JPS60128831A - Method and device for distributing power - Google Patents

Method and device for distributing power

Info

Publication number
JPS60128831A
JPS60128831A JP58235068A JP23506883A JPS60128831A JP S60128831 A JPS60128831 A JP S60128831A JP 58235068 A JP58235068 A JP 58235068A JP 23506883 A JP23506883 A JP 23506883A JP S60128831 A JPS60128831 A JP S60128831A
Authority
JP
Japan
Prior art keywords
power
power generation
power supply
demand
nuclear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58235068A
Other languages
Japanese (ja)
Inventor
利久 白川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58235068A priority Critical patent/JPS60128831A/en
Publication of JPS60128831A publication Critical patent/JPS60128831A/en
Pending legal-status Critical Current

Links

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、電力需要量に応じた給電配分方法および給
電配分装置に係り、特に、経済性に優れた原子力発電を
高稼動率に保つようにした給電量(3) 分力法および給電配分装置に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a power supply distribution method and a power supply distribution device according to power demand, and in particular, to a method for maintaining highly economical nuclear power generation at a high operating rate. Power supply amount (3) Regarding component force method and power supply distribution device.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

我国の発電設備は主に原子力発電、水力発電および火力
発電に大別され、これらの発電設備を適宜組み合せて電
力需要に応じた商業用゛紙力を発生させている。このう
ち、原子力発電は燃料費が安く、経済性に富むが、炉出
力の変動幅や変動速度制御に制約を受ける問題がある。
Power generation facilities in Japan are mainly divided into nuclear power generation, hydroelectric power generation, and thermal power generation, and these power generation facilities are appropriately combined to generate commercial paper power in response to electricity demand. Among these, nuclear power generation has low fuel costs and is highly economical, but it has the problem of being limited by the fluctuation range of reactor output and fluctuation speed control.

凍だ、水力発電は燃料費は殆んど苓であるが、水力が自
然現象に圧右される欠点があり、さらに、火力発電は燃
料費が高いが、出力変動は容易である利点を有するため
、原子力発電や水力発電、火力発電を適宜組み合せて実
際の電力Wlに応じている。
Although the fuel cost of hydroelectric power generation is almost the same, it has the disadvantage that hydropower is influenced by natural phenomena.Furthermore, thermal power generation has high fuel costs, but has the advantage of being able to easily fluctuate its output. Therefore, nuclear power generation, hydroelectric power generation, and thermal power generation are appropriately combined to meet the actual power Wl.

一方、1日当りの電力需要は必ずしも一義的ではなく、
変動する。実際には、朝方から夕方にかけての日中の電
力需要量が大きく、夕方から夜にかけて電力需要量は減
退し、夜から朝方にかけて次第に増大するという電力需
要サイクルを描く。
On the other hand, the daily electricity demand is not necessarily unique;
fluctuate. In reality, the power demand cycle is such that daytime power demand is high from morning to evening, decreases from evening to night, and gradually increases from night to morning.

このため、各発電所からの電力供給は、電力需要変動に
よる周波数変動を、自動的に補償する運転(4) いわゆるAFC運転により給電配分を行なっている。こ
のAFC運転は、実際には火力発電所からの出力運転を
制御することにより行なわれている。
For this reason, the power supply from each power plant is distributed through so-called AFC operation (4), which automatically compensates for frequency fluctuations due to fluctuations in power demand. This AFC operation is actually performed by controlling the output operation from the thermal power plant.

ところで、原子力発電設備としての沸騰水型原子炉(B
WR)は、低速中性子がウラニウム−235(u235
 )と激しく反応して核分裂し、炉出力を発生させる。
By the way, the boiling water reactor (B
WR), slow neutrons are uranium-235 (U235
) reacts violently with nuclear fission and generates reactor power.

その際核分裂によって、スピードの速い高速中性子が発
生するが、この高速中性子は涙速材(水)と衝突してス
ピードが遅くなり、U235と反応し易い低速中性子に
変化する。
At that time, nuclear fission generates high-speed neutrons, but these fast neutrons collide with the lacrimal material (water) and slow down, changing into low-speed neutrons that easily react with U235.

沸騰水型原子炉では水は冷却材として利用され、この冷
却材は核反応熱を受けて沸騰して蒸気となり、この蒸気
が蒸気タービンを回転駆動させて発電機を回し、必要な
電力を発生させている。
In a boiling water reactor, water is used as a coolant, and this coolant receives the heat of the nuclear reaction and boils into steam, which drives a steam turbine to rotate a generator and generate the necessary electricity. I'm letting you do it.

沸騰水型原子炉の炉出力の変動は、蒸気発生量(気泡発
生量)を調節することにより行なわれる。
The reactor output of a boiling water reactor is varied by adjusting the amount of steam generated (the amount of bubbles generated).

実際には、再循環ポンプのポンプ速度を調整することに
より行なわれる。すなわち、再循環ポンプのポンプ速度
が増加すると、冷却材流速が増大し、蒸気(気泡)発生
量が減少する。この発生蒸気量の減少とは反対に、液体
としての水量が増加する。
In practice this is done by adjusting the pump speed of the recirculation pump. That is, as the pump speed of the recirculation pump increases, the coolant flow rate increases and the amount of steam (bubbles) generated decreases. Contrary to this decrease in the amount of generated steam, the amount of liquid water increases.

このため高速中性子は水と多く衝突してスピードが遅く
なり易く、低速中性子量が増加する。低速中性子が増え
ると、U との反応が多くなり、核分裂が進んで炉出力
が増大する。
For this reason, fast neutrons collide with water a lot and their speed tends to slow down, increasing the amount of slow neutrons. As the number of slow neutrons increases, reactions with U2 increase, nuclear fission progresses, and reactor power increases.

再循環ポンプのポンプ速度を減少させると、冷却材流量
が少なくなり、上述したものとは逆に炉出力は低下する
Decreasing the pump speed of the recirculation pump will reduce the coolant flow rate and, contrary to what was discussed above, reduce the furnace power.

また、沸騰水型原子炉においては、炉出力を低減させる
運転は短時間で可能であるが、炉出力を上昇させる場合
、急上昇させると燃料の消耗が激しいため、炉出力上昇
には時間的な制約を受ける。
In addition, in a boiling water reactor, it is possible to reduce the reactor output in a short period of time, but when increasing the reactor output rapidly, fuel is consumed rapidly, so it takes time to increase the reactor output. subject to restrictions.

