JPS6013039A - Contact material - Google Patents

Contact material

Info

Publication number
JPS6013039A
JPS6013039A JP58122133A JP12213383A JPS6013039A JP S6013039 A JPS6013039 A JP S6013039A JP 58122133 A JP58122133 A JP 58122133A JP 12213383 A JP12213383 A JP 12213383A JP S6013039 A JPS6013039 A JP S6013039A
Authority
JP
Japan
Prior art keywords
contact
powder
resistance
contact material
al2o3
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58122133A
Other languages
Japanese (ja)
Inventor
Toshiharu Hoshi
俊治 星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Gakki Co Ltd
Original Assignee
Nippon Gakki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Gakki Co Ltd filed Critical Nippon Gakki Co Ltd
Priority to JP58122133A priority Critical patent/JPS6013039A/en
Publication of JPS6013039A publication Critical patent/JPS6013039A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/021Composite material
    • H01H1/025Composite material having copper as the basic material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Contacts (AREA)

Abstract

PURPOSE:To obtain a contact material for large-current high-frequency switching with superior arc resistance, wear resistance and contact characteristics by dispersing a specified amount of Al2O3 in a Cu matrix. CONSTITUTION:This contact material is obtd. by dispersing 0.1-5wt% Al2O3 in a Cu matrix. By dispersing very hard Al2O3 in the hard Cu matrix, a dispersion strengthening effect is produced, and the hardness of the whole contact material is increased to improve the wear resistance. At the same time, the heat resistance is improved to provide superior arc resistance. Since the contact material is hard, the contact pressure can be increased. Since the matrix is made of Cu, the contact resistance is not especially high, and superior contact characteristics are provided. Cu-Al alloy powder is mixed with Cu2O powder, and after internally oxidizing the Al by heating, the mixture is compacted and sintered to manufacture said contact material. A mixture of Cu powder with Al2O3 powder may be compacted and sintered.

Description

【発明の詳細な説明】 この発明は大出力の直流モータの誘導負荷を制御するリ
レーやカムスイッチ、カバナ等の接点の如く、大電流を
高頻度で開閉する電気接点の材料に関し、Cu基地中に
o、 i〜5チのAA’203(アルミナ)を分散させ
たアルミナ分散強化銅合金を用いることにより、耐アー
ク性、耐摩耗性、接触特性を改善して大電流の開閉に耐
えるようにしたものである。
Detailed Description of the Invention The present invention relates to materials for electrical contacts that frequently open and close large currents, such as contacts for relays, cam switches, cabanas, etc. that control the inductive load of high-output DC motors. By using an alumina dispersion-strengthened copper alloy in which AA'203 (alumina) is dispersed, arc resistance, wear resistance, and contact characteristics are improved to withstand high current switching. This is what I did.

従来のこの種の大電流高頻度開閉接点の材料としては、
Pt −Ir合金あるいはAg −Cu合金等の合金系
接点材料が知られている。これらの合金系接点材料は使
用開始初期においては比較的接触抵抗が低く、安定であ
るものの、特にAg −’ Cu合金では火花放電によ
シ短期間で溶着を起し易く、所謂耐アーク性に劣る欠点
があシ、一方Pt −Ir合金は、接点接触抵抗を大き
くしておかなければ接触抵抗が急激に増加する欠点があ
シ、また一般にこの種の合金系接点材料は固有抵抗が大
きい欠点がある。またカーボン系接点材料も上述のよう
な接点に使用されることがあるが、カーボン系接点材料
はその固有抵抗が合金系接点材料よシもさらに高く、そ
のため5〜IOA程度の大電流では抵抗発熱が大きくな
って、その接点が取付けられているバネ材料を軟化させ
てしまう欠点がある。
Conventional materials for this type of high-current, high-frequency switching contacts include:
Alloy contact materials such as Pt-Ir alloy or Ag-Cu alloy are known. Although these alloy-based contact materials have relatively low contact resistance and are stable in the initial stage of use, Ag-'Cu alloys in particular are susceptible to welding in a short period of time due to spark discharge, resulting in poor arc resistance. On the other hand, Pt-Ir alloy has the disadvantage that the contact resistance increases rapidly unless the contact resistance is increased, and this type of alloy contact material generally has the disadvantage of high specific resistance. There is. Carbon-based contact materials are also sometimes used for the contacts mentioned above, but carbon-based contact materials have a higher specific resistance than alloy-based contact materials, and therefore resistive heat generation occurs at large currents of about 5 to IOA. The disadvantage is that the contact becomes large and softens the spring material to which the contact is attached.

