T C(Su
miLom。 No Ten5ion Control)などの直接法
主tコけいわゆるトルクアーム一定法などの間接法によ
る軸力制御である。 しかし、これらの手法のいずれもが大規模なコンピュー
タの演算処理のみに基づく複雑な制御プロセスを経ると
いう問題か一方にあり、また、これらの手法は一つの圧
延列におけるスパンの短いスタンド間の軸力に関しての
みの制御であって、ループか形成されるような比較的ス
パンの長い例えば圧延列列間についてはその軸力につい
て直接的に制御している例はなく、成品となるまでの全
体としての精細な制御という観点からは、コンピュータ
における制御フローを緻密化するかセンサ及びアクチュ
エータを高精度化するしかなく、いずれにしても技術的
、経済的な不利は否めず、さらに制御の複雑化を回避し
えないといった問題か池方にはある。 [発明の目的1 そこで本発明は、軸力を簡単に制御で外る新規な圧延方
法を提供することを主たる目的とする。 皿の目的は、簡
[Industrial Application Field 1] The present invention relates to a method for rolling a strip in which the strip is inserted into a plurality of rolling stands and continuously stretched, and in particular, it relates to a method for rolling a strip in which the strip is continuously stretched by being inserted into a plurality of rolling stands. Regarding the method. [Background 1] As a strip of appropriate length, such as a billet, heated in a heating furnace is sequentially passed through a rough rolling train, an intermediate rolling train, and a finishing rolling train, the cross-sectional area is reduced and the speed gradually increases. A steel bar of a predetermined size and shape. In recent years, there has been a strong desire for a rolling method that can achieve high dimensional accuracy over the entire length so that rolled wire rod products can be directly cold forged. The dimensional deviation within a single rod or wire rod product depends on the mutual force relationship that the rolling stands exert on the strip, that is, the tension or compression force (hereinafter collectively referred to as "shaft") on the strip between the stands. Therefore, conventionally, a method has been adopted in which the axial force between the stands is set from zero to a small constant force at the level of operability, and this is controlled. For example, S N T C (Su
miLom. Axial force control is performed by a direct method such as the axial force control method (No. 5 ion control), or by an indirect method such as the so-called constant torque arm method. However, each of these methods involves a complex control process based solely on large-scale computer processing, and these methods also require the use of shafts between short-span stands in one rolling train. It is only a control of the force, and there is no example of direct control of the axial force between rolling rows, which have relatively long spans such as those where loops are formed. From the perspective of precise control, the only option is to make the control flow in the computer more precise or to increase the precision of the sensors and actuators. Ikekata has a problem that cannot be avoided. [Objective of the Invention 1] Therefore, the main object of the present invention is to provide a novel rolling method in which the axial force can be easily controlled. The purpose of the plate is to