実際、制御棒引抜操作による短時間(約1時間程度)の
炉出力上昇は最大出力の約’70 %以下に制限されて
おり、それ以上では再循環ポンプのポンプ速度制御によ
る出力上昇が図られ、この出力上昇は最大出力(定格出
力)の約90%以下に制限される。さらに、原子炉出力
の909bから100チの最大出力までの調節は、再循
環ポンプのポンプ速度を微増させつつ長時間かけて行な
うことが望ましい。
In fact, the short-term (approximately 1 hour) increase in reactor output due to control rod withdrawal is limited to approximately 70% of the maximum output, and beyond that, output is increased by controlling the pump speed of the recirculation pump. , this output increase is limited to about 90% or less of the maximum output (rated output). Further, it is desirable that the adjustment of the reactor power from 909b to the maximum power of 100b be carried out over an extended period of time while slightly increasing the pump speed of the recirculation pump.

ところで、沸騰水型原子炉は、日負荷運転において、定
格出力の50%で7時間運転され、残りを定格出力で運
転されると想定すると、日当りの稼動率は85チとなる
。また、原子炉は12チ月運転が継続されると、保守点
検等のために3ケ月程度の運転休止期間が設けられてい
るので、1日当りの稼動率85チで運転しても、運転休
止期間を考慮すなり、これが実質的な稼動率となる。発
電コストを考慮すると、この稼動率以上で運転すること
が望ましい。
By the way, in the daily load operation of a boiling water reactor, assuming that it is operated at 50% of the rated output for 7 hours and then operated at the rated output for the rest of the day, the daily operating rate is 85 cm. In addition, after a nuclear reactor has been in operation for 12 months, there is a three-month suspension period for maintenance and inspection, so even if the reactor is operated at an operating rate of 85 degrees per day, the operation will be suspended. Considering the period, this becomes the actual operating rate. Considering power generation costs, it is desirable to operate at or above this operating rate.

このことから、原子力発電の健全性を損うことなく、燃
料費が安いという原子力発電の経済性を最大限に尊重し
、全体としての総合発電コストを低減させるには、原子
力発電、水力発電、火力発電等の各発電の稼動割合を日
負荷運転において如何に行なったらよいか問題になって
いた。
For this reason, in order to maximize the economic efficiency of nuclear power generation (low fuel costs) without compromising the soundness of nuclear power generation, and to reduce the overall total power generation cost, it is necessary to The problem has been how to determine the operating ratio of each type of power generation, such as thermal power generation, in daily load operation.

〔発明の目的〕[Purpose of the invention]

この発明は、上述した点を考慮し、原子力発電の健全性
を損なうことなく、原子力発電を日負荷運転において最
大限有効に活用し、総合発電コストを低減させる給電配
分方法および給電配分装置を提供することを目的とする
The present invention takes the above-mentioned points into consideration, and provides a power distribution method and a power distribution device that utilize nuclear power generation as effectively as possible during daily load operation and reduce total power generation costs without impairing the soundness of nuclear power generation. The purpose is to

〔発明の概要〕[Summary of the invention]

上述した目的を達成するため、本件第1査目の発明に係
る給電配分方法は、発電設備を原子力発電設備と原子力
@室以外の常用発電設備と老朽火力発電等の予備発電設
備とに大別するとともに、予測電力需要量に基づいて日
負荷運転の給電期間を数分割し、各分割ステップ毎に原
子力発電設備の稼動率を後先的に高めた給電指令を演算
装置から各発電設備に送り、各発電設備からの給電量を
調節配分する方法である。
In order to achieve the above-mentioned purpose, the power supply distribution method according to the invention of the first examination of this case roughly divides power generation equipment into nuclear power generation equipment, regular power generation equipment other than nuclear power generation facilities, and standby power generation equipment such as aging thermal power generation facilities. At the same time, the power supply period for daily load operation is divided into several parts based on the predicted power demand, and at each division step, a power supply command that proactively increases the operating rate of the nuclear power generation equipment is sent from the computing device to each power generation equipment. This is a method of adjusting and distributing the amount of power supplied from each power generation facility.

また、本件の第2番目の発明に係る給電配分装置は、前
述した目的を達成するために、原子力発電設備と原子力
発電以外の常用発電設備と老朽火力発電等の予備発電設
備とから各発電設備を構成するとともに、各発電設備と
中央指令所との情報交換を行なう送受信器と、予測電力
需要量に応じて各発電設備からの給電量の配分調節を行
なうため、給電指令を発する演算装置とを有し、上記演
算装置は、原子力発電設備の稼動率を優先的に高めた給
電指令を送受信器を介して各発電設備に発信させ、各発
電設備を運転させるようにしたものである。
In addition, in order to achieve the above-mentioned purpose, the power supply distribution device according to the second invention of the present invention is designed to separate each power generation facility from nuclear power generation facilities, regular power generation facilities other than nuclear power generation facilities, and standby power generation facilities such as old thermal power generation facilities. It also consists of a transmitter/receiver that exchanges information between each power generation facility and the central control center, and a calculation device that issues power supply commands to adjust the distribution of the amount of power supplied from each power generation facility according to the predicted power demand. The arithmetic unit is configured to transmit a power feeding command that preferentially increases the operating rate of the nuclear power generation equipment to each power generation equipment via a transmitter/receiver, thereby causing each power generation equipment to operate.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の好ましい実施例について添付図面を参
照して説明する。
Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings.

この発明は、第1図に示すように、発電設備を、原子力
発電設備(以下、原子力発電所という。)1.1・・・
と、原子力発電を除く火力発電所などの常用発電設備2
.2・・・と、水力発電や老朽火力発電所などの予備発
電設備3,3・・・とに大別し、予備発電設備3,3・
・・は予めランク付けされ、どの予備発電設備3,3・
・・を優先的に使うかが決定される。
As shown in FIG. 1, this invention provides power generation equipment as nuclear power generation equipment (hereinafter referred to as a nuclear power plant) 1.1...
and regular power generation facilities such as thermal power plants excluding nuclear power generation2
.. 2... and standby power generation facilities 3,3... such as hydroelectric power generation and aging thermal power plants.
... are ranked in advance, and which standby power generation facilities 3, 3,
It is determined whether to be used preferentially.

