JPS60129656A - Gas sensor - Google Patents

Gas sensor

Info

Publication number
JPS60129656A
JPS60129656A JP58238434A JP23843483A JPS60129656A JP S60129656 A JPS60129656 A JP S60129656A JP 58238434 A JP58238434 A JP 58238434A JP 23843483 A JP23843483 A JP 23843483A JP S60129656 A JPS60129656 A JP S60129656A
Authority
JP
Japan
Prior art keywords
oxygen
electrodes
hollow body
gas
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58238434A
Other languages
Japanese (ja)
Other versions
JPH0444949B2 (en
Inventor
Shintaro Hirate
平手 信太郎
Tetsumasa Yamada
哲正 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Nippon Tokushu Togyo KK
Niterra Co Ltd
Original Assignee
Mitsubishi Electric Corp
NGK Spark Plug Co Ltd
Nippon Tokushu Togyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, NGK Spark Plug Co Ltd, Nippon Tokushu Togyo KK filed Critical Mitsubishi Electric Corp
Priority to JP58238434A priority Critical patent/JPS60129656A/en
Publication of JPS60129656A publication Critical patent/JPS60129656A/en
Publication of JPH0444949B2 publication Critical patent/JPH0444949B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/417Systems using cells, i.e. more than one cell and probes with solid electrolytes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/4065Circuit arrangements specially adapted therefor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

PURPOSE:To make it possible to rapidly obtain an oxygen concn. detection value high in accuracy corresponding to the concn. of oxygen in gas to be measured even if said oxygen concn. is changed, by detecting a gas component from the relation of a current and voltage between electrodes of other hollow body. CONSTITUTION:A current supply means 11 is connected between the electrodes 5, 6 of one hollow body 2 so that a constant current flows from the electrode 6 to the electrode 5 while a power source 12 is connected between the electrodes 7, 8 of the other hollow body 4 so as to be capable of flowing an arbitrary current amount from the electrode 7 to the electrode 8 and, when voltage is applied by the power source 12 snd voltage and current between the electrodes 7, 8 are measured, a measuring result is obtained. Each of the hollow bodies 2, 4 only forms a rectangular parallelepiped opened in one direction and the production thereof is easy while, because oxygen gas supplied from the hollow body 2 to a gap part 3 is the open air flowed in from an opening part 2a and high in oxygen concn., a power source 11 requires no power and oxygen can be flowed into the gap part 3.

Description

【発明の詳細な説明】 [産業上の、)す…分野] −1一 本発明は酸素イオン伝導性固体電解質を利用したーガス
中の酸素または可燃性ガス成分濃度を電気的に測定する
ガスセンサに関する。
[Detailed Description of the Invention] [Industrial Field] -1 The present invention relates to a gas sensor that electrically measures the concentration of oxygen or combustible gas components in gas using an oxygen ion conductive solid electrolyte. .

[従来技術] 従来ガス中の酸素または可燃性ガス成分濃度の電気的測
定にはジルコニア等の酸素イオン伝導性固体、電解質を
用いた装置が知られている。、このような固体電解質を
、用いた酸素等のガス成分の明度測定装置の公知、の技
術として固体電解質の一方の電極面食含んで密閉状態の
空間を形成する室を備え、その室の壁に微小な拡散孔を
設置J1これにより被測定ガス中のガス成分を上記室内
に拡散導入ダるように電極面間)に電圧を印加すること
によゆ流れるN流量を測定して被測定ガス中のガス成分
濃度全測定する方法(特開昭52−722.86@、特
開昭53−6.6’292号)がある。。
[Prior Art] Conventionally, devices using oxygen ion conductive solids such as zirconia and electrolytes are known for electrically measuring the concentration of oxygen or combustible gas components in gas. A well-known technology of a device for measuring the brightness of gas components such as oxygen using such a solid electrolyte includes a chamber that forms a sealed space containing one electrode of the solid electrolyte, and a wall of the chamber is By installing a minute diffusion hole, a voltage is applied between the electrode surfaces (between the electrode surfaces) so that the gas components in the gas to be measured are diffused into the chamber, and the flow rate of N flowing through the hole is measured. There is a method of measuring the total concentration of gas components (JP-A-52-722.86@, JP-A-53-6.6'292). .