【)′Lな手段をもって一次的(基本的
)に全体としての制御精度の向」−に寄与でとる条材の
圧延方法を提供することである。 [発明の概要1 本発明は、圧延列列間を含む比較的スパンの長いスタン
ド間において従来ではバッフ7としてしか認識していな
かった条材のループに着−目し、このループの懸垂量を
軸力1こ月応させてスタンド間の軸力をループの懸垂量
を制御することを介して設定軸力に制御するという手法
を創案したものであり、圧延スタンド間において被圧延
材にループを形成せしめて圧延を行なう場合、この圧延
スタンド間を含み軸力の制御される圧延スタンド間の目
標軸力に対して被圧延材の鋼種と断面形状寸法と平均温
度と1こ基づいて予め」l記ループの懸垂量の目標値を
勢定する一方、圧延の実操業において上記ループの懸垂
量の実測値を得て予め設定される一lユ記懸垂量の目標
値と上記実測値とを比較し、両者の偏差がなくなるよう
に−tz記圧延スタンドのいずれか一方を含む上流側又
は下流側の圧延スタ3− ンドの圧延ロールの回転数を制御するようにしたことを
基本的な特徴としている。 以下、本発明の詳細な説明とともに添付図面に図解する
実施例によって具体的に説明する。 [実施例1 まず、成る圧延列のスタンド間もしくは圧延列の列間(
以下[スタンド間]という)における、設定の軸力での
ループの目標懸垂量をめる一手法について説明する。 スタンド間のモデル化による説明図を第1図に示す。1
は上流側の圧延ロール、2は圧延ロール1の回転軸とは
直交する回転軸を有する下流側の圧延ロールで、条状の
被圧延材3はパスライン4を基準に図中左から右に進行
する。圧延ロール1の出口近傍には、パスライン4と接
するようにガイY用の出口ローラ5が配設され、圧延ロ
ーラ2の入口近傍にはパスライン4に対し出口ローラ5
と同じ側に入口ローラ6が配設される。圧延ロール1,
2と各ローラ5,6の位置関係は、スタンド間2ロ離り
の中央すなわち仮想線7に関し対称で=4= ある。そして、被圧延材3に対しては、圧延ロール1.
2か左右の固定端となり、出口ローラ5と大口ローラ6
のそれぞれは変位を与える自由端を形成し、被圧延材3
はこの出口、入口ローラ5゜6開で対称のループ8を形
成する。 そこで、ループ8を微小要素に分割し、その要素につい
て、弾性輪のはりのたわみをめる基礎式: (ただし、M;曲げモーメン)、E;ヤング率。 I;断面二次モーメン(I5’;パスラインからの変位
、×;圧延方向の位置)を順次解くことにより、ループ
8の懸垂量がめられる。 ここでEとIは、ループ材について、固有の値であるか
ら、各要素でのモーメントh1を与えられた境界条件下
でめることが重要となる。第2図に各要素でのMをめる
説明図を示す。図中のPNは支点の反力、MNは支点の
回りのモーメント。 TNは張ツバhiはi要素までの圧延方向の位置。 lyiはI要素でのパスライン4がらの懸垂量を表わし
、またi要素までの自重をWi、i要素までの自重によ
るモーメントをMu+iとすると1要素右側のモーメン
トMiは、 Mi = ’PN・lxi −T凶・lyi+MN+W
i・hi Mu+i ・−・(2) と表わされる。 第3図に、ループ8の懸垂量をめる計算の流れ図を示1
゜求めるべき未知数は、ループの長さ(固定端の反力丁
゛。と、自由端の反力丁〕1)と固定端のモーメン)M
。である。これらの値さえめることが出来れば、各要素
の変位は(1)式を順次解くことによりまる。 真の解は、自由端で与えた変位と一致し、またスタンド
間が左右対称という条件からスタンド中央部でループの
勾配は零という条件を満す。 この多点境界問題をはさみ撃ちの計算手法で解いた。な
お1要素あたりのぎぎみ中として511111川】を採
用した。 計算の際に必要なりング率Eの値としては、第4図に示
すように、すでに公表されている静的荷重の単純引張り
試験によって測定されるデータより、温度、鋼種により
与えられる。なお、第4図のデータは「鉄と鋼J、vo
1.49(1963)、(13)。 28〜33に掲載されたデータと同等である。 −例として、ループ8が形成され易い圧延列列間につ卜
、上記解析手法を用い、軸力(K、 g/ 111an
 2)に対するループのパスラインからの懸垂量(關)
の関係をめると第5図のようになる。 第5図のグラフは、列間距離(I−)が14m、出[二
]ローラ5と大口ローラ6間の距離が6+++、ループ
8をなす被圧延材の断面形状寸法を≠5010111と
φ601111+1の二種としてそのそれぞれに対しヤ
ング率E (K g/ m+++2)を6000,80
(10,10000としrこときの計算結果である。 これから、一般的に、懸垂量は軸力が圧縮から引張りに
なるにつれて小さくなり、軸力に対する懸垂機の感度は
曲線の微係数から判断されるように、引張側」:り圧縮
側の方が敏感であることが了解される。また、定性的に
は(1)式でも予想され7− るように、断面二次モーメントの小さい方が、ヤング率
の小さい方が懸垂量は大きく、第5図のグラフでこのこ
とが定量的に実証される。このように、パラメータに応
した軸力と懸垂量との対応関係を定量化したところに天
外な意義が存する。 第5図の例では、懸垂量は軸力に応じて数十l1lI1
1から数百11II11にわたり変動する。このように
ループが形成されやすい条件下(特に列間)において、
ループを形成するスタンド間で設定の軸力に対する懸垂
量からの偏差をめ、それをなくするように速度調整すな
わち圧延ロールの回転数を制御すれば、少なくともこの
スタンド間の軸力か制御でき、結果として成品の寸法精
度に好影響をもたらすこととなる。 第6図に実施例に係る制御系の概要を示す。 10はループ8の懸垂量を検出する懸垂量検出器、11
は電子演算制御手段としてのコンピュータ、12はマニ
ュアルによりパラメータを設定するパラメータ設定盤で
、上記コンピュータ11には少なくとも演算制御部13
とデータ記憶部14とデ8− −タ比較部15とを含む。データ記憶部14には、被圧
延材3の鋼種、平均温度で特定されるヤング率のテーブ
ル、被圧延材3に関する諸パラメータ及び与えられる目
標軸力に対し一義的に決定されるループ懸垂量の目標値
テーブル、並びにその他のテーブルないし個別のデータ
が記憶されている。 設定盤12から、スタンド間を特定する情報即ち圧延ロ
ール1,2間の距離、ローラ5,6間の距離等のパラメ
ータ、被圧延材3の鋼種、断面形状寸法、平均温度、目
標軸力等のパラメータ群1〕を入力する。演算制御部1
3はこれに応じて記憶部14のヤング率テーブルを索引
するとともに合せて池の入力データを参照して目標軸力
に対応するループ懸垂量の目標値δ。を決定し、比較部
15に出力する。比較部15では、目標値δ。と懸垂量
検出器10からの実測値δとを比較゛し、その偏差εを
演算制御部13に入力する。演算制御部13は、この偏
差εに応じて偏差εが零となるように制御信号CLI又
は制御信号Cdを出力する。 制御信号Cuは、−次的には上流側の圧延ロール1に与
えられるが、圧延ロール1の制御に続いて」1流側の圧
延ロール全体に月しサクセシブ制御が行なわれる。制御
信号Cdについても同様である。 ただ、制御の簡単化を考慮して制御信号CLI、 Cd
のいずれか一方とするのか好ましい。 第7図に実施例に係る処理の70−図を示す。 なお、ここでは判断ステップにおいて偏差1δ。−δ1
が予め定められた許容誤差ε。の範囲内にあるか否かを
調べている。許容範囲内にあればそのままの状態で条材
1本内の圧延が続行され、範囲外になればそのとき、上
流側又は下流側のいずれか一方側の圧延ロール群の回転
数をサクセシブ制御するようにしている。 また、10ツト内では可変パラメータを変更しないがロ
フトが変る場合にはロット条件に応じて設定盤より可変
パラメータの設定の仕直しを行なう。 上記実施例に係る制御は、被圧延わがループを形成する
比較的スパンの天外いスタンド間、好ましくは圧延列の
列間(粗、中間、仕上とある場合は最大2箇所)でなさ
れるが、一つの圧延列においても比較的スパンが大きく
ループの形成されるスタンド間(従来では軸力は制御さ
れていない)で行ってもよい。列間と圧延列内のスタン
ド間の複数箇所でこの制御を行ってもよい。 実施例に係る制御は、前述した軸力制御の直接法または
間接法と併用して用いられるが、本制御それ自体は単純
なプロセスであることから−に配置接法または間接法と
の干渉は少ない。したがって比較的に粗い制御を本手法
で行い、精密な制御は従来法で行なうといった二段階の
制御をなすことがでとる。よって、一つの制御プロセス
で制御精度を向−1−させようとすると経済的にも技術
的にも不利であることに対し、干渉の少い簡単な手段を
加えることにより何らの不利益を伴うことなく全体とし
ての制御精度の向」二に貢献でき、これによって現在以
卜の寸法精度の成品を得ることが可能となる。 尚、上記実施例は、重力の作用を利用するダウン・ルー
プに基づくものであるが、反重力方向に11− ループが形成されるアップ・ループでも同様で所定の解
析手法によって軸力とループの変位量との相関関係をめ
、これに基づいて軸力を制御することも可能である。 [効果1 以」ニのように、ループの懸垂量が軸力に対応するとい
う知見に基づく本発明によれば、ループの懸垂量を制御
するといった簡単な手段によって目標の軸力を達成で軽
、棒線成品の寸法精度の向上に大軽く寄与することがで
きる。