一方最近では例えば特開昭58−16043号公報等に
記載されているように、Ag基地中に各種の金属酸化物
を分散させた酸化物分散銀合金が前述のような大電流高
頻度開閉接点材料として使用されるようになっている。
On the other hand, recently, as described in Japanese Patent Application Laid-Open No. 58-16043, oxide-dispersed silver alloys in which various metal oxides are dispersed in an Ag base have been used for high-current, high-frequency switching contacts as described above. It is now used as a material.

この種の接点材料は、その電気抵抗がAg自体の固有抵
抗に近く、前述の合金系接点材料と比較して格段に電気
抵抗が小さい。しかしながらAgをマトリックスとして
いるため軟質であシ、そのため耐摩耗性が低く、また接
触圧を大きくすることができない等の欠点かあった。
This type of contact material has an electrical resistance close to the specific resistance of Ag itself, and has a much lower electrical resistance than the aforementioned alloy contact material. However, since it is made of Ag as a matrix, it is soft and therefore has low wear resistance, and also has drawbacks such as being unable to increase contact pressure.

この発明は以上の事情に鑑みてなされたもので、耐アー
ク性、耐摩耗性、接触特性が優れ、接点耐用寿命を従来
よりも大幅に延長することができる大電流高頻度開閉に
適した接点材料を提供することを目的とするものである
This invention was made in view of the above circumstances, and is a contact suitable for high-current, high-frequency switching, which has excellent arc resistance, wear resistance, and contact characteristics, and whose service life can be significantly extended compared to conventional ones. The purpose is to provide materials.

すなわちこの発明の接点材料は、Cu(銅)基地に01
〜5%のA−i2o5(アルミナ)を分散させたもので
あり、このように基地としてCuを用いかつ分散相とし
てAl2O3を用いることによって耐アーク性、耐摩耗
性、接触特性を良好となし得たのである。
That is, the contact material of this invention has a Cu (copper) base with 01
~5% of A-i2O5 (alumina) is dispersed, and by using Cu as the base and Al2O3 as the dispersed phase, good arc resistance, wear resistance, and contact characteristics can be achieved. It was.

以下この発明の接点材料についてさらに詳細に説明する
The contact material of the present invention will be explained in more detail below.

この発明の接点材料においては、基地がAgよシも硬質
なCuであること、および極めて硬質なA7..03に
よる分散強化効果とが相俟って、全体として硬度が高く
、優れた耐摩耗性が得られる。またAl2O3の分散に
よυ耐熱性が向上して、優れた耐アーク性が得られる。
In the contact material of the present invention, the base is Cu, which is harder than Ag, and A7. .. Coupled with the dispersion strengthening effect of 03, the overall hardness is high and excellent wear resistance is obtained. Further, the dispersion of Al2O3 improves the υ heat resistance and provides excellent arc resistance.

そして接触特性の点からは前述のように硬質なため接触
圧を高くすることができ、しかも基地がCuであるため
特に接触抵抗が高いことはなく、また電気抵抗も純Cu
O値に近い。但しA1206が0.1チ未満では、Al
2O3の分散による耐アーク性向上効果や耐摩耗性向上
効果がほとんど得られず、一方Al2O3が5チを越え
れば、導電率が低くなって接点材料どして不適当となる
In terms of contact characteristics, as mentioned above, it is hard, so it is possible to increase the contact pressure, and since the base is Cu, the contact resistance is not particularly high, and the electrical resistance is also pure Cu.
Close to O value. However, if A1206 is less than 0.1 inch, Al
The effect of improving arc resistance and wear resistance due to the dispersion of 2O3 is hardly obtained, and on the other hand, if Al2O3 exceeds 5 cm, the conductivity becomes low and it becomes unsuitable as a contact material.

したがってAJ?203量は01〜5%の範囲に限定し
た。
Therefore AJ? The amount of 203 was limited to a range of 0.01 to 5%.

この発明の接点材料を製造する方法としては、いわゆる
内部酸化法とアルミナ粉末混合焼結法とがあるが、Al
2O3量を01〜2.0多種度の比較的小量とする場合
には内部酸化法が適当であシ、一方Al2O3量を20
チ程度から5チまでの比較的多量とする場合にはアルミ
ナ粉末混合焼結法が適当である。
Methods for manufacturing the contact material of this invention include the so-called internal oxidation method and the alumina powder mixed sintering method.
The internal oxidation method is suitable when the amount of 2O3 is a relatively small amount with a diversity of 0.01 to 2.0.
If the amount is relatively large, from about 100 cm to 5000 cm, the alumina powder mixing and sintering method is suitable.