一方、各発電設備1,1・・・;2.2・・・;3,3
・・・は電力に関して中央指令所4と情報交換全行なう
送受信器5に接続される。送受信器5は供給電力の負担
割合(給電配分)を決定し、電力供給指示を出す演算装
置6に出入力可能に連接される。この演算装置6は、電
力需要量および給t−itを表示する画像表示器7にも
出力され、この画像表示器7で電力需要量と給電量とを
画像表示し、運転員が確認することができるようになっ
ている。
On the other hand, each power generation equipment 1, 1...; 2.2...; 3, 3
... are connected to a transceiver 5 which performs all information exchange with the central control center 4 regarding power. The transmitter/receiver 5 is connected in an input/output manner to an arithmetic unit 6 which determines the burden ratio of the supplied power (power distribution) and issues a power supply instruction. This arithmetic unit 6 also outputs an output to an image display 7 that displays the amount of electricity demanded and the amount of electricity supplied.The image display 7 displays the amount of electricity demanded and the amount of electricity supplied as an image for the operator to confirm. is now possible.

しかして、各発電設備1.1・・・:2,2・・・:3
゜3・・・から供給可能な電力値(量)を送受信器5に
各発電設備毎に受信させ、演算装置6に入力させる。具
体的には、原子力発電所1.1・・・から(、)最大供
給可能電力値を受信させ、演算装置6に入力させるとと
もに、(b)最小供給可能電力値をも演算装置6に入力
させる。ここで、最小供給可能電力値(量)は、沸騰水
型原子炉(BWR)の再循環ポンプのポンプ速度を最小
にし、原子炉出力管低下させたときに達成される出力値
で、通常最大供給可能電力量(定格出力)の約50チ程
度である。
Therefore, each power generation equipment 1.1...:2,2...:3
The transmitter/receiver 5 is made to receive the power value (amount) that can be supplied from ゜3... for each power generation facility, and input into the arithmetic unit 6. Specifically, (,) the maximum supplyable power value is received from the nuclear power plant 1.1 and inputted into the calculation device 6, and (b) the minimum supplyable power value is also input into the calculation device 6. let Here, the minimum supplyable power value (amount) is the output value achieved when the pump speed of the recirculation pump of a boiling water reactor (BWR) is minimized and the reactor power pipe is lowered, and is usually the maximum The amount of power that can be supplied (rated output) is approximately 50 inches.

さらに、各原子力発電所1.1・・・の(、)部分発生
電力値から短時間(約1時間)で上昇可能な電力発生値
を送受信器5に受信させ、演算装置6に入力させる一方
、(d)部分発生電力値から最大供給電力値(定格出力
)に達するまでの出力上昇速度を受信させ、演算装置6
に入力させておく。
Further, the transmitter/receiver 5 receives a power generation value that can be increased in a short time (approximately 1 hour) from the (,) partial power generation value of each nuclear power plant 1.1..., and inputs it to the arithmetic unit 6. , (d) receive the output increase rate from the partially generated power value to the maximum supplied power value (rated output), and the arithmetic unit 6
Let it be input.

ここにおいて、部分発生電力値とは、原子炉の再循環ポ
ンプのポンプ速度を調節することにより、定格出力であ
る最大値と最小値との間の任意位置における発生電力値
をいう。この部分発生電力値から供給電力量を再循環ポ
ンプのポンプ速度を上昇させることにより上げようとす
る場合、原子炉の特性から制約を受ける。部分発生電力
値から原子炉定格運転の90%出力までは短時間(約1
時間)で上昇させることが可能で49.90%を超え定
格出力運転に達するまでは、緩やかな上昇カーブを描い
て長時間運転させなければならない。
Here, the partial generated power value refers to the generated power value at an arbitrary position between the maximum value and the minimum value of the rated output by adjusting the pump speed of the recirculation pump of the nuclear reactor. If it is attempted to increase the amount of supplied power from this partially generated power value by increasing the pump speed of the recirculation pump, there will be restrictions due to the characteristics of the nuclear reactor. It takes a short time (approximately 1
Until the output exceeds 49.90% and reaches the rated output operation, it is necessary to operate for a long time with a gradual upward curve.

また、原子力発電を除く火力発電(水力発電も含む)等
の常用発電設備2,2・・・からも、同様にして(、)
最大供給可能電力値、(b)最小供給可能電力値、(C
)電力供給上昇速度を送受信器5に受信させ、演算装置
6に予め入力させる。
In addition, from regular power generation facilities 2, 2, etc. such as thermal power generation (including hydroelectric power generation) excluding nuclear power generation, do the same (,)
Maximum supplyable power value, (b) Minimum supplyable power value, (C
) The transmitter/receiver 5 receives the power supply rising speed and inputs it into the arithmetic unit 6 in advance.

さらに、老朽火力発電や水力発電等の予備発電設備3.
3・・・は、予め各発電設備3,3・・・のランク付け
を行ない、優先的使用順位を決定した後、常用発電設備
の場合と同様、(a)最大供給可能電力値(b)最小供
給可能電力値(c)電力供給上昇速度を送受信器5を介
して演算装置6に入力させる。この場合、演算装置6に
入力される最小供給可能電力値は零である。
In addition, standby power generation facilities such as aging thermal power generation and hydropower generation 3.
In 3..., each power generation facility 3, 3... is ranked in advance, and after determining the priority order of use, as in the case of regular power generation facilities, (a) maximum supplyable power value (b) The minimum supplyable power value (c) and the rate of increase in power supply are input to the arithmetic unit 6 via the transceiver 5. In this case, the minimum supplyable power value input to the arithmetic device 6 is zero.

ところで、実際の電力需要量は、第2図の′電力需要曲
線Aに示されるように変化する。この電力需要曲線Aは
、春夏秋冬および曜日によっても変化し、一義的ではな
い。そして、電力の需要は、電力需要曲線Aに示される
ように、需要量の大きな朝から夕方までの日中と、電力
需要量が減少する夕方から夜間に至る間と、夜間から朝
方にかけての需要量上昇期間との間に大別される。電力
需要量の変化に伴って、1日当りの電力需要サイクルは
、例えば4つの給電ステップに分割される。
Incidentally, the actual power demand changes as shown by 'power demand curve A' in FIG. This power demand curve A changes depending on spring, summer, fall, winter, and day of the week, and is not unambiguous. As shown in the power demand curve A, the demand for electricity is divided into the following periods: during the day from morning to evening when demand is high, from evening to night when electricity demand decreases, and from night to early morning. It can be broadly divided into periods of increasing volume. As the power demand changes, the daily power demand cycle is divided into, for example, four power supply steps.