(2) To provide a method for rolling a strip material that primarily (basically) contributes to the overall control accuracy using L'L measures. [Summary of the invention 1] The present invention focuses on a loop of strip material, which was conventionally only recognized as a buff 7, between stands with relatively long spans, including between rolling rows, and calculates the amount of suspension of this loop. This method was developed to control the axial force between the stands to the set axial force by adjusting the axial force for one month by controlling the amount of suspension of the loop. When forming and rolling, the target axial force between the rolling stands including those between the rolling stands where the axial force is controlled is determined in advance based on the steel type, cross-sectional shape and average temperature of the material to be rolled. While setting the target value of the suspension amount of the loop, the actual measurement value is compared with the target value of the suspension amount of the loop, which is set in advance by obtaining the actual value of the suspension amount of the loop in the actual rolling operation. The basic feature is that the number of rotations of the rolling rolls of the upstream or downstream rolling stands including either one of the rolling stands mentioned above is controlled so as to eliminate the deviation between the two. There is. DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below with reference to detailed descriptions thereof and embodiments illustrated in the accompanying drawings. [Example 1] First, between the stands of a rolling train or between the rows of a rolling train (
One method for determining the target hanging amount of the loop at a set axial force (hereinafter referred to as "between stands") will be explained. An explanatory diagram based on modeling between stands is shown in Fig. 1. 1
2 is a rolling roll on the upstream side, 2 is a rolling roll on the downstream side having a rotational axis perpendicular to the rotational axis of rolling roll 1, and the strip-shaped rolled material 3 is rolled from left to right in the figure based on the pass line 4. proceed. An exit roller 5 for the guy Y is arranged near the exit of the rolling roll 1 so as to be in contact with the pass line 4, and an exit roller 5 for the guy Y is arranged near the entrance of the rolling roller 2 so as to be in contact with the pass line 4.
An inlet roller 6 is disposed on the same side. rolling roll 1,
The positional relationship between the rollers 2 and the rollers 5 and 6 is symmetrical with respect to the center of the two stands, that is, the imaginary line 7. Then, for the material to be rolled 3, the rolling roll 1.
2 or left and right fixed ends, exit roller 5 and large roller 6
each forms a free end that provides displacement, and the rolled material 3
forms a symmetrical loop 8 with the exit and entrance rollers 5° and 6 open. Therefore, the basic formula for dividing the loop 8 into minute elements and calculating the deflection of the elastic ring beam for each element is as follows: (M: bending moment), E: Young's modulus. By sequentially solving I: second moment of area (I5': displacement from the pass line, x: position in the rolling direction), the amount of suspension of the loop 8 can be determined. Since E and I are unique values for the loop material, it is important to calculate the moment h1 at each element under the given boundary conditions. FIG. 2 shows an explanatory diagram showing M in each element. In the figure, PN is the reaction force at the fulcrum, and MN is the moment around the fulcrum. TN is the tension collar hi is the position in the rolling direction up to the i element. lyi represents the amount of suspension of the path line 4 at the I element, and if the self-weight up to the i-element is Wi, and the moment due to the self-weight up to the i-element is Mu+i, the moment Mi on the right side of one element is Mi = 'PN・lxi -T-Kyou・lyi+MN+W
It is expressed as i・hi Mu+i (2). Figure 3 shows the flowchart for calculating the hanging amount of loop 8.
゜The unknown quantities to be found are the length of the loop (reaction force at the fixed end and reaction force at the free end) and moment at the fixed end).
. It is. If these values can be determined, the displacement of each element can be determined by sequentially solving equations (1). The true solution matches the displacement given at the free end, and also satisfies the condition that the gradient of the loop is zero at the center of the stand since the stands are symmetrical. This multi-point boundary problem was solved using the scissor-shoot calculation method. In addition, 511111 rivers] were adopted as the limit per element. As shown in FIG. 4, the value of the bending rate E required for calculation is given by temperature and steel type from data measured by a static load simple tensile test that has already been published. The data in Figure 4 is from "Tetsu to Hagane J, vo.