前者の内部酸化法について説明すると、この場合には先
ずA7を0.05〜1.0%程度含有す゛る一100メ
ツシー程度のCu −A1合金粉末を製造する。そのC
u −A1合金粉末を製造する手段としては、例えばN
2ガス等の不活性ガスを用勝たガスアトマイズ法等を適
用すれば良い。次いでCu −AA合金粉末に、その合
金粉末中のA7をA12o6に酸化させるだめの酸素を
供給する酸化体を添加混合する。この酸化体としては、
この発明の接点材料の場合平均粒径1〜2μm程度のC
u20(酸化第1銅)を用いることが望ましい。この場
合Cu 20の添加量は前記Cu −A1合金粉末中の
Alを酸化させるに必要な0を供給するに足りる量とす
れば良く、例えばCu −AA金合金中Al量をAf)
とすれば、そのCu −A7合金粉末1001に対して
必要なCu 20−はB (P)は、 で与えられる。このような酸化体例えばCu 20粉末
をCu −AA!A7合金粉末加配合した後には、ボー
ルミルあるいはV型ミキサー等によシ充分に攪拌混合す
る。次いでその混合粉体に対し内部酸化処理を施す。す
なわち、例えば銅製の容器中に前記混合粉体を充填し、
望ましくは800〜950℃の温度において1〜10時
間加熱する。このように加熱することによってCu −
A7合金粉末中のAlがCu2O中の0によって酸化さ
れて、微細なAl2O5が生成されるとともにCu 2
0が還元される。
To explain the former internal oxidation method, in this case, first, a Cu--A1 alloy powder of about 1,100 methane containing about 0.05 to 1.0% of A7 is produced. That C
As a means for producing the u-A1 alloy powder, for example, N
A gas atomization method using an inert gas such as 2 gases may be applied. Next, an oxidizer that supplies oxygen for oxidizing A7 in the alloy powder to A12o6 is added to and mixed with the Cu-AA alloy powder. This oxidant is
In the case of the contact material of this invention, C with an average particle size of about 1 to 2 μm
It is desirable to use u20 (cuprous oxide). In this case, the amount of Cu 20 added may be an amount sufficient to supply 0 necessary to oxidize Al in the Cu-A1 alloy powder, for example, the amount of Al in the Cu-AA gold alloy is Af).
Then, the Cu 20- required for the Cu-A7 alloy powder 1001 is given by B (P). Such an oxidant, for example, Cu 20 powder, can be used as Cu-AA! After adding and blending the A7 alloy powder, the mixture is sufficiently stirred and mixed using a ball mill or a V-type mixer. Then, the mixed powder is subjected to internal oxidation treatment. That is, for example, the mixed powder is filled in a copper container,
It is preferably heated at a temperature of 800 to 950°C for 1 to 10 hours. By heating in this way, Cu −
Al in the A7 alloy powder is oxidized by 0 in Cu2O, producing fine Al2O5 and Cu2
0 is returned.

なおここで銅製の容器中に混合粉体を充填するのは、内
部酸化処理中に混合粉体が汚染されることを防止するた
めである。このようにして内部酸化処理を行った後には
、主として粉末表面の酸化物、特に還元されずに残った
C u 20を還元させて焼結性を良好にするため、水
素雰囲気等の還元界囲気にて800〜b 理を行う。このようにして得られたAl2O3含有Cu
粉末を圧粉、焼結すれば、目的とする材料、すなわちC
u基地中にAl2O3が分散された材料を得ることがで
きる。この圧粉、焼結のための具体的手段としては公知
の種々の方法を適用できるが、例えば銅製の缶もしくは
パイプに充填して、押出比8〜30にて800〜900
℃の温度で熱間型押しを行ない、さらに必要に応じて冷
間圧延を行ない、750〜900℃程度で焼鈍すれば良
い。
Note that the reason why the mixed powder is filled in the copper container is to prevent the mixed powder from being contaminated during the internal oxidation treatment. After performing the internal oxidation treatment in this way, in order to mainly reduce the oxides on the powder surface, especially the unreduced Cu 20, and improve the sinterability, a reducing atmosphere such as a hydrogen atmosphere is added. At 800-b. Al2O3-containing Cu obtained in this way
If the powder is compacted and sintered, the desired material, namely C
A material in which Al2O3 is dispersed in the u base can be obtained. Various known methods can be used as specific means for compacting and sintering the powder.
It is sufficient to perform hot embossing at a temperature of 750 to 900°C, further cold rolling if necessary, and annealing at a temperature of about 750 to 900°C.

