JPS60129246A - Manufacture of three-dimensional fiber-reinforced expanded material - Google Patents

Manufacture of three-dimensional fiber-reinforced expanded material

Info

Publication number
JPS60129246A
JPS60129246A JP58237470A JP23747083A JPS60129246A JP S60129246 A JPS60129246 A JP S60129246A JP 58237470 A JP58237470 A JP 58237470A JP 23747083 A JP23747083 A JP 23747083A JP S60129246 A JPS60129246 A JP S60129246A
Authority
JP
Japan
Prior art keywords
axis
fibers
fiber
dimensional fiber
reinforced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58237470A
Other languages
Japanese (ja)
Inventor
Toshihiko Ariyoshi
俊彦 有吉
Minoru Komura
小村 稔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Electric Industrial Co Ltd filed Critical Nitto Electric Industrial Co Ltd
Priority to JP58237470A priority Critical patent/JPS60129246A/en
Publication of JPS60129246A publication Critical patent/JPS60129246A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a three-dimensional fiber-reinforced expanded material having excellent compressive strength by a method in which many Z-axis-directed holes are drilled in a two-dimensional fiber-reinforced expanded material having plural X and Y-two-dimensional fibrous layers and Z-axis-directed fibers are inserted into and fixed to each hole. CONSTITUTION:A two-dimensional fiber-reinforced expanded material having plural layers of X-axis directed fiber groups (a)... and Y-axis-directed fiber groups (d)... is formed, and holes (d) are drilled from the upside of the X and Y axis to the Z axis. Z-axis directed fibers (e) coated with an expandible raw liquid are inserted into each of the holes (d) and the expandible raw liquid is expanded and hardened to obtain a given three-dimensional fiber-reinforced expanded material.

Description

【発明の詳細な説明】 本発明は三次元繊維補強発泡体の製造方法の改良に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a method for manufacturing three-dimensional fiber-reinforced foams.

X軸方向繊維群とX軸方向繊維群とX軸方向繊維群とか
らなる三次元の繊維構造で補強した発泡プラスチック体
、特にウレタンフオームは低沸点液体、例えば液化天然
ガスの輸送用または貯蔵用のタンクを断熱する絶縁層と
して有用である。
Foamed plastic bodies, especially urethane foam, reinforced with a three-dimensional fiber structure consisting of X-axis fibers, X-axis fibers, and Useful as an insulating layer to insulate tanks.

従来、か\る三次元繊維補強発泡体の製造方法について
種々の方法が提案きれており、例えば、X軸方向繊維を
X軸方向に間隔を置いて配置したX軸方向繊維層と、Y
軸方向繊維をX軸方向に間隔を置いて配置したY軸方向
繊維層とからなる多層の繊維層にZ軸方向の繊維を多数
本、例えば空気吹込みにより挿入して三次元繊維立体格
子を得、この立体格子を発泡体、例えば硬質ウレタンで
充填することが提案されている(特開昭52−5726
2す゛公報)。而して、従来の方法においては、いずれ
もZ軸方向繊維が自由状態である三次元繊維立体格子に
発泡体を充填しており、この発泡体充填時のガス圧力に
よりZ軸方向繊維が曲がったりまたはずれ移動により粗
密化する可能性が犬である。而るに、三次元繊維補強発
泡体のZ軸方向繊維をZ軸方向荷重に対する理想的な補
強要素として作用させるためには、各Z軸方向繊維にで
きるたけ均等に荷重を分担させ得るようにその繊維の密
度、すなわち繊維間隔を一定にすることが必要であり、
特に、Z軸方向の圧縮荷重に対する強度は、X軸方向繊
維の座屈強度により左右されるから、その繊維を真直に
保持することが必要である。
Conventionally, various methods have been proposed for manufacturing such three-dimensional fiber-reinforced foams, for example, an X-axis fiber layer in which X-axis fibers are arranged at intervals in the X-axis direction;
A three-dimensional fiber lattice is created by inserting a large number of Z-axis fibers, for example, by air blowing, into a multilayer fiber layer consisting of a Y-axis fiber layer in which axial fibers are arranged at intervals in the X-axis direction. Therefore, it has been proposed to fill this three-dimensional lattice with a foam, such as hard urethane (Japanese Patent Laid-Open No. 52-5726).
2su Publication). In all conventional methods, a three-dimensional fiber lattice in which the Z-axis fibers are free is filled with foam, and the gas pressure when filling the foam bends the Z-axis fibers. There is a possibility of overcrowding due to movement or displacement of the dog. However, in order for the Z-axis fibers of the three-dimensional fiber-reinforced foam to act as an ideal reinforcing element against the Z-axis load, it is necessary to distribute the load as evenly as possible to each Z-axis fiber. It is necessary to keep the density of the fibers, that is, the fiber spacing constant,
In particular, the strength against compressive loads in the Z-axis direction depends on the buckling strength of the fibers in the X-axis direction, so it is necessary to hold the fibers straight.