1.49 (1963), (13). This is equivalent to the data published in 28-33. - As an example, between the rolling rows where the loop 8 is likely to be formed, using the above analysis method, the axial force (K, g/111an
2) Amount of pull-up from the loop pass line (related)
Figure 5 shows the relationship between . The graph in Fig. 5 shows that the inter-row distance (I-) is 14 m, the distance between the output [second] roller 5 and the large roller 6 is 6+++, and the cross-sectional shape and dimensions of the rolled material forming the loop 8 are ≠5010111 and φ601111+1. Young's modulus E (K g/m+++2) for each of the two types is 6000 and 80.
(These are the calculation results for 10,10,000 and It is understood that the tension side is more sensitive than the compression side.Also, qualitatively, as predicted by equation (1), the smaller the moment of inertia of the area, the more sensitive the tension side is. , the smaller the Young's modulus, the greater the amount of suspension, and this is quantitatively demonstrated by the graph in Figure 5.In this way, the correspondence between the axial force and the amount of suspension according to the parameters was quantified. In the example shown in Figure 5, the amount of suspension is several tens of l1lI1 depending on the axial force.
It varies from 1 to several hundred 11II11. Under these conditions where loops are likely to form (especially between rows),
At least the axial force between the stands can be controlled by calculating the deviation from the suspension amount for the set axial force between the stands forming the loop and adjusting the speed, that is, controlling the number of rotations of the rolling rolls, to eliminate it. As a result, this has a positive effect on the dimensional accuracy of the finished product. FIG. 6 shows an outline of the control system according to the embodiment. 10 is a suspension amount detector for detecting the suspension amount of the loop 8; 11
1 is a computer as an electronic calculation control means; 12 is a parameter setting board for manually setting parameters; the computer 11 includes at least a calculation control section 13;
, a data storage section 14 , and a data comparison section 15 . The data storage unit 14 stores the steel type of the material to be rolled 3, a table of Young's modulus specified by the average temperature, various parameters regarding the material to be rolled 3, and a loop suspension amount uniquely determined for a given target axial force. Target value tables as well as other tables or individual data are stored. From the setting panel 12, information specifying the distance between the stands, that is, parameters such as the distance between the rolling rolls 1 and 2, the distance between the rollers 5 and 6, the steel type of the rolled material 3, cross-sectional shape, average temperature, target axial force, etc. parameter group 1]. Arithmetic control unit 1
3 indexes the Young's modulus table in the storage unit 14 in accordance with this and also refers to the pond input data to determine the target value δ of the loop suspension amount corresponding to the target axial force. is determined and output to the comparison section 15. In the comparison section 15, the target value δ. and the actual measurement value δ from the suspension amount detector 10, and input the deviation ε to the calculation control unit 13. The calculation control unit 13 outputs the control signal CLI or the control signal Cd according to this deviation ε so that the deviation ε becomes zero. The control signal Cu is then applied to the upstream rolling roll 1, but following the control of the rolling roll 1, the entire rolling roll on the first upstream side is sequentially controlled. The same applies to the control signal Cd. However, in order to simplify the control, the control signals CLI, Cd
It is preferable to use either one of the following. FIG. 7 shows a 70-diagram of processing according to the embodiment. Note that here, the deviation is 1δ in the judgment step. −δ1