とこやか、これらの装置の構成は両電極の内、一方の電
極雰囲気は拡散制限用の小さい孔によってのみ被測定ガ
ス竺囲気と連通する密閉状空間−囲気であるので、被測
定ガス成分の濃度が急変し−2〜 た場合、この拡散部分からの拡散ガスが密閉室内全域に
およんで平衡状態に達するまで時間がかかり、そのため
応答性が低くなるという欠点があった。
In addition, the configuration of these devices is such that the atmosphere of one of the two electrodes is a closed space communicating with the surrounding atmosphere of the gas to be measured only through a small hole for diffusion restriction, so the concentration of the gas component to be measured is small. If there is a sudden change in -2~, it takes time for the diffused gas from this diffusion portion to reach an equilibrium state over the entire area of the sealed chamber, resulting in a disadvantage that the response becomes low.

一方、ガス成分の拡散制限作用を電極に密接して設けた
多孔質部材の連通気孔によって行なわせるものも提案さ
れている(特開昭55−62349号)が、多孔質材の
気孔率の制御が容易ではなく、また使用中目詰りによる
拡散抵抗の変化を起こしやすく、安定性に欠けるという
問題があった。
On the other hand, a method has been proposed in which the diffusion-restricting effect of gas components is achieved through continuous holes in a porous member provided in close proximity to the electrode (Japanese Patent Application Laid-open No. 55-62349), but the porosity of the porous material can be controlled. However, the diffusion resistance tends to change due to clogging during use, resulting in a lack of stability.

[発明の目的] 本発明は上記欠点を解決し被測定ガス中の酸素等のガス
成分濃度が変化してもそれに対する応答性が速く、かつ
個々の特性が安定しやすくて製造が容易であり、かつ使
用中安定した性能が得られる新規なセンサを提供するこ
とにある。
[Object of the Invention] The present invention solves the above-mentioned drawbacks, has a quick response to changes in the concentration of gas components such as oxygen in the gas to be measured, and is easy to manufacture because individual characteristics are easily stable. The object of the present invention is to provide a new sensor that can provide stable performance during use.

[発明の構成1 即ち、本発明の要旨とするところは、 酸素イオン伝導性固体電解質の壁部を有するとともに、
被測定気体に対して密閉状で外気側に開−3− 口部を有し、空隙部を隔てて配置された中空体二体件、 上記雨中空体の空隙部に面した壁部の内外両面に設けら
れた酸素ガス透過性の電極と、一方の中空体の電極に接
続されて所定量の酸素を空隙部へ流入させるように所定
量の電流を流すための通電手段と、 他方の中空体の電極に接続されて空隙部から酸素を汲み
出すように電流を流すための電力源と、を備え、上記他
方の中空体の電極間の電流と電圧との関係からガス成分
を検出するよう構成されたことを特徴とするガスセンサ
にある。
[Configuration 1 of the Invention In other words, the gist of the present invention is to have a wall portion of an oxygen ion conductive solid electrolyte,
Two hollow bodies that are sealed against the gas to be measured and open to the outside air, and are placed with a gap between them, the inside and outside of the wall facing the gap of the rain hollow body. Oxygen gas permeable electrodes provided on both sides, current-carrying means connected to the electrodes of one hollow body for passing a predetermined amount of current so as to cause a predetermined amount of oxygen to flow into the cavity, and the other hollow body. a power source connected to the electrodes of the body to flow a current so as to pump oxygen from the void, and detecting gas components from the relationship between the current and voltage between the electrodes of the other hollow body. A gas sensor is characterized in that:

上記酸素イオン伝導性固体電解質とは安定化または部分
安定化ジルコニア等の酸素イオン伝導性セラミック質焼
結体が用いられる。
As the oxygen ion conductive solid electrolyte, an oxygen ion conductive ceramic sintered body such as stabilized or partially stabilized zirconia is used.

上記酸素ガス透過性の電極は白金、金等のセラミック粉
末とのペーストを固体電解質上に印刷後焼き付ける方法
あるいはスパッタリングや蒸着により固体電解買上に設
ける方法等の一般的な方法により形成される。後者の薄
膜技術を用いて電極−4− を構成したとぎは、更にその上に厚膜技術によりセラミ
ック質の多孔質層を被着させ゛ることが好ましい。
The oxygen gas permeable electrode is formed by a general method such as printing a paste with ceramic powder such as platinum or gold on a solid electrolyte and then baking it, or applying it on a solid electrolyte by sputtering or vapor deposition. When the electrode 4- is constructed using the latter thin film technique, it is preferable to further deposit a ceramic porous layer thereon using the thick film technique.

次に本発明を実施例とともに説明してゆく。Next, the present invention will be explained along with examples.