(D 第1給電ステツプは電力需要量の多い期間を対象
としたもので、14時から時刻t8、例えば夕方6時ま
での給電方法である。この期間には、発電コストが安く
、経済性に優れた原子力発電所1.1・・・からの給電
量を最大にセットし、電力需要量の変動は、予備発電設
備3.3・・・のAFC運転による給電により調節する
。この期間中の電力需要の大幅減少に対して、原子力発
電以外の常用発電設備2,2・・・に指令を与え給電量
を減少させる。
(D The first power supply step is for a period of high power demand, and is a power supply method from 14:00 to time t8, for example, 6:00 in the evening.During this period, the power generation cost is low and it is not economical. The amount of power supplied from excellent nuclear power plants 1.1... is set to the maximum, and fluctuations in power demand are adjusted by power supply by AFC operation of standby power generation facilities 3.3... During this period. In response to a significant decrease in power demand, a command is given to regular power generation facilities 2, 2, etc. other than nuclear power generation to reduce the amount of power supplied.

(II) 第2給電ステツプは電力需要量が減少する期
間を対象としたもので時刻t からt、まで、例えば夕
方6時から翌朝4時までの給電方法である。この時間帯
には、発電効率が劣り、経済性の悪い予備発電設備3,
3・・・からの給電を停止させる。このとき、原子力発
電所1.1・・・からの給電量は最大のままにセットさ
れ、電力需要の変動調節は、原子力発電以外の常用発電
設備2.2・・・のAFC運転による給電により行なわ
れる。常用発電設備2.2・・・のAF’C運転による
電力供給量が許容しうる最低値になったら、AFC運転
を解除し、以降の電力需要減には、原子力発電所1.1
・・・のAFC運転により対応する。この原子力発電所
1.l・・・のAFC運転は、再循環ポンプのポンプ速
度を調節制御させ、原子炉出力を低下させることにより
行なわれる。この場合において、原子力発電所1.1・
・・の再循環ポンプのポンプ速度が最低となった状態で
、かつ他の発電設備からの給電量が最低または零の場合
において電力需要量が更に低下したときには、(1)原
子炉の給水過熱器の温度を上昇させ、蒸気(気泡)を発
生させ易くしたり、(II)余剰蒸気を復水器にバイパ
スさせることにより対応し、炉出力を低下させる。
(II) The second power supply step is intended for a period when the power demand decreases, and is a power supply method from time t to time t, for example from 6 o'clock in the evening to 4 o'clock the next morning. During this time period, standby power generation equipment3, which has poor power generation efficiency and is not economical,
3 Stop the power supply from... At this time, the amount of power supplied from the nuclear power plant 1.1... is set at the maximum, and fluctuations in power demand are adjusted by power supply by AFC operation of the non-nuclear power generation facilities 2.2... It is done. When the amount of power supplied by the AF'C operation of the regular power generation equipment 2.2... reaches the minimum allowable value, the AFC operation is canceled and the nuclear power plant 1.1 is used to reduce the power demand thereafter.
This will be handled by AFC operation. This nuclear power plant 1. The AFC operation of l... is performed by regulating the pump speed of the recirculation pump and reducing the reactor power. In this case, nuclear power plant 1.1.
When the power demand further decreases when the pump speed of the recirculation pump of ... is at its lowest and the amount of power supplied from other power generating equipment is at a minimum or zero, (1) overheating of the reactor feed water; The reactor output is reduced by raising the temperature of the reactor to make it easier to generate steam (bubbles), or (II) by bypassing excess steam to the condenser.

(IID 第3給電ステツプは電力需要が上昇する期間
の時刻t、からtcまでを対象としたもので、具体的に
は翌朝4時から翌朝5時にかけての給電方法である。こ
の期間の給電は、原子力発電以外の発電設備2,2・・
・:3,3・・・からの給電は、許容可能な最小値にセ
ットされ、電力需要の変動調節は、原子力発電所1.1
・・・からの給電を、再循環ポンプの流速(ポンプ速度
)調節によるAFC運転でまかなうことにより行なわれ
る。このAFC運転の上限は原子力発電所1.1・・・
の定格出力の約90%までとする。このときの電力需要
量の不足分は、原子力発電以外の常用発電設備2,2・
・・によりカバーする。
(IID The third power supply step targets the period from time t to tc during which the power demand increases. Specifically, it is a power supply method from 4:00 a.m. to 5:00 a.m. the next morning.Power supply during this period is , power generation equipment other than nuclear power generation 2, 2...
The power supply from .:3,3... is set to the minimum allowable value, and the fluctuation adjustment of the power demand is controlled by the nuclear power plant 1.1.
... is supplied by AFC operation by adjusting the flow rate (pump speed) of the recirculation pump. The upper limit of this AFC operation is 1.1 for nuclear power plants...
up to approximately 90% of the rated output. The shortfall in electricity demand at this time will be made up of regular power generation facilities other than nuclear power generation facilities 2, 2 and 2.
Covered by...

(t’) 第4給電ステツプは、電力需要上昇中の時刻
t からtdとしての翌14時までの期間を対象とした
もので、翌朝5時から翌昼14時までの給電方法である
。この期間中には、原子力発電所からの給電は、原子炉
の健全性を損うことがないように、給電上昇速度を所定
の制限値以下に抑え、再循環ポンプのポンプ速度を例え
ば8時頃までの3時間かけて緩やかに上昇させる。
(t') The fourth power supply step targets the period from time t when power demand is rising to 14:00 the next day as td, and is a power supply method from 5:00 the next morning to 14:00 noon the next day. During this period, the power supply from the nuclear power plant should be controlled so that the power supply rise rate is kept below a predetermined limit and the pump speed of the recirculation pump is reduced, e.g. Raise the temperature slowly over a period of 3 hours until the

その際、電力需要の変動は原子力発電以外の常用発電設
備2.2・・・のAFC運転により力、?−する。この
常用発電設備2,2・・・の給電が最大値になると、原
子力発電所1,1・・・からの給電が最大値(定格出力
)に達していないので、電力需要を満し得ない場合も考
えられる。この電力需要に対する不足分をまかなうため
に、予備発電設備3゜3・・・を併入させ、電力需要と
供給の差を埋める。
At that time, fluctuations in power demand can be controlled by AFC operation of regular power generation equipment other than nuclear power generation facilities 2.2...? - to do. When the power supply from the regular power generation facilities 2, 2... reaches its maximum value, the power supply from the nuclear power plants 1, 1... has not reached the maximum value (rated output), and therefore cannot meet the power demand. There may also be cases. In order to cover the shortfall in electricity demand, standby power generation equipment 3゜3... will be added to fill the gap between electricity demand and supply.

