JPS6013006A - Method for controlling distribution of blast furnace charge - Google Patents

Method for controlling distribution of blast furnace charge

Info

Publication number
JPS6013006A
JPS6013006A JP12003383A JP12003383A JPS6013006A JP S6013006 A JPS6013006 A JP S6013006A JP 12003383 A JP12003383 A JP 12003383A JP 12003383 A JP12003383 A JP 12003383A JP S6013006 A JPS6013006 A JP S6013006A
Authority
JP
Japan
Prior art keywords
blast furnace
charge
influx
television camera
temp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12003383A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Yamaguchi
一良 山口
So Ono
創 小野
Akihiro Tsuda
津田 昭弘
Tomomichi Nakagome
倫路 中込
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP12003383A priority Critical patent/JPS6013006A/en
Publication of JPS6013006A publication Critical patent/JPS6013006A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/008Composition or distribution of the charge

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)
  • Blast Furnaces (AREA)

Abstract

PURPOSE:To control surely the distribution of blast furnace charge with high accuracy by measuring continuously the max. temp. on the surface of the charge at the top of the blast furnace with an IR television camera and controlling the operation by the control values of an influx rate and max. temp. CONSTITUTION:The max. temp. on the surface of the charge at the top of a blast furnace is continuously measured with an IR television camera provided in the mouth of the blast furnace. The case when the measured value in the late period is relatively lower than the measured value with all the measured values of each charge unit is regarded as an influx phenomenon and the influx ratio is defined as (influx ratio) = (the number of influx generated)/(the number of measurement to be changed over). Control values are adequately made respectively with such reflux ratio and max. temp. The operation is controlled in accordance with said control values, by which the distribution of the charge in the blast furnace is surely controlled with high accuracy in correct timing.

Description

【発明の詳細な説明】 本発明は、高炉操業において、赤外線テレビカメラによ
ジ得られたデータと処理して、装入物の分布を管理する
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for controlling the distribution of charge in blast furnace operations by processing data obtained by an infrared television camera.

高炉炉頂部の装入物の表面温度を測定するため、炉口部
に炉頂部の装入物表面温度を直接測定する赤外線テレビ
カメラを設置し、それの示す温度分布パターンを目視判
断することにより、該温度分布ノぐターンを、 l) 装入変更時のアクションの良否の判定2)操業変
動時の炉内状況の確認 等に利用することは、従来から広く行なわれてきた。し
かし、これらの利用方法はいずれも短期的で、しかも操
業者が主として定性的に使用しているものであるため、
炉内状況との対応の点でタイミングの上から不十分であ
った。
In order to measure the surface temperature of the charge at the top of the blast furnace, an infrared television camera that directly measures the surface temperature of the charge at the top of the furnace is installed at the furnace mouth, and the temperature distribution pattern shown by the camera is visually judged. It has been widely used in the past to use the temperature distribution log turn for l) determining the success or failure of actions during charging changes, and b) checking the status inside the furnace during operational fluctuations. However, all of these usage methods are short-term and are mainly used qualitatively by operators.
The timing was insufficient in terms of responding to the situation inside the reactor.

一方それに関連し、これらのデータを定量的に処理して
炉内装入物の流れ込み検知手段に用いたものが、特開昭
58−22313号公報に開示されている。即ちこの方
法は、赤外線テレビカメラで撮影されたものを高温、低
温の温度分布パターンに分類し、それぞれのパターン面
積の変化を定量的にめて流れ込み現象を検知するもので
ある。
On the other hand, related to this, a device in which these data are quantitatively processed and used as a means for detecting the inflow of contents into the furnace is disclosed in Japanese Patent Application Laid-Open No. 58-22313. That is, this method classifies images taken by an infrared television camera into high temperature and low temperature temperature distribution patterns, and quantitatively measures changes in the area of each pattern to detect the flow-in phenomenon.

しかしこの方法も、流れ込み現像を検知子るには有効な
手段ではあるが、この方法では操業の全般的管理をする
ことはできない。
However, although this method is also an effective means for detecting flow development, it does not allow for overall control of the operation.

本発明は赤外線テレビカメラを用い、これにより得られ
たデータを定量的に処理して、流れ込みを検知するのみ
ならず、これを利用して長期的な操業管理を行なうため
の分布・a理方法を提供するものであって、その要旨と
するところは、高炉炉口部に設けられた赤外線テレビカ
メラにより、高炉炉頂部の装入物表面の最高温度を連続
的に測定し。
The present invention uses an infrared television camera and quantitatively processes the data obtained by the camera to not only detect inflow, but also to utilize this to perform long-term operational management. The gist of the system is to continuously measure the maximum temperature of the surface of the charge at the top of the blast furnace using an infrared television camera installed at the mouth of the blast furnace.