一方後者のアルミナ粉末混合焼結法による場合、Cu粉
末と粒径0.01〜1μm程度のAl2O5粉末とを混
合し、常法にしたがって圧粉、焼結すれば良い。例えば
その混合粉末を銅製の缶もしくはパイプに充填し、前記
同様に押出比8〜30にて800〜900°Cで熱間押
出しを行ない、さらに必要に応じて冷間圧延を施した後
、750〜900℃程度で焼鈍すれば良い。
On the other hand, in the case of the latter alumina powder mixing and sintering method, Cu powder and Al2O5 powder having a particle size of approximately 0.01 to 1 μm may be mixed, and the powder may be compacted and sintered according to a conventional method. For example, the mixed powder is filled into a copper can or pipe, hot extruded at 800 to 900°C at an extrusion ratio of 8 to 30 in the same manner as described above, and further cold rolled if necessary. Annealing may be performed at about ~900°C.

以下にこの発明の実施例および比較例を記す。Examples and comparative examples of this invention are described below.

実施例1〜5 一対の接点対の材料として、Cu基地に種々の量のAl
2O,を分散させた材料を用い、第1図に示すような寿
命試験装置にてその接点対の耐用寿命を調べた。第1図
において1,2は接点対、3はその接点対1,2の開閉
を行うだめのカム、4は負荷としての永久磁石界磁型の
直流モータ、5は直流電源である。また寿命試験条件は
、直流電源電圧12v1電流4A、閉時の接点圧601
、開閉ザイクルを閉2秒、開5秒として行った。この寿
命試験の結果を第1表に併せて示す。なおここでAl2
O3量が20%以下の材料については前述の如き内部酸
化法にて製造し、2.0%を越える材料についてはアル
ミナ粉末混合焼結法にて製造した。
Examples 1 to 5 Various amounts of Al were added to the Cu base as the material for a pair of contact pairs.
Using a material in which 2O was dispersed, the service life of the contact pair was examined using a life test device as shown in FIG. In FIG. 1, 1 and 2 are a contact pair, 3 is a cam for opening and closing the contact pair 1 and 2, 4 is a permanent magnet field type DC motor as a load, and 5 is a DC power source. In addition, the life test conditions were: DC power supply voltage 12v1 current 4A, contact pressure when closed 601
The opening/closing cycle was set to close for 2 seconds and open for 5 seconds. The results of this life test are also shown in Table 1. Note that here Al2
Materials with an O3 content of 20% or less were manufactured by the internal oxidation method as described above, and materials with an O3 content of more than 2.0% were manufactured by an alumina powder mixing sintering method.

実施例6〜8 一対の接点対の内、一方の接点の材料としてCu基地に
種々の量のAl2O3を分散させた材料を用い、他方の
接点の材料として、70%Pt−30%rr合金を用い
、前記同様な寿命試験を行った。その結果を第1表に併
せて示す。
Examples 6 to 8 Among a pair of contacts, a material in which various amounts of Al2O3 were dispersed in a Cu base was used as the material for one contact, and a 70%Pt-30%rr alloy was used as the material for the other contact. The same life test as above was conducted using the same. The results are also shown in Table 1.

比較例1 一対の接点対の材料として、70 % Ag −30%
 Cu合金を用い、前記同様な寿命試験を行った。
Comparative Example 1 70% Ag -30% as material for a pair of contacts
A life test similar to the above was conducted using a Cu alloy.

その結果を第1表に併せて示す。The results are also shown in Table 1.

比較例2 一対の接点対の材料としてAg基地に15係のCdOを
分散させた1 5 % CdO分散強化銀合金を用い、
前記同様な寿命試験を行った。その結果を第1表に併せ
て示す。
Comparative Example 2 A 15% CdO dispersion-strengthened silver alloy in which 15% CdO was dispersed in an Ag base was used as the material for a pair of contacts.
A life test similar to that described above was conducted. The results are also shown in Table 1.

第1表 第1表から明らかなように接点材料としてAg−Cu系
の合金系材料を用いた比較例1では極めて短期間で船着
して使用困難となったのに対し、接点対の一方または双
方にアルミナ分散強化銅合金を用いた各実施例の場合に
は耐用寿命が著しく長く、最低でも20万回以上の開閉
が可能であった。
Table 1 As is clear from Table 1, Comparative Example 1, which used an Ag-Cu alloy material as the contact material, reached the ship in an extremely short period of time and became difficult to use. In the case of each example in which alumina dispersion-strengthened copper alloy was used for both, the service life was extremely long, and it was possible to open and close at least 200,000 times.