また、この期間中において、例えば昼休み等の電力需要
量の大幅減少に対しては原子力発電以外の常用発電設備
2.2・・・に給電指令を与えて、給電量を減少させる
Furthermore, during this period, in response to a significant decrease in power demand during lunch breaks, etc., a power supply command is given to regular power generation facilities 2.2... other than nuclear power generation facilities to reduce the power supply.

次に、給電配分手順について説明する。Next, the power supply distribution procedure will be explained.

日負荷運転を開始するに当り、演算装置6に、−週間前
の電力需要量に相当する実績値(あるいは1週間乃至数
週間前の平均実績値)を当日分の電力需要予想曲線とし
て入力させる(ステップA)。
When starting the daily load operation, the actual value corresponding to the amount of electricity demanded - week ago (or the average actual value from one week to several weeks ago) is input into the calculation device 6 as the predicted electricity demand curve for the current day. (Step A).

続いて、当日の電力需要実績値を上記′電力需要予想曲
線と順次比較し、当日分の電力需要予想曲線を修正する
(ステップB)。一方、各発電設備1゜1・・・;2,
2・・・;3,3・・・からの供給可能電力量を送受信
器5を介して演算装置6に入力させる(ステップC)。
Next, the actual power demand value for the current day is sequentially compared with the power demand forecast curve described above, and the power demand forecast curve for the current day is corrected (step B). On the other hand, each power generation equipment 1゜1...;2,
The amount of power that can be supplied from 2...; 3, 3... is input to the arithmetic unit 6 via the transmitter/receiver 5 (step C).

供給可能電力量の演算装置6への入力は前述したように
各発電設備毎に行なわれ、(、)最大電力供給値や(b
)最小電力供給値、(C)電力供給上昇速度等が入力さ
れる。
The input of the amount of power that can be supplied to the arithmetic unit 6 is performed for each power generation facility as described above, and the maximum power supply value (,) and (b)
) minimum power supply value, (C) power supply rising speed, etc. are input.

続いて、当日の゛電力需要曲線Aを電力供給対応形態に
より4分割化し各給電ステップ(I)、(■)、(I)
、1(It’)毎に給電指令を演算装置6から送受信器
5を介して各発電設備に出力する(ステップD)。この
給電指令は、給電決定表(表1)に示す通りであり、こ
れにより経済性に優れた原子力発電所1゜1・・・から
の給電を最大限に活用し、総合発電コストを安価にする
ことができる。
Next, the power demand curve A for the day is divided into four parts depending on the power supply mode, and each power supply step (I), (■), (I) is divided into four parts.
, 1 (It'), a power supply command is output from the arithmetic unit 6 to each power generation facility via the transmitter/receiver 5 (step D). This power supply command is as shown in the power supply determination table (Table 1), and it makes full use of the power supply from the highly economical nuclear power plant 1゜1... and reduces the overall power generation cost. can do.

(17) なあ・、第4給電ステツプ(i)I)において、電力需
要量がほぼピークに達する翌朝8時から翌昼14時まで
の運転は、第1給電ステツプ(1)に準じて運転される
。したがって、この第4給電ステツプ(Is’)はt3
から翌朝8時までとしてもよく、翌朝8時以降を第5の
給電ステップとしてもよく、また、この期間を嫡1給電
ステップ(I)と併合させてもよい。
(17) In the fourth power supply step (i) I), operation from 8:00 a.m. the next morning to 2:00 p.m. the next day, when the power demand is almost at its peak, is performed in accordance with the first power supply step (1). Ru. Therefore, this fourth power supply step (Is') is t3
to 8:00 the next morning, the period after 8:00 the next morning may be set as the fifth power supply step, or this period may be combined with the first regular power supply step (I).

次に、実際の給電配分作業について具体的に説明する。Next, the actual power supply distribution work will be specifically explained.

電力の実音要は、第3図の電力需要量積分回路により演
算して実電力需要量Pを積算し、各時刻までの積算電力
需要量を磁気テープに記憶させる。
The actual power demand is calculated by the power demand integration circuit shown in FIG. 3, the actual power demand P is integrated, and the integrated power demand up to each time is stored on a magnetic tape.

記憶された磁気テープにより例えば約I分電に時刻tn
と実積算電力量grとを対応させた表2をフロッピーデ
ィスクに記憶保存させる。フロッピーディスクへの記憶
は例えば14時から翌日の14時までを一区切りとし、
ユニット化する。なお、第3図において、符号Rは抵抗
器であり、Cは静電容量(コンデンサ)、Aは演算増幅
器である。
For example, the time tn is recorded on the magnetic tape at about I distribution.
Table 2, which shows the correspondence between the actual integrated power amount gr and the actual integrated power amount gr, is stored and saved on a floppy disk. For example, the storage on the floppy disk is from 14:00 to 14:00 the next day.
Unitize. In FIG. 3, the symbol R is a resistor, C is a capacitance (capacitor), and A is an operational amplifier.

表2 このようにして、電力の需要量を予測した後、表1の実
積算電力量Erを参考にして、各時間毎(例えば(9)
分電)に、平均電力需要量prを次式で演算し、表3に
示すようにテーブル化する。
Table 2 After predicting the electricity demand in this way, refer to the actual integrated electricity amount Er in Table 1, and then
(distribution), the average power demand amount pr is calculated using the following formula and tabulated as shown in Table 3.

実際の電力実需要量は第2図に示すように振動化してい
るが、第1式により平滑された各時間毎の平均電力需要
量pZをめることができ、この電力量は表3に示すよう
に表わされる。
Although the actual actual power demand oscillates as shown in Figure 2, the average power demand pZ for each hour smoothed by the first equation can be calculated, and this power amount is shown in Table 3. It is expressed as shown.

表3 次に、当日の電力需要量を予測する。Table 3 Next, the power demand for the day is predicted.

この予測は、−週間前の時刻別平均電力需要量のデータ
をフロッピーディスクよりピックアップし、ペース平均
電力量Pb=Pr (−週間前)とn する。
This prediction is performed by picking up data of average power demand by time - weeks ago from a floppy disk, and calculating the pace average power demand Pb=Pr (-weeks ago) as n.