装入単位ごとの全測定値について前期測定値よりも後期
測定値が相対的に低い場合を流れ込み現象の発生と見な
し。
For all measured values for each charging unit, if the latter measured value is relatively lower than the earlier measured value, this is considered to be the occurrence of a run-in phenomenon.

流れ込み比率萌;流れ込み発生口a(a)/測定切替数
(c) により定義される流れ込み比率および最高温度について
おのおの管理値を設け、この管理値にょ9操業管理を行
なうことにある。
Inflow ratio: Control values are established for each inflow ratio and maximum temperature defined by inflow generation port a (a)/measurement switching number (c), and operation management is performed based on these control values.

以下に木発81JK到達するまでの過程及び実施例につ
いて詳細に述べる。
Below, the process and examples to reach Kibatsu 81JK will be described in detail.

第1図に赤外線テレビカメラから得られる代表的な温度
分布パターンを示す。なお巾は最高温直位置、12ンは
X軸、3νはY軸である0本発明においては該温度分布
ノぞターンからこれの内蔵する情報。
Figure 1 shows a typical temperature distribution pattern obtained from an infrared television camera. Note that the width is the highest temperature direct position, 12n is the X axis, and 3ν is the Y axis. In the present invention, the information contained therein is determined from the temperature distribution nozzle turn.

すなわち原始データとして第1表に示すものを取り出し
た。
That is, the data shown in Table 1 was extracted as the original data.

第1表 赤外線テレビカメラ原始データまた、上記原始
データより次の加工データを作成した。
Table 1 Infrared television camera original data The following processed data was created from the above original data.

l)流れ込み比率 装入薇禰単位ごとの測定数t−nとするとき、測定切替
数Cは a = n −1 で示される。ここでj=l〜Cの範囲内において、MT
 (j+1 )−MT(j)< 0である回数をaとす
るとき、 F=a/c で示されるFを流れ込み比率と定義する。
l) Inflow Ratio When the number of measurements per charging unit is t-n, the number of measurement changes C is expressed as a = n -1. Here, within the range of j=l~C, MT
When the number of times (j+1)-MT(j)<0 is defined as a, F expressed as F=a/c is defined as the inflow ratio.

2)中心流指数 任意の時刻jに対して、 1==1 0 CY(j) =MT(j)/(ZTY(i 、 j )
/2 Q )i=1 で示される0X(j)およびCY(j)をおのおのX軸
方向中心流指数、Y軸方向中心流指数と定義する。
2) Central flow index For any time j, 1==1 0 CY(j) =MT(j)/(ZTY(i, j)
/2 Q ) i=1 0X(j) and CY(j) are defined as the X-axis direction center flow index and the Y-axis direction center flow index, respectively.

3)最高温度位置移動度 j=x〜Cの範囲内において で示されるLMを最高温度位置移動度と定義する。3) Maximum temperature position mobility within the range of j=x~C LM shown by is defined as the maximum temperature position mobility.

次に平均値を次のようにしてめた。Next, the average value was determined as follows.

通常高炉への装入はc、c、o、oに示す順序で行なわ
れる。ここで、Cはコークス、0は鉱石を示しているが
、装入順序を明確にするために。
Usually, charging to the blast furnace is carried out in the order shown in c, c, o, o. Here, C indicates coke and 0 indicates ore, but to clarify the charging order.

tc、 nc、 io、 no と書かれることもある
。このIC,I[C,10,ffOt’lt装入単位(
以下〕々ラッチいう)と呼ばれ一連のIC,Ic、 I
O,110はチャージと呼ばれている。ある1つのノζ
ツチが装入され。
Sometimes written as tc, nc, io, or no. This IC, I [C, 10, ffOt'lt charging unit (
A series of ICs, Ic, I
O,110 is called a charge. One particular noζ
Tsuchi is charged.