is a predetermined tolerance ε. We are checking whether it is within the range of . If it is within the allowable range, rolling of one strip continues as it is; if it is outside the range, then the rotation speed of the rolling roll group on either the upstream or downstream side is successively controlled. That's what I do. Also, the variable parameters are not changed within 10 rounds, but if the loft changes, the settings of the variable parameters are adjusted from the setting board according to the lot conditions. The control according to the above embodiment is performed between stands with relatively long spans forming the rolling loop, preferably between the rolling rows (at most two locations in the case of rough, intermediate, and finishing). Even in one rolling row, the rolling process may be performed between stands having a relatively large span and forming a loop (in the past, the axial force is not controlled). This control may be performed at multiple locations between rows and between stands within the rolling row. The control according to the embodiment is used in combination with the direct method or indirect method of axial force control described above, but since the control itself is a simple process, there is no possibility of interference with the direct method or indirect method of controlling the axial force. few. Therefore, it is possible to perform a two-step control in which relatively coarse control is performed using this method and precise control is performed using the conventional method. Therefore, while it is economically and technically disadvantageous to try to improve control accuracy in one control process, it is not disadvantageous to add a simple means with less interference. This contributes to improving the overall control accuracy without any problems, and this makes it possible to obtain products with greater dimensional accuracy than at present. The above embodiment is based on a down loop that utilizes the action of gravity, but the same applies to an up loop in which an 11-loop is formed in the anti-gravity direction. It is also possible to control the axial force based on the correlation with the amount of displacement. [Effect 1] According to the present invention, which is based on the knowledge that the amount of suspension of the loop corresponds to the axial force, as described above, the target axial force can be achieved and lightened by simple means such as controlling the amount of suspension of the loop. This can greatly contribute to improving the dimensional accuracy of rod and wire products.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の原理に係るスタンド間のモデル化によ
る説明図、第2図は解析手法の図解による説明図、第3
図は解析手法の具体的なフロー図、第4図はヤング率を
与えるグラフ、第5図は一例としての軸力と懸垂量との
対応関係を示すグラフ、第6図は本発明の実施例に係る
概略ブロック図、第7図は実施例の一手法を説明するた
めのフロー図である。 1.2・・・圧延スタンドのロール、3・・・被圧延材
、=12− 4・・・パスライン、5,6・・・ローラ、8・・・ル
ープないしループ相、10・・・懸垂風検出器、11・
・・コンピュータ、12・・・パラメータ設定盤、13
・・・演算制御部、14・・・記憶部、15・・・比較
部。 特許出願人 株式会社神戸製鋼所 代 理 人 弁理士 前出 葆はが2名第1図 特開昭GO−130411(5) 第3図 断面水状、ヤ〉グ傘 スタン)?I@距縁、クーラー のイfLIi′4シテ゛−91与える 団t14iマ・の七−ノント MO乞仮定する 困定咄マ・の及カPot 否定T8 蘭’t#nt汀酢喘の藺の 各fpf、+=−7・・2亥位、 ヵ 勾配、径路り長さ1針 B 鼻す6 − 正 自由端7・4−え升 モ 刻立乙含ト鰺の麦イ配 NQ 1 第2図 ちVoじ (、uJLLl/6N、OIX+ 4.、l//−4区
 (戸ul/D九0)Xl半、//′−^寸 憾
Fig. 1 is an explanatory diagram based on modeling between stands according to the principle of the present invention, Fig. 2 is an explanatory diagram based on an illustration of the analysis method, and Fig. 3
The figure shows a specific flow diagram of the analysis method, Figure 4 is a graph giving Young's modulus, Figure 5 is a graph showing the correspondence between axial force and suspension amount as an example, and Figure 6 is an example of the present invention. FIG. 7 is a flowchart for explaining one method of the embodiment. 1.2... Roll of rolling stand, 3... Rolled material, =12- 4... Pass line, 5, 6... Roller, 8... Loop or loop phase, 10... Suspended wind detector, 11.
... Computer, 12 ... Parameter setting board, 13
. . . Arithmetic control section, 14 . . . Storage section, 15 . . . Comparison section. Patent Applicant Kobe Steel Co., Ltd. Representative Patent Attorney (2 persons) Figure 1 JP-A-130411 (5) Figure 3 Water-shaped cross section, yag umbrella stand)? I @ distance, cooler's ifLIi'4 site - 91 give group t14i Ma's 7- non-MO assumes troubled Ma's reach Pot Negation T8 Lan't #nt 汀 Vinegar pan's strawberry each fpf, +=-7...2 positions, Ka slope, path length 1 stitch B Nose 6 - Regular free end 7.4-E square Mo carving Otsu included To mackerel barley arrangement NQ 1 2nd UJLLl/6N, OIX+ 4., l//-4 wards (ul/D90) Xl and a half, //'-^ size