(21) 続いて当日の電力需要量の予測値を第4図に示す電力予
想回路図から算出する。この算出は、当日の電力需要量
の実績値(以下、実績電力需要量という。)とペース平
均電力量Pnとの差を、将来時刻のペース平均電力量P
n+1に加算した値を予測値とする。現時刻’It と
する。
(21) Next, the predicted value of the power demand for the day is calculated from the power forecast circuit diagram shown in FIG. This calculation calculates the difference between the actual value of electricity demand for the current day (hereinafter referred to as actual electricity demand) and the pace average electricity amount Pn at the future time.
Let the value added to n+1 be the predicted value. Let the current time be 'It.

ただし、第3図において、Aは演算増幅器であり pr
は当日時刻t における平均電力需要量、n n pr は当日時刻t より1タイム前の時刻tn−1n
−1n における平均電力需要量 pbは1週間前の時刻t に
おける平均電力需要量 pb は1週間前1n−1 の時刻t における平均電力需要量” n+1は−1 当日の将来時刻tn+、における平均電力需要量の予想
値 p41は当日将来時刻tNにおける平均電力需要量
の予想値である。
However, in Fig. 3, A is an operational amplifier and pr
is the average power demand at time t on the current day, and n n pr is the time tn-1n one hour before time t on the current day.
-1n pb is the average power demand at time t one week ago pb is the average power demand at time t one week ago 1n-1 "n+1 is -1 The average power demand at time tn+ on the current day Expected value of demand p41 is a predicted value of average power demand at the future time tN of the current day.

続いて、算出された当日の平均電力需要量の予測値を表
4に示すようにテーブル化し、その出力をフロッピーデ
ィスクに記憶させ、保存させる。
Subsequently, the predicted value of the calculated average power demand for the day is tabulated as shown in Table 4, and the output is stored on a floppy disk for preservation.

(22) 表4 表4から算出された14時から翌日の14時までの予測
電力需要量に基いて、電力需要サイクルを4分割する。
(22) Table 4 Based on the predicted power demand amount from 14:00 to 14:00 the next day calculated from Table 4, the power demand cycle is divided into four.

なお、12時から13時は昼休みのため電力需要量は不
連続かつ不規則な低下となる。
Note that the power demand decreases discontinuously and irregularly from 12:00 to 13:00 due to the lunch break.

第1給電ステツプ(D ; 14時から時刻t (一般
的には18時)の間を対象とし、この対象期間の原子力
発電所1,1・・・および原子力発電以外の火力発電等
の常用発電設備2,2・・・からの供給可能な発電量を
Paとする。
The first power supply step (D; targets the period from 14:00 to time t (generally 18:00), and covers regular power generation such as nuclear power plants 1, 1, etc. and thermal power generation other than nuclear power generation during this target period. The amount of power generation that can be supplied from equipment 2, 2, etc. is assumed to be Pa.

そして、予測平均電力需要量をPHとし、この電力需要
量P0を供給可能発電量P と比較する。
Then, the predicted average power demand is set as PH, and this power demand P0 is compared with the suppliable power generation amount P.

m a PW=Paとなる時刻1mを18と理論的に設定する。m a The time 1 m at which PW=Pa is set to 18 theoretically.

実際には第5図に示す出力v =P@−P <0o m
 a − となる予測電力需要量P@から時刻t を算出すm m る。
Actually, the output v = P@-P <0o m shown in Fig. 5
Time t is calculated from the predicted power demand P@ which is a − .

この給電ステップ<1)においては、演算装置6から送
受信器5ft介して、各発電設備1,1・・・:2.2
・・・:3,3・・・に表1に示す給電指令を発信させ
、各発電設備1.1・・・;2,2・・・:3,3・・
・を上記給電指令に基いて運転させる。
In this power supply step <1), each power generation facility 1, 1...:2.2
...: 3, 3... transmits the power supply command shown in Table 1, and each power generation equipment 1.1...; 2, 2...: 3, 3...
・Operate based on the above power supply command.

第2給電ステツプ(■);時刻t からt、まで、実際
には電力需要量が減少する18時から翌朝4時までを対
象とする。
Second power supply step (■); from time t to time t, which actually targets the period from 18:00 to 4:00 the next morning when the amount of power demand decreases.

この場合には、原子力発電所1,1・・・からだけで負
担できる既知の供給可能発電tをP、とする。
In this case, the known power generation t that can be provided only by the nuclear power plants 1, 1, . . . is assumed to be P.

しかして、予測平均電力需要量P@(但し、t1<−)
を原子力供給可能発電量P2と比較し、p@= p と
なる時刻tITlをt、に理論的に設定すb る。実際には、第5図において、出力v =Pe−0m P、≦0となる予測平均電力需要量pWからtm(1b
)を設定する。
Therefore, the predicted average power demand P @ (however, t1<-)
is compared with the nuclear power supply capacity P2, and the time tITl at which p@=p is theoretically set to t. In fact, in Fig. 5, from the predicted average power demand pW where output v = Pe - 0m P,
).

この第2分割ステップ(II)においては、第1分割ス
テップ(1)と同様、演算装置6から表1に応じて発せ
られる給電指令により各発電設備1,1・・・;2.2
・・・:3,3・・・は運転され、あるいは休止せしめ
られる。
In this second division step (II), similarly to the first division step (1), each power generation facility 1, 1, . . .
...: 3, 3... are operated or stopped.

第3給電ステツプ(I);時刻t5から時刻t。まで、
実際には翌朝4時から5時までを対象とする。
Third power supply step (I); from time t5 to time t. to,
In reality, the target period is from 4:00 to 5:00 the next morning.

この場合、原子力発電J’l’rl 、 1・・・から
の給電で負担できる供給可能発電量P、の約90%発電
量P0にセットする。実際の原子炉運転において、燃料
棒の健全性に余裕を持たせるため、低出力から短時間(
約1時間)で高出力にする際に上限を持たせる。この上
限値はこれまでの原子炉運転の経験から定格出力の90
チ程度が妥当であり、上限値が上記の値の場合には短時
間のうちに炉出力を急上昇させても、燃料棒の健全性が
損なわれないことがわかっている。
In this case, the power generation amount P0 is set to about 90% of the suppliable power generation amount P that can be borne by the power supply from the nuclear power generation J'l'rl, 1, . In actual reactor operation, in order to ensure the integrity of the fuel rods, it is necessary to
(approximately 1 hour) to set an upper limit when increasing the output to high. This upper limit value is 90% of the rated output based on the experience of reactor operation to date.
It is known that if the upper limit is within the above range, the integrity of the fuel rods will not be impaired even if the reactor output is suddenly increased in a short period of time.