[実′施例] 本発明の第1実施例のセンサ1を第1図に示す。[Example] A sensor 1 according to a first embodiment of the present invention is shown in FIG.

ここにおいて2は゛ジルコニアを主成分とする酸素イj
ン伝導性固体電解質により形成されている直方体状の中
空体であり、外気側にのみ開口部28を有して(ζる。
Here, 2 is "oxygen ion whose main component is zirconia"
It is a rectangular parallelepiped hollow body made of a conductive solid electrolyte, and has an opening 28 only on the outside air side.

また空隙部3を介して平行にもうイつの同形状のジルコ
ニアを主成をとする酸素イ芽ン伝―性固体電解質からな
るi方体状中空体4が配設され、同様に外気方向のみに
開口部4aを誉して(くる。上記雨中空体2.4の、空
隙部3に面した壁部2b、4bの内外面にそれぞれ酸素
゛ガス透過性の電極5.’a、7.aが形成されている
In addition, another i-cuboidal hollow body 4 made of an oxygen-conducting solid electrolyte mainly composed of zirconia is disposed in parallel with the gap 3, and similarly, only the outside air direction is provided. Oxygen gas permeable electrodes 5.'a, 7. are placed on the inner and outer surfaces of the walls 2b, 4b facing the cavity 3 of the rain hollow body 2.4, respectively. a is formed.

このように配置された中空体2,4はその台部9により
相対的位置i固定され、更に本センサ1が虜応されるべ
き測定部分め一部10、例えば内燃機関の排気−に台部
9の鍔部9aにj;り固定され−5− ている。
The hollow bodies 2, 4 arranged in this way are fixed in relative position i by their pedestal 9, and furthermore, the pedestal is attached to a measuring part 10 to which the sensor 1 is to be applied, for example the exhaust gas of an internal combustion engine. -5- is fixed to the flange 9a of 9.

上述の如き構成において、一方の中空体2の電極5.6
問に電極6から電極5へ向って一定電流11)oが流れ
るように通電手段11、例えば定電流源が接続され、ま
た他方の小空体4の電極7゜8間に゛電極7から電極8
へ向って任意の電流量を流すことができる電力源12が
接続され、それにより電圧を印加し、電極7.8間の電
圧及び電流を測定すると、第3図に示す如くの測定結果
が得られる。 □ との場合本センサ1を内燃機関の排ガス中の酸素または
可燃ガス成分の濃度の測定に適用したものとする。ここ
で横軸λは空燃比であり、縦軸は測定された電極7.8
間の重重■であり、又図中のグラフi電流を1+)1〈
’I’+12<’Ip aの関係にある各値1t)1’
、rp 2’、Irl’sに一定に保持した場合に得ら
れる電圧の急な変化を示す。ただし、電極5,6間には
予め一定の電′a姐の電111)oがバイアス電流とし
て流されている。また固体電解質4bおよび被測定ガス
の調度は充分一定−6− に保持されているとする。第3図から判る通り、例えば
電極7,8間の電流量を一定にしたときの電圧変化を検
出すれば空燃比λがλ〉1では、排ガス中の酸素の濃度
を検知することができ、λ〈1では可燃ガス成分の濃度
を検知することができる。また、電圧を一定にしておき
電流を変化させることによっても同様に検出することが
可能である。つまり空燃比センサとして使用できるので
ある。
In the configuration as described above, the electrodes 5.6 of one hollow body 2
An energizing means 11, for example, a constant current source, is connected so that a constant current 11) flows from the electrode 6 to the electrode 5, and between the electrodes 7.8 of the other small cavity 4. 8
When a power source 12 capable of flowing an arbitrary amount of current is connected to the electrode 7.8, a voltage is applied thereto, and the voltage and current between the electrodes 7.8 are measured, the measurement results as shown in FIG. 3 are obtained. It will be done. In the case of □, this sensor 1 is applied to measuring the concentration of oxygen or combustible gas components in the exhaust gas of an internal combustion engine. Here, the horizontal axis λ is the air-fuel ratio, and the vertical axis is the measured electrode 7.8
There is a heavy weight between ■, and the graph i current in the figure is 1 +)
Each value in the relationship 'I'+12<'Ip a1t)1'
, rp 2', Irl's are held constant. However, between the electrodes 5 and 6, a constant electric current 111) o is passed in advance as a bias current. It is also assumed that the conditions of the solid electrolyte 4b and the gas to be measured are kept sufficiently constant. As can be seen from FIG. 3, for example, if the voltage change is detected when the amount of current between the electrodes 7 and 8 is kept constant, when the air-fuel ratio λ is λ>1, the concentration of oxygen in the exhaust gas can be detected. At λ<1, the concentration of combustible gas components can be detected. Furthermore, similar detection is possible by keeping the voltage constant and changing the current. In other words, it can be used as an air-fuel ratio sensor.