赤外線テレビカメラの仕切弁が開いてから1次のパッチ
装入のために閉じるまで平均80秒前後でめり、10秒
ごとにデータを@pこんだので1 、パッチには平均8
つのデータを含む。平均値処理はこのパッチ平均の他に
、チャージ平均、番平均、日平均について行つt、なお
、番平均、日平均についてはチャージ平均について行な
うだけでなく、/々ラッチ均すなわちIC,…C,IO
,10別にも行つt、これらの各種の平均値および10
秒ごとにと9こむ値、すなわち瞬時値は、前記の原始デ
ータおよび加工データの全てシてついて作成し次。
It takes about 80 seconds on average from when the gate valve of the infrared television camera opens until it closes for the first patch loading, and data is loaded every 10 seconds, so the average time for each patch is 8.
Contains 1 data. In addition to this patch average, average value processing is performed on the charge average, number average, and daily average.In addition, the number average and daily average are not only performed on the charge average, but also on the latch average, that is, IC,...C ,IO
, 10 t, the average value of each of these and 10
The value that increases by 9 per second, that is, the instantaneous value, is created by combining all of the original data and processed data mentioned above.

に瞬時値は存在せず、ノ々ツチ平均が最小単位となる。There is no instantaneous value for , and the Nonotsuchi average is the smallest unit.

次に炉内状況との対応は、赤外線テレビカメラの代表的
情報と既設検出端の代表的情報の両方を検討することに
より、調査した。そして赤外線テレビカメラの代表的情
報としては、中心部のガス流の強さと対応する最高温度
と、中心部の装入物の表面1状の安定性と対応する流れ
込み比率を採用した。また既設検出端の代表的情報とし
ては、径方向のガス分布を表わす水平ゾンデηCO分布
とクロスゾンデ温度分布、通気性を表わすに値、還元能
を表わすηco b炉下部熱負荷を表わす炉腹温度を採
用した。
Next, correspondence with the situation inside the reactor was investigated by examining both representative information from the infrared television camera and representative information from the existing detection terminal. As typical information from the infrared television camera, we adopted the maximum temperature corresponding to the strength of the gas flow in the center and the inflow ratio corresponding to the stability of the surface of the charge in the center. In addition, typical information on the existing detection terminals includes the horizontal sonde ηCO distribution, which represents the radial gas distribution, the cross-sonde temperature distribution, the value, which represents the air permeability, and the furnace temperature, which represents the heat load in the lower part of the furnace. It was adopted.

第2図に赤外線テレビカメラのデータ処理装置から得ら
れた6ケ月間の上記各項目についてのデータの推移の1
例を示す。ここではスペースの都合上、旬別データをの
せたが、爽涼は番平均ないし日平均を使用した。この中
で第1月上旬と第6月中旬以降は操業が良好な時期に相
当し、第4月中旬は通気不良により操業が悪化した時期
である。
Figure 2 shows the trends in data regarding each of the above items over a six-month period obtained from the data processing device of an infrared television camera.
Give an example. Due to space limitations, I have included seasonal data here, but for Soryo I have used the average or daily average. Among these, the period from the beginning of the first month to the middle of the sixth month corresponds to the period when the operation is good, and the period from the middle of the fourth month is the period when the operation deteriorates due to poor ventilation.

さて、第2図にお匹て、操業が良好な状態から次第に悪
化状態に移行する時期の既設検出端からの各項目データ
の動きに着目すると、ガス流分布の周辺流化、通気抵抗
の増加、還元能の低下、炉下部熱負荷すなわち炉下部熱
負荷の低下が見られ。
Now, in line with Figure 2, if we focus on the movement of each item of data from the existing detection terminal when the operation gradually transitions from a good state to a deteriorating state, we can see that the gas flow distribution becomes peripheral and the ventilation resistance increases. , a decrease in the reducing ability and a decrease in the heat load in the lower part of the furnace, that is, the heat load in the lower part of the furnace, was observed.

いわゆる炉下部不活性化の進行時期を示している。This shows the progress period of so-called inactivation of the lower part of the reactor.

他方、この時期の赤外線テレビカメラのデータに、第3
月下旬から第4月中旬にかけて通気抵抗の増加に対処す
るため大幅にコークス比を上げたことを考慮するならば
、 l)最高温度の低下とノ々ツチ間格差の増加2)流れ込
み比率の増加 という特徴を表わしている。このことは逆に、最高温度
と流れ込み比率についておのおのの管理値を設け、この
管理値により操業管理を行なうならば、操業トラブルを
未然に回避できることを示しており、第1月上旬から第
4月上旬に至る約3ケ下であること という管理値を作成した。
On the other hand, infrared television camera data from this period shows the third
Considering that the coke ratio was significantly increased from late April to mid-April in order to cope with the increase in ventilation resistance, we can see that: 1) a decrease in the maximum temperature and an increase in the gap between Nototsuchi; and 2) an increase in the inflow ratio. It represents the characteristics. On the contrary, this indicates that if management values are set for each of the maximum temperature and inflow ratio, and operational management is performed based on these management values, operational troubles can be avoided. We have created a control value that is approximately 3 degrees below the average temperature until the beginning of the month.