しかして、時刻1c(>1.)の理論的設定は次のよう
にして行なわれる。すなわち、予測平均電力需要量P:
nを90%発電量Pc と比較し、P品=Peとなる時
刻tmをtoに設定する。実際にはV。=P:n−Pc
≧0となるP:nから1c(翌朝5時に相当する。)を
設定する。
Therefore, the theoretical setting of time 1c (>1.) is performed as follows. That is, predicted average power demand P:
Compare n with the 90% power generation amount Pc, and set the time tm at which P product=Pe to to. Actually V. =P:n-Pc
P≧0: Set 1c (corresponding to 5 o'clock the next morning) from n.

この第3給電ステツプ(1)の場合にも、表1に示され
るように、演算装置6からの給電指令により、原子力発
電所1.1・・・および原子力発電以外の常用発電設備
2.2・・・は運転される。
In the case of this third power supply step (1), as shown in Table 1, the power supply command from the arithmetic unit 6 is transmitted to the nuclear power plants 1.1... and the non-nuclear power generation facilities 2.2. ...is driven.

第4給電ステップ■;時刻t から1.としての14時
までを対象とする。この場合にも、演算装置6から給電
指令により表1に示すように、各発電設備が運転される
Fourth power supply step ■: 1 from time t. The period is until 2:00 p.m. In this case as well, each power generation facility is operated as shown in Table 1 in response to a power supply command from the arithmetic unit 6.

なお、この発明の一実施例の説明においては、−日当り
の電力需要サイクルを14時から翌日の14時1でを単
位とした例について説明したが、必ずしも14時に限定
されず、電力需要量がほぼピークに達する8時乃至18
時の間で適宜設定すればよい。
In the explanation of one embodiment of the present invention, an example was explained in which the daily power demand cycle is from 14:00 to 14:01 of the next day, but it is not necessarily limited to 2:00 p.m. Almost reaching its peak from 8:00 to 18:00
It is sufficient to set the time appropriately.

〔発明の効果〕〔Effect of the invention〕

以上に述べたようにこの発明に係る給電配分方法および
給電配分装置においては、予測電力需要量に基づいて日
負荷運転の給電期間を数分割し、各給電ステップ毎に原
子力発電設備の稼動率を優先的に高めた給電指令を演算
装置から各発電設備に送って、各発電設備での給電量を
調節配分したから、燃料費が安く、経済性の優れた原子
力発電設備を積極的かつ最大限に活用し、総合発電コス
トを低減させることができる。この原子力発電設備を積
極的かつ最大限に活用しても、原子力発電設備の特性を
利用して原子炉運転を続けることにより、原子力発電の
健全性本充分に保つことができる。
As described above, in the power supply distribution method and power supply distribution device according to the present invention, the power supply period of daily load operation is divided into several parts based on the predicted power demand, and the operating rate of the nuclear power generation equipment is calculated for each power supply step. By sending prioritized power supply commands from the computing device to each power generation facility and adjusting and distributing the amount of power supplied to each power generation facility, nuclear power generation facilities, which have low fuel costs and are highly economical, can be proactively and maximized. It can be used to reduce the total power generation cost. Even if this nuclear power generation equipment is actively and maximally utilized, the integrity of nuclear power generation can be maintained sufficiently by continuing to operate the nuclear reactor by utilizing the characteristics of the nuclear power generation equipment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明に係る給電配分方法を実施する給電配
分装置の一実施例を示す原理図、第2図は日負荷運転に
おける電力需要サイクルを示すグラフ、第3図は、電力
需要量の積分回路を示す図、第4図は当日の′電力需要
量の予測値をめる予測回路の原理図、第5図は1日当り
の電力需要サイクルを数分割する際、各給電ステップ毎
の境界時間を算出するための理論算出回路を示す原理図
である。 1・・・原子力発電設備、2・・・原子力発電以外の常
用発電設備、3・・・予備発電設備、4・・・中央指令
所、5・・・送受信器、6・・・演算装置、7・・・画
像表示器、A・・・日負荷運転における電力需要曲線。
FIG. 1 is a principle diagram showing an embodiment of a power distribution device implementing the power distribution method according to the present invention, FIG. 2 is a graph showing the power demand cycle in daily load operation, and FIG. 3 is a graph showing the power demand cycle in daily load operation. Figure 4 is a diagram showing the integration circuit. Figure 4 is a principle diagram of a prediction circuit that calculates the predicted value of the current day's power demand. Figure 5 is the boundary between each power supply step when dividing the daily power demand cycle into several parts. FIG. 2 is a principle diagram showing a theoretical calculation circuit for calculating time. 1... Nuclear power generation equipment, 2... Regular power generation equipment other than nuclear power generation, 3... Standby power generation equipment, 4... Central command center, 5... Transmitter/receiver, 6... Arithmetic unit, 7... Image display, A... Electric power demand curve in daily load operation.

Claims (1)