上記したような電圧及び電流の特性が得られる理由を説
明すると、まず一方の中空体2の電極、5゜6問に一定
電流吊のバイアス電流It)oを流すことにより、その
電流量と比例した量の酸素イオンが固体電解質中を移動
し、中空部2Cに存在する酸素が常に一定時間に一定量
空隙部3へ流出することになる。空隙部3に流入した酸
素ガスはく空隙部3の三方向が被測定ガス側に開放され
ていることにより、空隙部3から被測定ガス中へ拡散し
ていくとともに被測定ガス中の可燃ガス成分が逆に開放
端から拡散流入し電極面で酸素と燃焼反応−7− して消費されることになる。この空隙部へ流入される酸
素の減少スピードは被測定ガス中の可燃ガス成分の濃度
が最大のとき最大となるが、その様な状況下でも燃焼に
よりH!l費される酸素量より充分多い酸素が流される
J:うにバイアス電流量が決められている。従って被測
定ガス中の可燃ガス成分濃度が大きい程また酸素濃度が
大きい程空隙部3内の酸素!I痕は大となり、そのため
もう一方の中空体4の中空部4Cにおける酸素濃度と空
隙部3との濃度比が関係付けされ、従って、電源12に
よる印加電圧急変を生じる電流量が濃度に応じて決定さ
れてくる。従って電流量と電圧の急変時の空燃比とが対
応することになる。つまり被測定ガスのll!痕が電極
7.8間の電圧、N流量の関係からまることになる。
To explain the reason why the above-mentioned voltage and current characteristics are obtained, first, by passing a constant bias current It)o through the electrodes of one hollow body 2, the bias current It)o is proportional to the amount of current. This amount of oxygen ions moves in the solid electrolyte, and a certain amount of oxygen existing in the hollow part 2C always flows out into the void part 3 at a certain time. Oxygen gas that has flowed into the cavity 3 diffuses from the cavity 3 into the gas to be measured because three directions of the cavity 3 are open to the gas to be measured, and the combustible gas in the gas to be measured is Conversely, the components diffuse in from the open end and are consumed through a combustion reaction with oxygen at the electrode surface. The rate of decrease of oxygen flowing into this void reaches its maximum when the concentration of combustible gas components in the gas to be measured is at its maximum, but even under such conditions H! The amount of bias current is determined so that enough oxygen is flowed in excess of the amount of oxygen consumed. Therefore, the higher the concentration of combustible gas components in the gas to be measured and the higher the oxygen concentration, the more oxygen in the cavity 3! The I mark becomes large, so that the oxygen concentration in the hollow part 4C of the other hollow body 4 is related to the concentration ratio in the void part 3, and therefore, the amount of current that causes a sudden change in the voltage applied by the power source 12 changes depending on the concentration. It will be decided. Therefore, the amount of current corresponds to the air-fuel ratio when the voltage suddenly changes. In other words, ll of the gas to be measured! The marks are formed due to the relationship between the voltage between the electrodes 7 and 8 and the N flow rate.

本実施例は上述の如く構成されていることにより、各中
空体2.4は一方向が開口した直方体を形成しているの
みで、その製造は容易であり、かつ中空体2がら空隙部
3へ供給される酸素ガスは開口部2aより流入する単な
る外気であり酸素濃− 8 一 度が高いので電WA11はほとんど電力を要せずに酸素
を空隙部3へ流入させることができる。
Since the present embodiment is configured as described above, each hollow body 2.4 only forms a rectangular parallelepiped with an opening in one direction, and manufacturing thereof is easy. The oxygen gas supplied to the opening 2a is simply outside air flowing in through the opening 2a, and has a high oxygen concentration, so the electric WA 11 can cause oxygen to flow into the gap 3 without requiring almost any electric power.

次に第4図および第5図に本発明の第2実施例を示す。Next, FIGS. 4 and 5 show a second embodiment of the present invention.