そして最高温度、流れ込み頻度とも前記管理値を満足し
ている。第6月中旬以降は操業が安定していた。
Both the maximum temperature and the inflow frequency satisfy the above-mentioned control values. Operations have been stable since mid-June.

なお、これらの管理値は第2図の各項目データの場合に
ついて作成したものであり1高炉のプロフィルや操業レ
ベルが異なれば、当然今回提示した値とは異なるものと
推定される。
Note that these control values were created for each item of data in Figure 2, and if the profile and operation level of a single blast furnace differ, it is assumed that the values will naturally differ from the values presented here.

次に上記の管理値を装入変更に応用した例について説明
する。第6月中旬以降、全体的に操業は安定化してきて
いるものの、第2図の炉腹温度の低下が序々に進行して
いることを示している。そこで炉腹温度上昇をねらって
■0を自振りにしたが、過度に中心流が抑えられないよ
うに印平均での最高温度、流れ込み比率が上記の管理値
を満足しなくなったら直ちに■0の自振l1llを少な
くし友。
Next, an example in which the above management values are applied to charging changes will be explained. Although the overall operation has stabilized since mid-June, Figure 2 shows that the core temperature has gradually decreased. Therefore, we set ■0 to self-swing in order to raise the furnace belly temperature, but in order to prevent the central flow from being excessively suppressed, we changed ■0 as soon as the maximum temperature in the mark average and inflow ratio no longer satisfy the above control values. A friend who reduces self-swing l1ll.

また、より細かな動きを見るために、第3図、第4図に
示すように最高温度瞬時値のデータもとった。ここで第
3図のMA 5.1.11. lおよび第4図のMA 
5.1,1,3.5とはムーバブルアーマ−のノツチが
tc、nc、io、no についておのおの5.1.1
.1および5,1.1,3.5であることを示している
。これらの図から明らかなように、 no t−自振り
にしたことにより最高温度の低下は若干あるものの、流
れ込み頻度はほとんど変わらず、■Oは中間部までしか
達していないものと推定された。すなわち、当初の目的
である周辺流の助長とある程度の中心流の確保はほぼ満
足されているものと推定され几。
In addition, in order to see more detailed movements, data on the instantaneous maximum temperature values were also taken as shown in Figures 3 and 4. Here MA 5.1.11 in FIG. l and MA in Fig. 4
5.1, 1, and 3.5 are 5.1.1 for movable armor notches tc, nc, io, and no.
.. 1 and 5, 1.1, and 3.5. As is clear from these figures, although there was a slight decrease in the maximum temperature due to the setting of not-self-swinging, the inflow frequency remained almost the same, and it was estimated that ■O reached only the middle part. In other words, it is presumed that the original objectives of promoting peripheral flow and securing a certain degree of central flow have been largely satisfied.

以上の朶施例から明らかなように本発明方法によれば、
確爽にタイミングを失することなく精度の高い高炉の装
入物分布管理をなすことができる。
As is clear from the above examples, according to the method of the present invention,
It is possible to perform highly accurate blast furnace charge distribution management without losing timing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は赤外線テレビカメラで撮影された代表的な装入
物温度分布ノソターンを示す。第2図は赤外線テレビカ
メラのデータ処理装置を設置してから直近までの赤外線
テレビカメラおよび既設検出端のデータの推移を示す。 第3図、第4図は本発明による操業管理の例を示す。 代理人 弁理士 秋 沢 政 光 他2名 晴穫明碇 噸慢駅〈
Figure 1 shows a typical charge temperature distribution nosoturn photographed with an infrared television camera. FIG. 2 shows the transition of the data of the infrared television camera and the existing detection end from the time when the data processing device for the infrared television camera was installed until recently. FIGS. 3 and 4 show examples of operational management according to the present invention. Agent: Patent attorney Masamitsu Akizawa and 2 others

Claims (1)