Claims (2)

【特許請求の範囲】[Claims] (1)圧延スタンド間において被圧延材にループを形成
せしめで圧延を行なう場合、この圧延スタンド間を含み
軸力の制御される圧延スタンド間の目標軸力に刻して被
圧延材の鋼種と断面形状寸法と平均温度とに基づいて予
め上記ループの懸垂量の目標値を算定する一方、圧延の
実操業において上記ループの懸垂量の実測値を得て予め
設定される上記懸垂量の目標値と上記実測値とを比較し
、両者の偏差がなくなるように上記圧延スタンドのいず
れか一方を含む上流側又は下流側の圧延スタンドの圧延
ロールの回転数を制御するようにしたことを特徴とする
条材の圧延方法。
(1) When rolling is performed by forming a loop in the material to be rolled between rolling stands, the target axial force between the rolling stands including the rolling stands where the axial force is controlled is set to the steel type of the material to be rolled. The target value of the suspension amount of the loop is calculated in advance based on the cross-sectional shape and average temperature, and the target value of the suspension amount is preset by obtaining the actual value of the suspension amount of the loop during actual rolling operation. and the above-mentioned actual measurement value, and the number of rotations of the rolling rolls of the upstream or downstream rolling stand including either one of the rolling stands is controlled so as to eliminate the deviation between the two. Method of rolling strips.
(2)上記圧延スタンドは、相異なる圧延列に属するス
タンドである特許請求の範囲第(1)項記載の条材の圧
延方法。
(2) The method for rolling a strip according to claim (1), wherein the rolling stands are stands belonging to different rolling rows.
JP58238502A 1983-12-16 1983-12-16 Rolling method for strip Expired - Lifetime JPH0655322B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58238502A JPH0655322B2 (en) 1983-12-16 1983-12-16 Rolling method for strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58238502A JPH0655322B2 (en) 1983-12-16 1983-12-16 Rolling method for strip

