JPS60129641A - Tensile and compression test of anisotropic material - Google Patents

Tensile and compression test of anisotropic material

Info

Publication number
JPS60129641A
JPS60129641A JP23951583A JP23951583A JPS60129641A JP S60129641 A JPS60129641 A JP S60129641A JP 23951583 A JP23951583 A JP 23951583A JP 23951583 A JP23951583 A JP 23951583A JP S60129641 A JPS60129641 A JP S60129641A
Authority
JP
Japan
Prior art keywords
sample
load
cylindrical specimen
specimen
circumferential direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23951583A
Other languages
Japanese (ja)
Inventor
Hitoshi Yoshida
均 吉田
Kiyoshi Kenmochi
剱持 潔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP23951583A priority Critical patent/JPS60129641A/en
Publication of JPS60129641A publication Critical patent/JPS60129641A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces

Abstract

PURPOSE:To enable accurate measurement of inherent strength in a circumferential direction, by pressing the non-compressive material being filled in a thin walled cylindrical specimen comprising an anisotropic material to allow uniform pressure to act on the inner wall of the specimen and loading tensile or compression load to the specimen in the circumferential direction thereof. CONSTITUTION:A thin walled cylindrical specimen 1 comprising an anisotropic material is held on a base plate without restricting both end parts thereof and a non-compressive material 4 such as water is allowed to fill the cylindrical specimen 1 through a flexible film 3. In the next step, a movable plate 5 is inserted into the cylindrical specimen 1 from the open end thereof. When load W is applied to the movable plate 5 by a loading apparatus, the internal pressure (P) of the non-compressive material 4 increases in proportion to load W and, therefore, the load W is increased until the cylindrical specimen 1 is destructed and tensile test load can be loaded to the cylindrical specimen 1 in the circumferential direction thereof. As a result, the strength of the cylindrical specimen 1 can be accurately measured.

Description

【発明の詳細な説明】 本発明は、異方性材料の引張試験及び圧縮試験を行う方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for performing tensile and compression testing of anisotropic materials.

材料の引張及び圧縮試験、特に異方性材料についての引
張及び圧縮試験においては、引張のための試料つかみ部
や圧縮のための圧子との接触部において局部集中応力が
発生するため、試料が部分的に破壊し、正確な試料強度
をめることが困難強材の有無にかかわらず、一般に試料
のつかみ部で大きな集中応力を発生するため、この部分
で破壊する場合が多く、しかもこの集中応力の値を知り
得る手段がないのでその材料固有の強度値を知ることが
困難であった。さらに、試料つかみ部での破壊がない場
合でも、繊維強化複合材料、(F RP)のように、繊
維に直角方向の強度が繊維に平行方向の強度に比べて著
しく小さい場合には、繊維を横切る方向の面での破壊が
生ずる前に繊維に平行な方向の面での破壊が生じてしま
い、強度の大なる繊維方向の荷重に対する強度値をめる
ことができない。
In tensile and compression tests on materials, especially on anisotropic materials, locally concentrated stress occurs at the part where the sample is gripped for tension and in contact with the indenter for compression. It is difficult to determine the exact strength of the sample.Regardless of whether there is a reinforcing material or not, a large concentrated stress is generally generated at the gripping part of the specimen, so it often breaks at this part, and this concentrated stress Since there is no way to know the value of , it has been difficult to know the strength value unique to the material. Furthermore, even if there is no fracture at the sample gripping part, if the strength in the direction perpendicular to the fibers is significantly smaller than the strength in the direction parallel to the fibers, such as in fiber-reinforced composite materials (FRP), the fibers should be removed. Since the fracture occurs in the plane parallel to the fibers before the fracture occurs in the transverse direction, it is not possible to estimate the strength value for the load in the fiber direction, where the strength is greater.

さらに、両端面を閉じた形の薄肉筒体状試料に内圧を作
用させて行う試験においては、試料壁に常に軸方向と周
方向の2軸応力を生ずるので、純粋引張応力をめること
ができない。
Furthermore, in tests conducted by applying internal pressure to a thin-walled cylindrical sample with both ends closed, it is impossible to include pure tensile stress because biaxial stress in the axial and circumferential directions is always generated on the sample wall. Can not.