【特許請求の範囲】 il+ 高炉炉口部に設けられた赤外線テレビカメラに
より、高炉炉頂部の装入物表面の最高温度を連続的に測
定し、装入単位ごとの全測定値について前記測定値より
も後期測定値が相対的に低い場合を流れ込み現象の発生
と見なし、 流れ込み比率[F]=流れ込み発生回数(a)/測定切
替数(c) によシ定義される流れ込み比率および最高温度について
0おのおの管理値を設け、この管理値により操業管理を
行なうことを特徴とする高炉装入物の分布管理方法。
[Claims] il+ The maximum temperature of the surface of the charge at the top of the blast furnace is continuously measured by an infrared television camera installed at the mouth of the blast furnace, and the measured value is calculated for all measured values for each charging unit. If the late measured value is relatively lower than , it is considered as the occurrence of inflow phenomenon, and the inflow ratio and maximum temperature are defined as follows: Inflow ratio [F] = Number of inflow occurrences (a) / Number of measurement switching (c) 1. A method for controlling the distribution of blast furnace charge, characterized in that a control value is set for each of the 0,000,000,000,000,000,000 yen, and operational control is performed based on the control value.
JP12003383A 1983-07-01 1983-07-01 Method for controlling distribution of blast furnace charge Pending JPS6013006A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12003383A JPS6013006A (en) 1983-07-01 1983-07-01 Method for controlling distribution of blast furnace charge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12003383A JPS6013006A (en) 1983-07-01 1983-07-01 Method for controlling distribution of blast furnace charge

Publications (1)

Publication Number Publication Date
JPS6013006A true JPS6013006A (en) 1985-01-23

Family

ID=14776238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12003383A Pending JPS6013006A (en) 1983-07-01 1983-07-01 Method for controlling distribution of blast furnace charge

Country Status (1)

Country Link
JP (1) JPS6013006A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002053785A1 (en) * 2000-12-28 2002-07-11 Nippon Steel Corporation Method, device and program for monitoring operating condition of blast furnace
DE112007001242T5 (en) 2006-05-25 2009-04-23 Asics Corp., Kobe Sole of a spikeschuhs
CN103409569A (en) * 2013-08-29 2013-11-27 武汉钢铁(集团)公司 Method for controlling airflow distribution by utilizing furnace top infrared image

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002053785A1 (en) * 2000-12-28 2002-07-11 Nippon Steel Corporation Method, device and program for monitoring operating condition of blast furnace
CN100335657C (en) * 2000-12-28 2007-09-05 新日本制铁株式会社 Method, device and program for monitoring operating condition of blast furnace
DE112007001242T5 (en) 2006-05-25 2009-04-23 Asics Corp., Kobe Sole of a spikeschuhs
CN103409569A (en) * 2013-08-29 2013-11-27 武汉钢铁(集团)公司 Method for controlling airflow distribution by utilizing furnace top infrared image

Similar Documents

Publication Publication Date Title
EP0641863B1 (en) Blast furnace operation management method and apparatus
CN108779506A (en) Phosphorus concentration method of estimation and control device is bessemerized in molten steel
JPS6013006A (en) Method for controlling distribution of blast furnace charge
CN114626303A (en) Blast furnace temperature prediction and operation guidance method based on neural network
EP3712281B1 (en) Blast control device for blast furnace and method therefor
KR101368504B1 (en) Method for assuming burden distribution of blast furnace
JP7502626B2 (en) Method for judging the condition of a blast furnace
KR100286670B1 (en) Apparatus and method for diagnosing heat level of blast furnace using expert system
JPH0420961B2 (en)
JP2696114B2 (en) Blast furnace operation management method
YAMAMOTO et al. Development of monitoring system for lumpy and cohesive zones in the blast furnace
JP3329244B2 (en) Blast furnace operation method
JPH0598325A (en) Device for controlling distribution of charging materials in blast furnace
JPS6018721B2 (en) How to operate a blast furnace
JPS6121284B2 (en)
JPH0784610B2 (en) Blast furnace operation method
JP2955444B2 (en) Estimation method of charge distribution state of blast furnace interior charge
JPS60169738A (en) Defective product detecting method of injection molded product
KR100383277B1 (en) Measurement method of change in blast furnace gas distribution
KR19990053078A (en) Blast furnace temperature compensation method
KR950010235B1 (en) Method of tapping &amp; slaging with blast f&#39;ce
JPH10237513A (en) Operation of blast furnace
JPH01205008A (en) Apparatus for controlling furnace heat in blast furnace
JPH01136912A (en) Automatic control system of furnace heat in blast furnace
JPH05279758A (en) Method for controlling sintering operation