従って、X軸方向繊維の曲げ、粗密化を避は得ない従来
の方法は、得られる三次元繊維補強発泡体の機械的特性
上、問題がある。
Therefore, conventional methods in which bending and coarsening of the fibers in the X-axis direction are unavoidable have problems in terms of the mechanical properties of the resulting three-dimensional fiber-reinforced foam.

本発明はか\る点に鑑み、このような不利を解消し得る
三次元繊維補強発泡体の製造方法を提供するものである
In view of the above, the present invention provides a method for producing a three-dimensional fiber-reinforced foam that can eliminate these disadvantages.

すなわち、本発明に係る三次元繊維補強発泡体の製造方
法は、XY二次元の繊維層を複数層有する二次元繊維補
強発泡体を成形し、該成形体にZ軸方向の孔を多数箇貫
設し、缶化にX軸方向繊維を挿入固定することを特徴と
する方法である。
That is, the method for producing a three-dimensional fiber-reinforced foam according to the present invention involves molding a two-dimensional fiber-reinforced foam having a plurality of XY two-dimensional fiber layers, and piercing the molded product with a large number of holes in the Z-axis direction. This method is characterized by inserting and fixing the X-axis direction fibers into the can.

本発明におい°C1複数のXY二次元繊維層を有する二
次元繊維補強発泡体の繊維層には、X軸方向繊維群とY
軸方向繊維群とを一定の間隔(Z軸方向の間隔)を隔て
て交互に配列したもの、または2〜3箇の単位で交互に
配列したもの、X軸方向繊維群とY軸方向繊維群とを対
で接触させこれらの対を一定の間隔を隔てて配列したも
の、この場合において対をなすY軸方向繊維群とX軸方
向繊維群とを朱子織、綾織等により織ったもの(以上、
各繊維には通常、ロービングを使用する)、短繊維をX
Y面においてランダムに配した不織布、チョップストラ
ンドマットを一定の間隔を隔てて配列したもの等を用い
ることができる。繊維には、発泡体材料の補強のために
発泡体材料に比べて引張強度、弾性率が犬でかつ伸びが
小であるものを使用し、例えば、無機繊維、金属繊維、
合成繊維を用いることができる。特に、ガラス繊維、炭
素繊維あるいはこれら繊維に樹脂を含浸したものを使用
できる。
In the present invention, the fiber layer of the two-dimensional fiber-reinforced foam having a plurality of XY two-dimensional fiber layers includes
A group of axial fibers arranged alternately at a fixed interval (interval in the Z-axis direction), or a group of 2 to 3 fibers arranged alternately, a group of X-axis fibers and a group of Y-axis fibers In this case, the paired Y-axis fiber group and the X-axis fiber group are woven with satin weave, twill weave, etc. ,
(Usually roving is used for each fiber), short fibers are
A nonwoven fabric arranged randomly in the Y plane, a chopped strand mat arranged at regular intervals, etc. can be used. For reinforcing the foam material, use fibers that have lower tensile strength and elastic modulus and lower elongation than the foam material, such as inorganic fibers, metal fibers,
Synthetic fibers can be used. In particular, glass fibers, carbon fibers, or these fibers impregnated with resin can be used.