第4図は第2実施例のセンサ21を内燃機関の排ガス測
定に適用した状態を示す部分断面図、第5図はそのB−
8間の横断面図である。本実施例のセンサ21の構成は
、まず外気側に開口部22aを有する固体電解質からな
る中空体22に対し空隙部23を介して、やはり外気に
対して開口部24aを有する中空体24を平行に配し、
かつ空隙部23に面した各中空体22.24の壁部22
b、24bの内外両面に各々電極25,26.27.2
8を設けるよう構成されている。この第2実施例のセン
サ21の構成は上述したような第、1実施例と同様な構
成に加えて更に、−濃度測定側の固体電解質中空体24
の、“空隙部23側の壁部24bの延長部分にヒーター
31が備えられていることである。このヒーター31は
絶縁性のコの字型に形成された角柱状のセラミックか、
らなり、その中心部に通電発熱性の導電部31aが設−
9− けられている。
FIG. 4 is a partial sectional view showing the state in which the sensor 21 of the second embodiment is applied to exhaust gas measurement of an internal combustion engine, and FIG.
FIG. The configuration of the sensor 21 of this embodiment is as follows: First, a hollow body 22 made of a solid electrolyte having an opening 22a on the outside air side is parallel to the hollow body 24 having an opening 24a facing the outside air via a gap 23. Placed in
and the wall 22 of each hollow body 22.24 facing the cavity 23
Electrodes 25, 26, 27, 2 are placed on both the inner and outer surfaces of b and 24b, respectively.
8. The configuration of the sensor 21 of this second embodiment is the same as that of the first embodiment as described above, and further includes: a solid electrolyte hollow body 24 on the concentration measurement side;
The heater 31 is provided in the extension of the wall 24b on the side of the cavity 23.The heater 31 is an insulating U-shaped prismatic ceramic, or
A conductive part 31a that generates heat when energized is provided at its center.
9- Being kicked.

上述した各中空体22.24の分解図及び斜視図を第6
図(イ)、(ロ)及び第7図(イ)。
The exploded view and perspective view of each of the hollow bodies 22 and 24 described above are shown in the sixth figure.
Figures (A), (B) and Figure 7 (A).

(ロ)に示す。第6図(イ)は空隙部23へ酸素を供給
する*寒供給源としての固体電解質中空体22の分解斜
視図を表わしている。本中空体22は予め表裏面に酸素
ガス透過性の電極25..26が形成された、空隙部2
3に面した壁部である酸素イオン伝導性固体電解質板2
2bと、更に同形状のセラミック板22d及び短冊状セ
ラミック板22e 、22f 、22gとをセラミック
ペース・卜により接着し焼き付けることによって形成さ
れる。
Shown in (b). FIG. 6(a) shows an exploded perspective view of the solid electrolyte hollow body 22 serving as a *cold supply source for supplying oxygen to the cavity 23. This hollow body 22 has electrodes 25 permeable to oxygen gas on the front and back surfaces. .. The cavity 2 in which 26 is formed
Oxygen ion conductive solid electrolyte plate 2 which is the wall portion facing 3
2b, a ceramic plate 22d of the same shape, and rectangular ceramic plates 22e, 22f, 22g are bonded together using ceramic paste and baked.

この中空体22が酸素供給源としての役割を果たすため
には22bのみが酸素イオン伝導性の固体電解質であれ
ば良く、他の部分22d 、22e 。
In order for this hollow body 22 to function as an oxygen supply source, only 22b needs to be an oxygen ion conductive solid electrolyte, and the other parts 22d and 22e.

22f、22(lについては通常の絶縁性のセラミック
板、例えばスピネル等で充分である。次に第7図(イ)
、(ロ)は濃度を検出する固体電解質中空体24の分解
及び斜視図を示す。中空体24は表裏両面に電極27.
28が形成された空隙部−10− 23に面した壁部である酸素イオン伝導性固体電解質板
24bと、その内部に発熱体31aが埋設されているヒ
ーター31と、短冊状のセラミック板24d 、24.
e 、2’4f t’ 211とから構成されている。
For 22f and 22(l), ordinary insulating ceramic plates such as spinel are sufficient. Next, Fig. 7 (a)
, (b) shows an exploded and perspective view of the solid electrolyte hollow body 24 for detecting concentration. The hollow body 24 has electrodes 27 on both the front and back sides.
An oxygen ion conductive solid electrolyte plate 24b, which is a wall facing the cavity -10-23 in which a 28 is formed, a heater 31 in which a heating element 31a is embedded, a rectangular ceramic plate 24d, 24.
e, 2'4f t' 211.