ても、試料と圧子との接触部近傍において大きな局部集
中応力が発生するため、一般にブルーミング現象といわ
れる試料のめくれ破壊を起してしまい、しかもこのとき
の応力状態は不規則で複雑なため、その値を知る手段が
なく、試料強度をめるのが非常に困難となる。
However, large locally concentrated stress occurs near the contact area between the sample and the indenter, resulting in the sample turning over and breaking, which is generally referred to as the blooming phenomenon.Moreover, the stress state at this time is irregular and complex. There is no way to know this value, making it extremely difficult to estimate the sample strength.

本発明は、上記従来法の欠点を解消するためになされた
もので、円筒状試料の内壁または外壁に非圧縮性体によ
る一様な圧力を加えるに際し、円筒状試料の軸方向に作
用する応力を完全に除去し、FRPのように、強度が方
向性を有する試料についても、その繊維を試料の円周方
向に向けて而して、本発明の引張及び圧縮試験方法は、
異方性材料の薄肉円筒状試料を、その端部を拘束しない
状態において、試料内または試料とそのまわりを囲む耐
圧容器との間に充填した非圧縮性体を加圧し、それによ
って試料内壁または外壁に一様圧力を作用させ、試料に
円周方向の引張または圧縮荷重を負荷することを特徴と
するものである。
The present invention was made in order to solve the above-mentioned drawbacks of the conventional method. When applying uniform pressure by an incompressible body to the inner or outer wall of a cylindrical sample, the stress that acts in the axial direction of the cylindrical sample The tensile and compression testing method of the present invention is performed by completely removing the
A thin cylindrical sample made of an anisotropic material is pressurized with an incompressible body filled within the sample or between the sample and a pressure-resistant container surrounding it, with its ends unrestrained, thereby causing the inner wall of the sample or It is characterized by applying uniform pressure to the outer wall and applying a tensile or compressive load in the circumferential direction to the sample.

このような本発明の試験方法によれば、円筒状試料の円
周方向のみに試験荷重を作用させ、それによって試料の
特定方向の固有強度をめることができ、しかも試料に引
張のためのつかみ部や圧縮のための圧子との接触部がな
いので、試料に局部的な破壊が生じるようなこともなく
、正確な試料強度をめることができる。□″・ 、:° 以下に図面を参照して本発明の方法をさらに具
・、1 体′的に説明する。 ・ 一端に挿入するなどして試料の安定をはかるが、その両
端部を拘束せず、即ち試料に外部から応力が作用しない
状態に保持し、その円筒状試料1内に直接または高分子
材料等の柔軟膜3′を介して、水、油、グリース等の非
圧縮性体4を充填し、それを加圧することにより、試料
内壁に一様圧力を作用させる。上記非圧縮性体4の加圧
は、適当な負荷装置を用いて可動板5を試料lの解放端
から挿入し、それに荷重Wを加えればよく、それによっ
て非圧縮性体4の内圧pが荷重Wに比例して増大するか
ら、試料1が破壊するまで荷重Wを増加させて、試料l
に円周方向の引張試験荷重を負荷することができる。
According to the test method of the present invention, a test load is applied only in the circumferential direction of a cylindrical sample, thereby making it possible to measure the specific strength of the sample in a specific direction. Since there is no gripping part or contact part with an indenter for compression, there is no local destruction of the sample, and accurate sample strength can be determined. The method of the present invention will be explained in detail below with reference to the drawings. ・ Stabilize the sample by inserting it into one end, but do not restrain both ends. In other words, the sample is held in a state where no stress is applied from the outside, and an incompressible body such as water, oil, or grease is placed inside the cylindrical sample 1 either directly or through a flexible membrane 3' made of a polymeric material. By filling the incompressible body 4 and pressurizing it, uniform pressure is applied to the inner wall of the sample.The above-mentioned pressurization of the incompressible body 4 is performed by moving the movable plate 5 from the open end of the sample 1 using an appropriate loading device. The internal pressure p of the incompressible body 4 increases in proportion to the load W, so the load W is increased until the sample 1 breaks, and the sample l
A tensile test load can be applied in the circumferential direction.