発泡性材料には、ウレタンフオーム、エポキシフオーム
、インシアヌレートフオームの原液等を使用できるが、
ウレタンフオームの原液が、繊維層をZ軸方向に浸透す
る程度に低粘度であり、かつ高速度反応であるので有利
である。
As the foamable material, undiluted solutions of urethane foam, epoxy foam, incyanurate foam, etc. can be used.
Advantageously, the urethane foam stock solution has a low viscosity that allows it to penetrate the fiber layer in the Z-axis direction, and a high reaction rate.

二次元繊維補強発泡体の成形にはバッチ式、連続式の何
れをも使用でき、連続式成形法としては、複数枚の織布
、不織布を等間隔の平行状態で走行きぜ、この走行中の
布間にノズルより発泡性原液を吹き込む方法、第1図に
示すようにベルトコンベア1上に複数枚の繊維層P、P
・・・ヲヘルトコンベア1と同調して走行させ、ノズル
2より発泡性原液を吹き込む方法等を用いることができ
る。
Both batch and continuous molding methods can be used to mold two-dimensional fiber-reinforced foams.The continuous molding method involves running multiple sheets of woven fabric or non-woven fabric in parallel at equal intervals. As shown in Fig. 1, a plurality of fiber layers P, P are placed on a belt conveyor 1.
. . . It is possible to use a method of running the conveyor in synchronization with the conveyor 1 and blowing the foaming stock solution through the nozzle 2.

二次元繊維補強発泡体に貫設するZ軸方向孔は、X軸方
向繊維とX軸方向繊維とで形成される駒のはy中央を通
過さぜるように設けることが好ましい(従って、−箇の
副に対し一本の2軸方向孔が対応する)。
The Z-axis holes penetrating the two-dimensional fiber-reinforced foam are preferably provided so that the pieces formed by the X-axis fibers and the X-axis fibers pass through the y center (therefore, the - (one biaxial hole corresponds to the sub-axis).

二次元繊維補強発泡体に多数箇貫設したZ軸方向孔の缶
化にX軸方向繊維を挿入し、このX軸方向繊維を固定す
るには、発泡性原液を塗布した繊維を挿入し、原液の発
泡により孔を封じ、この封孔発泡体を二次元繊維補強発
泡体に一体化させるようにすればよい。この場合、孔の
断面積は繊維断面積の1.2〜10倍、特に1.5〜5
倍程度とすることが好ましい。X軸方向繊維には前記繊
維層と同材質のものを使用することが好ましく、特に、
樹脂含浸ローピンクが挿入作業上並びに三次元繊維補強
発泡体の強度」ニ有利である。繊維に塗布する発泡性原
液には三次元繊維補強発泡体の発泡原液と同じものを使
用することが、断熱効果の均質上、有利である。
In order to fix the X-axis fibers by inserting the X-axis fibers into the cans of the Z-axis holes provided in a number of holes in the two-dimensional fiber-reinforced foam, insert the fibers coated with a foamable stock solution. The pores may be sealed by foaming the stock solution, and the pore-sealed foam may be integrated into the two-dimensional fiber-reinforced foam. In this case, the cross-sectional area of the pores is 1.2 to 10 times the fiber cross-sectional area, in particular 1.5 to 5
It is preferable to approximately double the amount. It is preferable to use the same material as the fiber layer for the X-axis direction fibers, and in particular,
Resin-impregnated low pink is advantageous in the insertion process as well as in the strength of the three-dimensional fiber-reinforced foam. It is advantageous to use the same foaming solution for the three-dimensional fiber-reinforced foam as the foaming solution to be applied to the fibers, in order to achieve a uniform heat insulating effect.

本発明は、次の要領によって実施することができる。The present invention can be implemented in the following manner.

まず、第2図Aに示すようなX軸方向繊維群a、 a、
・・とY軸方向繊維群す、 b、・・とを複数層有する
二次元繊維補強発泡体Cを成形し、次いで、この発泡体
Cのxy上面から第2図Bに示すようにZ軸方向孔d、
d、・・・を貫設し、更に、発泡性原液を塗布したZ軸
方向繊維eを各孔dK第2図Cに示すように挿入し、こ
の発泡性原液を発泡硬化させ、而るのち、第2図りにお
いて各孔より突出している繊維端部e′、・・・並びに
盛」ユリ発泡体f′、・・を切断除去し、これにて所定
の三次元繊維補強発泡体を得る。
First, as shown in FIG. 2A, the X-axis direction fiber groups a, a,
A two-dimensional fiber-reinforced foam C having multiple layers of ... and Y-axis direction fiber groups b, ... is molded, and then the Z-axis direction from the xy upper surface of this foam C is shown in FIG. direction hole d,
d, . , the fiber end portions e', . . . protruding from each hole in the second drawing, and the lily foam f', .