上記の構成部分の組立てはまずセラミックペーストにて
固体電解質板24dの三方の縁にコの字状ヒーター31
を接着させ更にコの字状ヒーター31に囲まれた固体電
解質板24bの面にミセラミック板2’4e 、24f
 、24(lをヒーター31にそわせてコの字状に接着
し、更にそのセラミック板24e 、24f 、240
のコの字状の縁に対しセラミック板24dを接着させる
ことによりなされる。
To assemble the above components, first apply the U-shaped heater 31 to the three edges of the solid electrolyte plate 24d using ceramic paste.
Furthermore, the miceramic plates 2'4e and 24f are attached to the surface of the solid electrolyte plate 24b surrounded by the U-shaped heater 31.
, 24 (l) are glued in a U-shape along the heater 31, and the ceramic plates 24e, 24f, 240
This is done by adhering the ceramic plate 24d to the U-shaped edge.

第4図に戻り、この実施例のセンサ21を用いた濃度測
定方法を説明すると、前記第1の実施例と同様であるが
、まず酸素ポンプ側の固体電解質中空体22の電極25
.26問に電極26から25へ向けて一定電流量の電流
をバイアス電流として流す。このようにして外気から開
口部22aを通じて流入した酸素を壁部22bを介して
空隙部− 11 − 23へ常に単位時間当り一定量の酸素を供給する。
Returning to FIG. 4, to explain the concentration measuring method using the sensor 21 of this embodiment, it is similar to the first embodiment, but first, the electrode 25 of the solid electrolyte hollow body 22 on the oxygen pump side
.. For 26 questions, a constant amount of current is passed from electrodes 26 to 25 as a bias current. In this way, a constant amount of oxygen is always supplied per unit time from the outside air to the gap 11-23 through the wall 22b.

次に測定側の中空体24の電極27.28に電極27側
から28側に向けて一定電流を流す。この電流は切換ス
イッチ33により定電流電源34゜35.36を適宜切
換エテ、ソノ各型wt、量lp1゜ID2.II)aの
時の電圧を電圧計37にて測定する。ただし電極27及
び28に挾まれた壁部24bの固体電解質を高電圧から
保護するためツェナーダイオードにより構成されている
保護回路38が電極27.28と並列に設けられている
。このことにより第8図に示す如く壁部24bにかかる
電圧v1を上限としてそれ以上の電圧がかかることはな
い。
Next, a constant current is passed through the electrodes 27 and 28 of the hollow body 24 on the measuring side from the electrode 27 side to the 28 side. This current can be controlled by changing the constant current power source 34, 35, 36, 34, 35, 36, 40, 50, 50, 50, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 50, 100, 100, 100 type type, and the amount lp1, ID2. II) Measure the voltage at point a with a voltmeter 37. However, in order to protect the solid electrolyte of the wall portion 24b sandwiched between the electrodes 27 and 28 from high voltage, a protection circuit 38 constituted by a Zener diode is provided in parallel with the electrodes 27 and 28. As a result, as shown in FIG. 8, a voltage higher than the voltage v1 applied to the wall portion 24b is not applied as an upper limit.

このような方法にて測定すると各電流量ID+。When measured using this method, each current amount ID+.

It)z、ll)aと、その電流量における電圧の測定
値との関係は第1実施例と同じく内燃機関の排ガス中の
酸素または可燃ガス成分のm度、従って空燃比を決定す
ることになる。つまり燃焼前の混合気の空燃比と電圧ま
たは電流とが相関関係としてとらえられる。このように
して電圧Vまたは電−12− 流Iを測定すれば被測定ガス中の酸素濃度を測定するこ
とができる。
The relationship between It)z, ll)a and the measured value of the voltage at the current amount determines the degree of oxygen or combustible gas component in the exhaust gas of the internal combustion engine, and therefore the air-fuel ratio, as in the first embodiment. Become. In other words, the air-fuel ratio of the air-fuel mixture before combustion and the voltage or current can be regarded as a correlation. By measuring the voltage V or the current I in this manner, the oxygen concentration in the gas to be measured can be measured.