Publications (2)

Publication Number Publication Date
JPS60130411A true JPS60130411A (en) 1985-07-11
JPH0655322B2 JPH0655322B2 (en) 1994-07-27

Family

ID=17031196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58238502A Expired - Lifetime JPH0655322B2 (en) 1983-12-16 1983-12-16 Rolling method for strip

Country Status (1)

Country Link
JP (1) JPH0655322B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2727041A1 (en) * 1994-11-18 1996-05-24 Lorraine Laminage Method for control of hot-rolling of metal, esp. steel strip under slight tension
EP0775537A3 (en) * 1995-11-23 1998-04-22 Sms Schloemann-Siemag Aktiengesellschaft Method of controlling the cross section of rolled stock

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54120264A (en) * 1978-03-13 1979-09-18 Toshiba Corp Loop controller

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54120264A (en) * 1978-03-13 1979-09-18 Toshiba Corp Loop controller

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2727041A1 (en) * 1994-11-18 1996-05-24 Lorraine Laminage Method for control of hot-rolling of metal, esp. steel strip under slight tension
EP0775537A3 (en) * 1995-11-23 1998-04-22 Sms Schloemann-Siemag Aktiengesellschaft Method of controlling the cross section of rolled stock

Also Published As

Publication number Publication date
JPH0655322B2 (en) 1994-07-27

Similar Documents

Publication Publication Date Title
CN103212585A (en) A control device of a hot mill used for thin plates and a control method of the hot mill used for thin plates
CN102652961A (en) Control device and control method
CN109013717B (en) A kind of hot continuous rolling centre base center portion temperature computation method
CN115121626B (en) Hot-rolled strip steel transient hot roll shape forecasting method based on error compensation
CN106457325B (en) Flatness control device
CN106914496B (en) Strip deviation control device
CN106914495A (en) A kind of hot-strip camber control method and system
JP2005516297A (en) How to adjust industrial processes
JPS641210B2 (en)
JP3902585B2 (en) Sheet shape control method in cold rolling
AU719409B2 (en) Apparatus for controlling a rolling mill based on a strip crown of a strip and the same
JPS60130411A (en) Rolling method of bar material
JPH05317941A (en) Method for controlling water cooling for barsteel and wire rod
TWI323197B (en) Method for increasing the process stability, especially the absolute thickness accuracy and the plant safety-during hot rolling of steel or nonferrous materials
KR101050792B1 (en) Cooling Control Method Using Dynamic Reset
JP4028786B2 (en) Sheet shape control method in cold rolling
JPS6234613A (en) Rolling control method for bar material
RU2184632C2 (en) Method for controlling cooling conditions of rolled pieces
JPS61266524A (en) Method for controlling cooling of steel product
JPH05293516A (en) Method for estimating rolling load of rolling mill
JPH08187504A (en) Manufacture of tapered steel sheet
JPS58110106A (en) Stretch reducer for seamless pipe and controlling method
JPH07103425B2 (en) Cooling method for controlling transformation rate of steel
JPH02112813A (en) Temperature control method for rolling and cooling of wire rod, bar or the like
JPS6376709A (en) Width control method for tandem rolling mill