」上記の穿孔は、前後並びに左右に一定の間隔をおいて
設けたニードルにより行う。面して、Z軸方向孔の間隔
を等間隔になし得、従ってX軸方向繊維も笠間@(均一
密度)にて設けることができる。また、孔を真直に設け
ることができ、従ってX軸方向繊維を真直に設けること
ができる。
The above-mentioned perforation is performed using needles provided at regular intervals from front to back as well as from left to right. On the other hand, the holes in the Z-axis direction can be equally spaced, and therefore the fibers in the X-axis direction can also be provided with a uniform density. Furthermore, the holes can be provided straight, and therefore the X-axis direction fibers can be provided straight.

以下、本発明の実施例を比較例との対比で説明する。Examples of the present invention will be described below in comparison with comparative examples.

実施例 金属板を用いて、200朋立方の容器を作製し、この側
面に縦・横2方向に10 、、間隔で外径1.1m、の
孔をあけ、この孔に棒状材料を挿入した時に棒状材料が
容器底面に対して平行で、かつ隣接する面に挿入した棒
同士接しないように5市ずらしたものとした。この側面
に孔をあけた金属容器に離型用のふっ素処理を施こし、
その後ガラス繊維強化プラスチック(外径1.0mm、
日東電工膜、以後FRPロッドと称す)を孔に挿入して
容器を貫通させた。
Example: A 200 cm3 container was prepared using a metal plate, and holes with an outer diameter of 1.1 m were drilled in the sides at 10 cm intervals in both the vertical and horizontal directions, and rod-shaped materials were inserted into the holes. At the same time, the rod-shaped materials were parallel to the bottom surface of the container, and the rods inserted into adjacent surfaces were shifted by five positions so as not to touch each other. This metal container with holes drilled on its side is treated with fluorine for mold release.
After that, glass fiber reinforced plastic (outer diameter 1.0 mm,
A Nitto Denko membrane (hereinafter referred to as FRP rod) was inserted into the hole to penetrate the container.

上記の容器に2液性硬質ウレタン発泡体原液(レジンプ
レミックス/イソシアネ−1・系、インシアネートには
、シメリールジイソシアネートを使用、フオーム密度7
2kq/m’、三井日11リウレタン製)をレジンプレ
ミックス658 j/、インシアネート700ノの混合
比で60秒間撹拌したものを注入し硬化後、容器を開い
て取り出すことによりFRPロッドで2方向に補強きれ
た発泡体を得た。
In the above container, put a two-component rigid urethane foam stock solution (resin premix/isocyanate-1 system, use simmeryl diisocyanate as incyanate, foam density 7)
2 kq/m', made by Mitsui Nippon 11 urethane) was stirred for 60 seconds at a mixing ratio of resin premix 658 J/incyanate 700 N, and after curing, the container was opened and taken out, and it was mixed in two directions with an FRP rod. A reinforced foam was obtained.

長さ230 mm、外径3.0mmの先端の鋭い金属棒
をユo mm間隔で固定した金属板を作製し、空気圧に
よってエアシリンダーが降下して該金属板を押し下げ上
記発泡体の補強されていない方向に貫通孔をあける装置
とし、上記操作を繰9返してl Omm間隔の孔を全面
にわたって施こした。
A metal plate having a length of 230 mm and an outer diameter of 3.0 mm with sharp metal rods fixed at intervals of 0 mm was prepared, and an air cylinder was lowered by air pressure to push down the metal plate and remove the reinforced foam material. The above operation was repeated nine times to form holes at 10 mm intervals over the entire surface.

続いて前記のFRPロッドを前記の混合比で攪拌した発
泡性原液中を通し、直ちに貫通孔に挿木する操作を繰り
返し、ウレタン原液が発泡ならびに硬化して3次元繊維
補強断熱材を得た。
Subsequently, the above-mentioned FRP rod was passed through the foamable stock solution stirred at the above-mentioned mixing ratio, and the operation of immediately inserting the cutting into the through hole was repeated, and the urethane stock solution was foamed and hardened to obtain a three-dimensional fiber-reinforced heat insulating material.