径の増大に追随できるようなセルフロッキング機能を有
する耐圧多段パツキンである。
This is a pressure-resistant multi-stage packing that has a self-locking function that can follow the increase in diameter.

上述した異方性材料の引張試験において、試料の引張強
度F、は、試料の平均直径をd、肉厚をt、円筒内面積
をA、最大荷重をWとすると、によって与えられる。
In the tensile test of the anisotropic material described above, the tensile strength F of the sample is given by, where d is the average diameter of the sample, t is the wall thickness, A is the cylindrical inner area, and W is the maximum load.

また、試料の圧縮試験を行う状態を示す第2図において
、異方性材料の薄肉円筒状試料11は、環状凸部を有す
る基板12上の該凸部内に嵌合保持させることにより安
定化をはかるが、その両端部を拘束せず、即ち試料11
に外部から応力が作用しない状態に保持し、試料11と
そのまわりを囲む円筒状耐圧容器17どの間に直接また
は柔軟膜13を介して、水、油、グリース等の非圧縮性
体14を充填し、それをを加圧することにより、試料外
壁に一体14の圧力qが試料外壁に作用し、試料11に
円周方向の圧縮荷重が負荷される。
In addition, in FIG. 2, which shows a state in which a sample is subjected to a compression test, a thin cylindrical sample 11 made of an anisotropic material is stabilized by being fitted and held within a convex portion of a substrate 12 having an annular convex portion. sample 11 without restraining its ends, i.e. sample 11
A non-compressible material 14 such as water, oil, or grease is filled between the sample 11 and a cylindrical pressure-resistant container 17 surrounding it, either directly or via a flexible membrane 13. By pressurizing it, a pressure q of 14 is applied to the outer wall of the sample, and a compressive load is applied to the sample 11 in the circumferential direction.

なお、上記柔軟膜13は試料サイズに応じて図示したよ
うに分割することができる。また、図中、16はセルフ
ロッキング機能を有する耐圧多段パツキンを示している
Note that the flexible membrane 13 can be divided as shown in the figure depending on the sample size. Further, in the figure, reference numeral 16 indicates a pressure-resistant multi-stage packing having a self-locking function.

このような異方性材料の圧縮試験において、試料の圧縮
強度F2は、試料の外径をD、内径をdとすると、 によって与えられる。
In such a compression test of an anisotropic material, the compressive strength F2 of the sample is given by: where D is the outer diameter and d is the inner diameter of the sample.

上記第1図及び第2図の引張及び圧縮試験においては、
いずれも試料端部を拘束しない状態において、試料の内
壁または外壁に一様圧力を作用さ
In the tension and compression tests shown in Figures 1 and 2 above,
In either case, uniform pressure is applied to the inner or outer wall of the sample without restraining the sample end.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本考案の方法によって試料の引張及
び圧縮試験を行う状態を示す断面図である。 1.11・φ試料、4,14・拳非圧縮性体。 味 0) さ\ Q)
FIGS. 1 and 2 are cross-sectional views showing how a sample is subjected to tension and compression tests according to the method of the present invention. 1.11・φ sample, 4,14・fist incompressible body. Taste 0) Sa\Q)

Claims (1)

【特許請求の範囲】[Claims] ll、;異方性材料の薄肉円筒状試料を、その端部を拘
束しない状態において、試料内に充填した非圧縮性体を
加圧し、それによって試料内壁に一様・圧力を作用させ
、試料に円周方向の引張荷重を負□を拘束しない状態に
おいて、試料とそのまわりを囲む・耐圧容器との間に充
填した非圧縮性体を加圧し、それに・よって試料外、壁
に−・様圧力を作用させ、試料に円周方向の圧縮荷亭を
負荷することを特徴とする異方性材料の圧縮試験方法。
ll, ; A thin cylindrical sample made of an anisotropic material is pressed with an incompressible body filled inside the sample without restraining its ends, thereby applying a uniform pressure to the inner wall of the sample, Applying a tensile load in the circumferential direction to □, pressurizes the incompressible material filled between the sample and the pressure-resistant container surrounding it, thereby causing the outside of the sample and the wall to be A compression test method for anisotropic materials characterized by applying pressure and applying a compression load in the circumferential direction to the sample.
JP23951583A 1983-12-19 1983-12-19 Tensile and compression test of anisotropic material Pending JPS60129641A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23951583A JPS60129641A (en) 1983-12-19 1983-12-19 Tensile and compression test of anisotropic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23951583A JPS60129641A (en) 1983-12-19 1983-12-19 Tensile and compression test of anisotropic material