【特許請求の範囲】 1、発電設備を原子力発電設備と原子力発電以外の常用
発電設備と老朽火力発電等の予備発電設備とに大別する
とともに、予測電力需要量に基づいて日負荷運転の給電
期間を数分割し、各分割ステップ毎に原子力発電設備の
稼動率を優先的に高めた給電指令を演算装置から各発電
設備に送り、各発電設備からの給電量を調節配分するこ
とを特徴とする給電配分方法。 2、予測電力需要量は1週間前の電力需要曲線を基準に
して算出される特許請求の範囲第1項に記載の給電配分
方法。 3、日負荷運転の給電期間は、電力需要量の大きな第1
給電ステツプと、電力需要量が減少傾向にある第2給電
ステツプと、電力需要量が最小値から次第に上昇する期
間であって、原子力発電設備を定格出力の90チに短時
間で達するように制御運転させる第3給電ステツプと、
原子力発電設備を定格出力の90俤から100チの間で
緩やかな上昇運転をさせる第4給電ステツプとに分割さ
せる特許請求の範囲第1項に記載の給電配分方法。 4−原子力発電設備の制御運転は、再循環ポンプのポン
プ速度を調節制御することにより行なう特許請求の範囲
143項に記載の給電配分方法。 5、第1給電ステツプは朝8時からタ方6時までの間の
適宜設定時間からタ方6時までであり、第2給電ステツ
プはタ方6時から翌朝4時まで、第3給電ステツプは翌
朝4時から翌朝5時まで、第4給′−ステップは翌朝5
時から上記設定時間までである特許請求の範囲第3項に
記載の給電配分方法。 6、原子力発電設備と原子力発電以外の常用発電設備と
老朽火力発電等の予備発電設備とから各発電設備を構成
するとともに、各発電設備と中央指令所との情報交換を
行なう送受信器と、予測電力需要量に応じ、各発電設備
からの給電量の配分調節を行なうため、給電指令を発す
る演算装置とを有し、上記演算装置は、原子力発電設備
の稼動率を優先的に高めた給電指令を前記送受信器を介
して各発電設備に発信させ、各発電設備を制御運転させ
るようにしたことを特徴とする給電配分装置。 7、演算装置は1週間前の電力需要曲線を基準にして予
測電力需要量を算出する演算回路を有するとともに、上
記演算装置は電力需要量および発電量を比較表示する画
像表示装置に電気的に接続された特許請求の範囲第6項
に記載の給電配分装置。
[Scope of Claims] 1. Power generation facilities are roughly divided into nuclear power generation facilities, regular power generation facilities other than nuclear power generation facilities, and standby power generation facilities such as aging thermal power generation facilities, and power is supplied for daily load operation based on predicted power demand. The feature is that the period is divided into several parts, and at each division step, a power supply command that prioritizes the operation rate of the nuclear power generation equipment is sent from the computing device to each power generation equipment, and the amount of power supplied from each power generation equipment is adjusted and distributed. power distribution method. 2. The power supply distribution method according to claim 1, wherein the predicted power demand is calculated based on the power demand curve one week before. 3. The power supply period for daily load operation is the first period with the highest power demand.
A power supply step, a second power supply step where power demand tends to decrease, and a period in which power demand gradually increases from the minimum value, in which the nuclear power generation equipment is controlled to reach the rated output of 90 degrees in a short time. a third power supply step for operating;
The power supply distribution method according to claim 1, wherein the nuclear power generation facility is divided into a fourth power supply step in which the nuclear power generation facility is operated at a gradual increase in the rated output between 90 and 100 degrees. 4- The power supply distribution method according to claim 143, wherein the controlled operation of the nuclear power generation facility is performed by adjusting and controlling the pump speed of a recirculation pump. 5. The first power supply step is from an appropriately set time between 8 a.m. and 6 a.m., until 6 a.m., the second power supply step is from 6 a.m. to 4 a.m., and the third power supply step is from 6 a.m. to 4 a.m. the next morning. from 4:00 a.m. to 5:00 a.m. the next morning.
4. The power supply distribution method according to claim 3, wherein the power supply distribution method is from time to time to the set time. 6. Each power generation facility is composed of nuclear power generation facilities, regular power generation facilities other than nuclear power generation facilities, and backup power generation facilities such as aging thermal power generation facilities, as well as transmitters and receivers that exchange information between each power generation facility and the central command center, and forecasting. In order to adjust the distribution of the amount of power supplied from each power generating facility according to the amount of power demand, the computing device issues a power feeding command, and the computing device issues a power feeding command that prioritizes the operation rate of the nuclear power generating facility. A power supply distribution device characterized in that the power is transmitted to each power generation facility via the transmitter/receiver, and each power generation facility is operated in a controlled manner. 7. The calculation device has a calculation circuit that calculates the predicted power demand based on the power demand curve of one week ago, and the calculation device electrically connects to an image display device that compares and displays the power demand and power generation amount. Power distribution device according to attached claim 6.
JP58235068A 1983-12-15 1983-12-15 Method and device for distributing power Pending JPS60128831A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58235068A JPS60128831A (en) 1983-12-15 1983-12-15 Method and device for distributing power

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58235068A JPS60128831A (en) 1983-12-15 1983-12-15 Method and device for distributing power

Publications (1)

Publication Number Publication Date
JPS60128831A true JPS60128831A (en) 1985-07-09

Family

ID=16980591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58235068A Pending JPS60128831A (en) 1983-12-15 1983-12-15 Method and device for distributing power

Country Status (1)

Country Link
JP (1) JPS60128831A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6285640A (en) * 1985-10-08 1987-04-20 東京電力株式会社 Electric source disconnector
US10937112B2 (en) 2018-08-17 2021-03-02 Kabushiki Kaisha Toshiba System, method and device for creating a power generation plan in a power generation system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6285640A (en) * 1985-10-08 1987-04-20 東京電力株式会社 Electric source disconnector
US10937112B2 (en) 2018-08-17 2021-03-02 Kabushiki Kaisha Toshiba System, method and device for creating a power generation plan in a power generation system

Similar Documents

Publication Publication Date Title
US11757404B2 (en) Coordinated control of renewable electric generation resource and charge storage device
EP2721291B1 (en) Selective droop response control for a wind turbine power plant
US9733623B2 (en) Microgrid energy management system and method for controlling operation of a microgrid
US20130166084A1 (en) System, method and controller for managing and controlling a micro-grid
RU2719400C1 (en) Operating method for park of wind plants
CN104538990B (en) Automatic generation control method for small power grid isolated network operation
US20220393466A1 (en) Method of controlling a wind power plant
Aziz et al. Issues and mitigations of wind energy penetrated network: Australian network case study
CN110994639B (en) Simulation constant volume method, device and equipment for power plant energy storage auxiliary frequency modulation
Drouilhet et al. Wales, alaska high penetration wind-diesel hybrid power system: Theory of operation
JPS60128831A (en) Method and device for distributing power
CN110490355A (en) A kind of planning device a few days ago and system for combined heat and power scheduling
JPH0480358B2 (en)
CN110429662A (en) A kind of cogeneration units unit commitment formulating method and system
CN117081177B (en) Micro-grid operation power control method for hydroelectric main dispatching unit in island mode
CN114421523B (en) Multi-scene step-by-step optimized power generation regulation and control system and method based on source load uncertainty
US20240022079A1 (en) Hybrid electrical power generation system and method of simulating the same
CN116632880B (en) Multifunctional coordination control method and device for wind farm energy storage system and terminal equipment
CN113346514B (en) AGC-based optimal mileage scheduling method for generator set
CN110943492B (en) Power generation control method for pumped storage unit for stabilizing fluctuation of photovoltaic output
CN110445188A (en) A kind of formulating method and system of the plan of cogeneration units power output
CN115842380A (en) Frequency control method and device based on Lagrange relaxation reinforcement learning
JPS593104B2 (en) Load following operation method for power system
CN112510764A (en) Control method and system for reactive power of wind power plant, electronic equipment and storage medium
CN117439125A (en) Active control method and system for gravity energy storage power station