この断熱材中のFRPロッドは他の2方向のFRPロッ
ドと直交していた。
The FRP rods in this insulation material were perpendicular to the FRP rods in the other two directions.

この三次元繊維補強断熱材の密度は90kg/m、’で
、1%歪を与える荷重は4.2 kg/iであった。
The density of this three-dimensional fiber-reinforced insulation material was 90 kg/m,', and the load giving 1% strain was 4.2 kg/i.

(試験方法J I S A −9514−’1979年
硬質ウレタンフオーム保温材) 比較例 実施例と同様にして孔をあけた容器に2方向からFRP
ロッドを挿入した。続いて容器の一1ニ方からFRPロ
ッドが形成する格子の開口部に1本ずつ長j200m、
に切断したFRPロッドを投下した。
(Test Method J I S A -9514-'1979 Rigid Urethane Foam Heat Insulating Material) Comparative Example A container with holes made in the same manner as in the example was tested from two directions using FRP.
The rod was inserted. Next, a length of j 200 m was inserted into the opening of the lattice formed by the FRP rods from both sides of the container.
A cut FRP rod was dropped.

次いて実施例と同配合の発泡性原液を注入して金属板で
ふたをしてFRPロンドが」ニ方へ、動かないように押
えて三次元繊維補強発泡体をイ4Jだ。
Next, a foaming stock solution with the same composition as in the example was poured, the lid was covered with a metal plate, and the FRP Rondo was pressed to one side so that it did not move, and the three-dimensional fiber-reinforced foam was moved.

この発泡体を実施例と同一方法で試験しだところ、密度
90 kg/m’、1%歪を与える荷重は3.8に8/
dであった。
When this foam was tested in the same manner as in the example, the density was 90 kg/m', and the load giving 1% strain was 3.8 to 8/m'.
It was d.

上記実施例と比較例との対比からも明らかなように本発
明に係る三次元繊維補強発泡体の製造方法によれば、X
軸方向繊維の真直化並びに均一密度化を確保でき、圧縮
強度に秀れた三次元繊維補強発泡体を得ることができる
As is clear from the comparison between the above examples and comparative examples, according to the method for producing a three-dimensional fiber-reinforced foam according to the present invention,
Straightening and uniform density of axial fibers can be ensured, and a three-dimensional fiber-reinforced foam with excellent compressive strength can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明において使用する二次元線8イ1補強発
泡体の成形方法の一例を示す説明図、第2図A1第2図
B1第2図C並びに第2図りは本発明に係る三次元繊維
補強発泡体の製造方法を示す説明図であり、第2図Aは
Z軸方向孔の穿孔前を、第2図Bは穿孔後を、第2図C
はX軸方向繊維挿入中を、第2図りはZIIilII方
向繊賄。 4?′r人終了後をそれぞれ示している。 図において、a、a・はX軸方向繊維、b、b・・はY
軸方向繊維、Cは二次元繊維補強発泡体、d、d・・は
Z軸方向孔、e、e・・・はX軸方向繊維である。 ア?房A 72zβ T2/1lc −”!’2fjD
FIG. 1 is an explanatory diagram showing an example of the method of molding the two-dimensional line 8-1 reinforcing foam used in the present invention, FIG. 2 A1, FIG. 2 B1, FIG. FIG. 2A is an explanatory diagram showing a method for manufacturing a base fiber-reinforced foam; FIG. 2A shows the state before the Z-axis direction hole is punched, FIG. 2B shows the state after the hole is punched, and FIG. 2C
The figure shows the fiber insertion in the X-axis direction, and the second figure shows the fiber insertion in the ZIIilII direction. 4? 'r people are shown respectively. In the figure, a, a・ are fibers in the X-axis direction, b, b・・ are Y fibers
Axial fibers, C are two-dimensional fiber-reinforced foams, d, d... are Z-axis holes, e, e... are X-axis fibers. a? Tuft A 72zβ T2/1lc -”!'2fjD

Claims (2)