またAg基の分散強化合金を用いた比較例2と比較して
も耐用寿命が長いことが明らかである。
Furthermore, it is clear that the service life is long when compared with Comparative Example 2 using an Ag-based dispersion-strengthened alloy.

以上の説明で明らかなようにこの発明の接点材料は従来
の合金系接点材料と比較して耐アーク性、耐摩耗性が優
れており、また従来のカーボン系接点材料の如く電気抵
抗、接触抵抗が特に大きいということがなく、さらに従
来の酸化物分散銀合金と比較しても耐摩耗性が高くしか
も接触圧を大きくできる等、耐アーク性、耐摩耗性、接
触特性、電気的特性のいずれもが優れており、したがっ
て耐用寿命を従来よりも大幅に延長でき、また大電流高
頻度開閉に適している等、種々の利点を有するものであ
る。
As is clear from the above explanation, the contact material of the present invention has superior arc resistance and wear resistance compared to conventional alloy-based contact materials, and has superior electrical resistance and contact resistance like conventional carbon-based contact materials. It is not particularly large, and has high wear resistance compared to conventional oxide-dispersed silver alloys, and can increase contact pressure. Therefore, it has various advantages, such as being able to significantly extend its service life compared to conventional methods, and being suitable for high-current, high-frequency switching.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例の接点材料に適用した寿命試験装置を概
略的に示す略解図である◇
Figure 1 is a schematic illustration of a life test device applied to the contact material of the example.

Claims (1)

【特許請求の範囲】[Claims] Cu基地中に0.1〜5チ(重量%、以下同じ)のAl
2O3が分散されている接点材料。
0.1 to 5 inches (weight%, same below) of Al in Cu base
Contact material in which 2O3 is dispersed.
JP58122133A 1983-07-05 1983-07-05 Contact material Pending JPS6013039A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58122133A JPS6013039A (en) 1983-07-05 1983-07-05 Contact material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58122133A JPS6013039A (en) 1983-07-05 1983-07-05 Contact material

Publications (1)

Publication Number Publication Date
JPS6013039A true JPS6013039A (en) 1985-01-23

Family

ID=14828429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58122133A Pending JPS6013039A (en) 1983-07-05 1983-07-05 Contact material

Country Status (1)

Country Link
JP (1) JPS6013039A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6360246A (en) * 1986-09-01 1988-03-16 Hitachi Ltd Casting alloy for contact for vacuum circuit breaker
JPH02145735A (en) * 1988-11-28 1990-06-05 Ngk Insulators Ltd Electrical contact material and its manufacture

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6360246A (en) * 1986-09-01 1988-03-16 Hitachi Ltd Casting alloy for contact for vacuum circuit breaker
JPH0458130B2 (en) * 1986-09-01 1992-09-16 Hitachi Ltd
JPH02145735A (en) * 1988-11-28 1990-06-05 Ngk Insulators Ltd Electrical contact material and its manufacture

Similar Documents

Publication Publication Date Title
US2470034A (en) Electric contact formed of a ruthenium composition
JPH0672276B2 (en) Method of manufacturing contact material for low voltage switchgear
CN101787460A (en) Silver-based alloy material and application thereof
US4018630A (en) Method of preparation of dispersion strengthened silver electrical contacts
JPS6013039A (en) Contact material
US5207842A (en) Material based on silver and tin oxide for the production of electrical contacts; electrical contacts thus produced
JP4947850B2 (en) Method for producing Ag-oxide based electrical contact material
JPS598010B2 (en) Electrical contact materials and manufacturing methods
JPS6013451A (en) Slide current collector
JPH0813065A (en) Sintered material for electrical contact and production thereof
JPS5931808B2 (en) electrical contact materials
JPS5938346A (en) Electrical contact material
JP2849663B2 (en) Electrical contact material and manufacturing method thereof
JPS6354770B2 (en)
KR100464868B1 (en) Electric contact material
JPS5896836A (en) Electric contact material
JPS5938347A (en) Electrical contact material
JPS62267437A (en) Electric contact point material and its production
JPH03236443A (en) Sintered contact material for breaking current
JPH0873966A (en) Production of electrical contact material
JPS6021303A (en) Manufacture of electrical contact material
JPS5855546A (en) Electric contact material
JPS60121243A (en) Electrical contact material
Hu Powder Metallurgy Electrical Contact Materials
JPH03238718A (en) Silver-oxide sintering contact material and manufacture thereof