被測定ガスが例えば750℃以上である場合のように充
分に酸素センサ21を活性化する調度内で充分安定して
いれば良いが、常温の被測定ガスを測定するような場合
や温度調節を要するときは、可変抵抗41を介して電源
42を、ヒーター31中の発熱線31aの両端に接続す
ることにより発熱線31aを発熱させ、伝導熱により中
空体24の壁部24bを加熱し温度制御することができ
正確な測定値を得ることが可能となる。
For example, when the temperature of the gas to be measured is 750°C or higher, it is sufficient that the temperature is sufficiently stable to sufficiently activate the oxygen sensor 21, but when measuring the gas to be measured at room temperature or when temperature adjustment is When necessary, the power source 42 is connected to both ends of the heating wire 31a in the heater 31 through the variable resistor 41 to cause the heating wire 31a to generate heat, and the wall portion 24b of the hollow body 24 is heated by conduction heat to control the temperature. It is possible to obtain accurate measurements.

本実施例によれば、第1実施例の効果に加えて、ヒータ
ニ31を設けたことにより、より正確を測定値を得るこ
とができる。
According to this embodiment, in addition to the effects of the first embodiment, by providing the heater 31, more accurate measured values can be obtained.

[発明の効果] 本発明のガスセンサは、酸素イオン伝導性固体電解質の
壁部を有するとともに、被測定気体に対して密閉状で外
気側に開口部を有し、空隙部を隔てて配置された中空体
二体と、 上記雨中空体の空隙部に面した壁部の内外両面−13− に設けられた酸素ガス透過性の電極と、一方の中空体の
電極に接続されて所定量の酸素を空隙部へ流入させるよ
うに所定量の電流を流すための通電手段と、 他方の中空体の電極に接続されて空隙部から酸素を汲み
出すように電流を流すための電力源と、を備え、上記他
方の中空体の電極間の電流と電圧との関係からガス成分
を検出するよう構成されたことにより、比較的簡単な構
造で、しかもその中空体内部は平衡に達する時間が極く
短いので応答性に悪影響を生じず、被測定ガス中の酸素
濃度が変化しても迅速に濃度に応じた精度の高い酸素濃
度検出値を得ることができる。
[Effects of the Invention] The gas sensor of the present invention has a wall of an oxygen ion conductive solid electrolyte, and has an opening on the outside air side that is sealed against the gas to be measured, and is arranged across a gap. Two hollow bodies, an oxygen gas permeable electrode provided on both the inner and outer surfaces of the wall facing the cavity of the rain hollow body -13-, and a predetermined amount of oxygen connected to the electrode of one hollow body. a current supply means for passing a predetermined amount of current so as to cause oxygen to flow into the void; and a power source connected to an electrode of the other hollow body for passing a current so as to pump oxygen from the void. , by being configured to detect gas components from the relationship between the current and voltage between the electrodes of the other hollow body, the structure is relatively simple, and the time required to reach equilibrium inside the hollow body is extremely short. Therefore, responsiveness is not adversely affected, and even if the oxygen concentration in the gas to be measured changes, a highly accurate oxygen concentration detection value corresponding to the concentration can be quickly obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明第1実施例の縦断面図、第2図はそのA
−A横断面図、第3図は第1実施例において測定された
空燃比λ、雷電圧及び電流量1p1〜IDaの関係を示
すグラフ、第4図は第2実施例の部分縦断面図、第5図
はそのB−B横断面図、第6図(イ)は一方の中空体の
分解斜視図、−14− 第6図(ロ)はその組立て後の斜視図、第7図(イ)は
他方の中空体の分解斜視図、第7図(ロ)はその組立て
後の斜視図、第8図は第2実施例ににり測定した場合の
空燃比λ、雷電圧及び電流量Ip+〜II)aとの関係
を示すグラフである。 1.21・・・酸素センサ 2.22・・・中空体(酸素ポンプ側)4.24・・・
中空体く酸素濃度測定側)5.6.7.8.25.26
,27.28・・・酸素ガス透過性電極 2a 、4a 、22a 、24a・・・開口部代理人
 弁理士 定立 勉 ばか1名 −15− 第1図 第7図 (ロ) 7
Fig. 1 is a longitudinal sectional view of the first embodiment of the present invention, and Fig. 2 is its A.
-A cross-sectional view, FIG. 3 is a graph showing the relationship between the air-fuel ratio λ, lightning voltage, and current amount 1p1 to IDa measured in the first embodiment, FIG. 4 is a partial longitudinal sectional view of the second embodiment, Fig. 5 is a BB cross-sectional view, Fig. 6 (a) is an exploded perspective view of one hollow body, -14- Fig. 6 (b) is a perspective view of the assembled hollow body, and Fig. 7 (i) is an exploded perspective view of one hollow body. ) is an exploded perspective view of the other hollow body, FIG. 7(b) is a perspective view after its assembly, and FIG. 8 is the air-fuel ratio λ, lightning voltage, and current amount Ip+ measured according to the second embodiment. ~II) It is a graph showing the relationship with a. 1.21... Oxygen sensor 2.22... Hollow body (oxygen pump side) 4.24...
Hollow body oxygen concentration measurement side) 5.6.7.8.25.26
, 27, 28...Oxygen gas permeable electrodes 2a, 4a, 22a, 24a...Opening agent Patent attorney Seitate 1 student-15- Figure 1 Figure 7 (B) 7