【特許請求の範囲】[Claims] (1)XY二次元の繊維層を複数層重する二次元繊維補
強発泡体を成形し、該成形体にZ軸方向の孔を多数箇貫
設し、合孔にZ軸方向繊維を挿入固定することを特徴と
する三次元繊維補強発泡体の製造方法。
(1) A two-dimensional fiber-reinforced foam made of multiple XY two-dimensional fiber layers is molded, a large number of holes are formed in the Z-axis direction, and the Z-axis fibers are inserted and fixed into the holes. A method for producing a three-dimensional fiber-reinforced foam.
(2)Z軸方向繊維に未発泡の発泡性原液を塗布した繊
維を用いることを特徴とする特許請求の範囲第1項記載
の三次元繊維補強発泡体の製造方法。
(2) A method for producing a three-dimensional fiber-reinforced foam according to claim 1, characterized in that the Z-axis direction fibers are coated with an unfoamed foaming solution.
JP58237470A 1983-12-15 1983-12-15 Manufacture of three-dimensional fiber-reinforced expanded material Pending JPS60129246A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58237470A JPS60129246A (en) 1983-12-15 1983-12-15 Manufacture of three-dimensional fiber-reinforced expanded material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58237470A JPS60129246A (en) 1983-12-15 1983-12-15 Manufacture of three-dimensional fiber-reinforced expanded material

Publications (1)

Publication Number Publication Date
JPS60129246A true JPS60129246A (en) 1985-07-10

Family

ID=17015803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58237470A Pending JPS60129246A (en) 1983-12-15 1983-12-15 Manufacture of three-dimensional fiber-reinforced expanded material

Country Status (1)

Country Link
JP (1) JPS60129246A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007511391A (en) * 2003-11-10 2007-05-10 エバート コンポジッツ コーポレイション Method for inserting Z-axis reinforcing fiber into composite laminate
WO2023286174A1 (en) * 2021-07-13 2023-01-19 ギガフォトン株式会社 Composite component, laser processing method, and method for producing composite component

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007511391A (en) * 2003-11-10 2007-05-10 エバート コンポジッツ コーポレイション Method for inserting Z-axis reinforcing fiber into composite laminate
WO2023286174A1 (en) * 2021-07-13 2023-01-19 ギガフォトン株式会社 Composite component, laser processing method, and method for producing composite component

Similar Documents

Publication Publication Date Title
US4163824A (en) Fiber foam and process
US3382302A (en) Method for the manufacture of reinforced plastic foams
CA1205368A (en) Structural laminate and method for making same
AT401908B (en) MULTI-LAYERED COMPONENT AND METHOD AND DEVICE FOR ITS PRODUCTION
US4966801A (en) Lightweight composite material
EP1094925B1 (en) Manufacture of foam-containing structures
EP0019748A1 (en) Method of producing a fibre-reinforced resin foam and fibre-reinforced resin foam
EP0825010A2 (en) A fiber-reinforced article and a method for producing the same
US3385749A (en) Gradient density reinforced structural material
JPS60129246A (en) Manufacture of three-dimensional fiber-reinforced expanded material
CN107083019B (en) sound insulation composite material and preparation method thereof
CN103865144A (en) Mesh type three-dimensional woven grid fabric reinforced lightweight plate and preparation method thereof
US5698289A (en) Compressed light filler material for reinforced duroplastic composites and process for producing it
DE2320170A1 (en) METHOD OF MANUFACTURING ARTICLES FROM THERMAL RESIN
US3122815A (en) Needle board for needle loom
CA1090521A (en) Method for producing fiber-reinforced polymer foam
KR19990029350A (en) Manufacturing method and apparatus for fiber reinforced foam molding
CA1070464A (en) Fiber foam and process
JPS60129247A (en) Manufacture of three-dimensional fiber-reinforced expanded material
JPS6323908B2 (en)
JPS5784826A (en) Light frp and manufacture thereof
JPS60229741A (en) Manufacture of expanded long fiber-reinforced synthetic resin for scaffold plate
JPH06285885A (en) Extraction molding method of composite body
JPS631528A (en) Manufacture of polyurethane foam containing glass fiber
WO2001049473A1 (en) Process and apparatus for producing reinforced composite systems