Publications (1)

Publication Number Publication Date
JPS60129641A true JPS60129641A (en) 1985-07-10

Family

ID=17045942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23951583A Pending JPS60129641A (en) 1983-12-19 1983-12-19 Tensile and compression test of anisotropic material

Country Status (1)

Country Link
JP (1) JPS60129641A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1072878A2 (en) * 1999-07-28 2001-01-31 Ngk Insulators, Ltd. Inspection machine by compression
US6266830B1 (en) 1997-07-08 2001-07-31 Kaneka Corporation Bathing apparatus
WO2001063242A1 (en) * 2000-02-25 2001-08-30 Ngk Insulators, Ltd Compression tester

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS458944Y1 (en) * 1967-04-26 1970-04-25

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS458944Y1 (en) * 1967-04-26 1970-04-25

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6266830B1 (en) 1997-07-08 2001-07-31 Kaneka Corporation Bathing apparatus
EP1072878A2 (en) * 1999-07-28 2001-01-31 Ngk Insulators, Ltd. Inspection machine by compression
US6405602B1 (en) 1999-07-28 2002-06-18 Ngk Insulators, Ltd. Machine for inspecting ceramic samples by applying compression thereto
EP1072878A3 (en) * 1999-07-28 2002-10-30 Ngk Insulators, Ltd. Inspection machine by compression
WO2001063242A1 (en) * 2000-02-25 2001-08-30 Ngk Insulators, Ltd Compression tester

Similar Documents

Publication Publication Date Title
US4192194A (en) Method and means for biaxially testing material
Soden et al. Influence of winding angle on the strength and deformation of filament-wound composite tubes subjected to uniaxial and biaxial loads
JP2644178B2 (en) Apparatus and method for experimentally measuring compressive material strength of tubular products
JP3852043B2 (en) Method for evaluating the durability of concrete
Tennyson The effects of unreinforced circular cutouts on the buckling of circular cylindrical shells under axial compression
Bert Experimental characterization of composites
Al-Mayah et al. Mechanical behavior of CFRP rod anchors under tensile loading
JPS60129641A (en) Tensile and compression test of anisotropic material
US3335603A (en) Grips for testing machine
US3906782A (en) Isostatic crush strength test system
Briscoe et al. Gas-induced damage in elastomeric composites
US6997044B1 (en) Test system for a flexible tube
RU2213951C2 (en) Technique evaluating ultimate mechanical characteristics of solid propellant in zone of its attachment to casing of solid-propellant rocket engine
Tsybin et al. Calculation of two-layer cylinder with application of contact layer model
SU868445A1 (en) Method of tensile-compression of testing specimens of tubes
EP0454371A2 (en) Method and apparatus for testing end-closed pipe
JPS618636A (en) Three-axis measuring method of columnar test piece
JPS6378045A (en) Chucking method for test piece in hard/brittle material test
Christensen et al. A multiaxial-failure test vehicle for filament-wound pressure vessels: A unique dome reinforced filament-wound test chamber and apparatus for measuring multiaxial stress, strain and failure data are described
SU130225A1 (en) Method for testing plastic pipe specimens for static strength, creep and stress relaxation
JP3003988B2 (en) Method and apparatus for testing bending strength of ceramic cylinder
JPS6096333A (en) Holding method of cylinder
Gent et al. Internal rupture of bonded rubber cylinders in tension
Pircher et al. Effects of weld-induced circumferential imperfections on the buckling of cylindrical thin-walled shells
Abramovich et al. The influence of initial imperfections on the buckling of stiffened cylindrical shells under combined loading