Claims (1)

【特許請求の範囲】 酸素イ4ン色導性固体電解質の壁部を有するとともに1
.、準測定気体相対して密閉状で外気側に、開口部奪有
勢1.空隙部を隔てて配置された中空体二体と、、 、
 。 1 、上記I中空悴の空隙部に而した壁部の内外両面に設け
られた酸素ガス透過性の電極と、一方の中宮体や電極に
接続されて所定−の酸素を空11!i1!き流入させる
ように所定量の電離を流す声め、9通!手段午・ 、!l!!〃の中空体の!極に接続されて空11i部が
ら醇素含、、汲み出すように電流を流すための!ヵ源と
1、を備え、上記他方の中空体の電極間の実流と電圧と
の一係h)らガス成分を検出す、るよう構成された9牛
を特徴とすやガスセンサ。
[Scope of Claims] Having a wall portion of an oxygen-conductive solid electrolyte and having one
.. , the quasi-measured gas is faced to the outside air side in a closed state, and the opening is occupied 1. Two hollow bodies placed with a gap in between, , ,
. 1. Oxygen gas permeable electrodes provided on both the inner and outer surfaces of the wall in the cavity of the above-mentioned I hollow chamber, and the electrodes connected to one of the central shrine bodies and electrodes to empty a predetermined amount of oxygen 11! i1! 9 messages asking for a predetermined amount of ionization to flow in! Means...! l! ! 〃Hollow body! Connected to the pole and the empty 11i part contains soybean,, to flow a current to pump it out! 9. A gas sensor comprising: a gas source; and configured to detect a gas component from the relationship between the actual flow and the voltage between the electrodes of the other hollow body.
JP58238434A 1983-12-17 1983-12-17 Gas sensor Granted JPS60129656A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58238434A JPS60129656A (en) 1983-12-17 1983-12-17 Gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58238434A JPS60129656A (en) 1983-12-17 1983-12-17 Gas sensor

Publications (2)

Publication Number Publication Date
JPS60129656A true JPS60129656A (en) 1985-07-10
JPH0444949B2 JPH0444949B2 (en) 1992-07-23

Family

ID=17030153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58238434A Granted JPS60129656A (en) 1983-12-17 1983-12-17 Gas sensor

Country Status (1)

Country Link
JP (1) JPS60129656A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4863584A (en) * 1987-05-12 1989-09-05 Ngk Spark Plug Co., Ltd. Apparatus for sensing air-fuel ratio

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4863584A (en) * 1987-05-12 1989-09-05 Ngk Spark Plug Co., Ltd. Apparatus for sensing air-fuel ratio

Also Published As

Publication number Publication date
JPH0444949B2 (en) 1992-07-23

Similar Documents

Publication Publication Date Title
US4498968A (en) Oxygen sensor
US4464244A (en) Oxygen sensing device having solid electrolyte cell and means for supplying controlled current thereto
US4505807A (en) Oxygen sensor
US4543176A (en) Oxygen concentration detector under temperature control
US4824549A (en) Exhaust gas sensor for determining A/F ratio
JPS6138414B2 (en)
JPS6228422B2 (en)
JPS62276453A (en) Air/fuel ratio sensor
JPH10160704A (en) Oxygen sensor and air-fuel ratio detecting method
EP0147988B1 (en) Air/fuel ratio detector
US4880519A (en) Gas sensor element
JPH0542624B2 (en)
JPH0414305B2 (en)
JPH0260142B2 (en)
EP0343533A2 (en) Gas sensing element
JPS60129656A (en) Gas sensor
JPS60131452A (en) Air fuel ratio sensor
JP2788640B2 (en) Gas concentration detection sensor
JPS62148849A (en) Air-fuel ratio sensor
JP3565520B2 (en) Oxygen concentration sensor
JPH0560053B2 (en)
JP2774100B2 (en) Oxygen concentration detector
JPS5819554A (en) Oxygen concentration detector
JPH0668482B2 (en) Air-fuel ratio sensor
JPH0261704B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees