JPS6012867B2 - Direct current machine armature manufacturing method - Google Patents

Direct current machine armature manufacturing method

Info

Publication number
JPS6012867B2
JPS6012867B2 JP1906379A JP1906379A JPS6012867B2 JP S6012867 B2 JPS6012867 B2 JP S6012867B2 JP 1906379 A JP1906379 A JP 1906379A JP 1906379 A JP1906379 A JP 1906379A JP S6012867 B2 JPS6012867 B2 JP S6012867B2
Authority
JP
Japan
Prior art keywords
coil
resin
commutator
armature
inner cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1906379A
Other languages
Japanese (ja)
Other versions
JPS55111655A (en
Inventor
伸治 矢島
義郎 波多
健 佐藤
功 小野寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP1906379A priority Critical patent/JPS6012867B2/en
Publication of JPS55111655A publication Critical patent/JPS55111655A/en
Publication of JPS6012867B2 publication Critical patent/JPS6012867B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Manufacture Of Motors, Generators (AREA)
  • Dc Machiner (AREA)

Description

【発明の詳細な説明】 本発明は電気的、機械的応力等に対して強度を向上させ
る樹脂含浸方法を改良した直流機電機子の製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a DC machine armature, which improves the resin impregnation method to improve strength against electrical and mechanical stress.

変圧器、電動機等のコイルにおいては、破壊電圧、機械
的強度、耐緑性等を向上させるために、樹脂を含浸する
ことが行われている。
Coils for transformers, electric motors, etc. are impregnated with resin in order to improve breakdown voltage, mechanical strength, green resistance, etc.

この樹脂は以前は溶剤型であったが、近年は主にェポキ
シ、ポリィミド等の無溶剤型のものが用いられている。
大形の電気機械においては、コイルのみを含浸し、あと
で鉄心にセットするが、小形の機械においては、コイル
を鉄心にセットしたあとで、全体を含浸槽に入れ、一体
舎浸する。前者の含浸後組立の方法によると、コイルは
組立作業中に損傷を受ける危険がある。また鉄D‘こ対
する固定が不十分となりやすく、稼動時の機械的、電磁
的応力に弱いという欠点がある。他方、後者の組立後含
浸の方法によると、コイル相互の接続部のような、こま
かし、部分にも樹脂が一様に含浸される。含浸後のコイ
ル加工はないので、損傷を与えることはない。さらに、
鉄心とコイルの間にも樹脂が入り、強固に結合される。
このような理由から、電気機械のコイルと鉄心は組立後
樹脂含浸するのがよい。これは直流回転機についてもあ
てはまる。直流機の電機子は鉄Dに数十個のコイルが納
められ、整流子を持っている。
This resin used to be a solvent type resin, but in recent years, solvent-free types such as epoxy and polyimide are mainly used.
In large electric machines, only the coil is impregnated and then set on the iron core, but in small machines, after the coil is set on the iron core, the whole is placed in an impregnation tank and immersed in the same tank. According to the former method of assembly after impregnation, there is a risk that the coil will be damaged during the assembly operation. Further, it tends to be insufficiently fixed to the iron D', and has the disadvantage of being susceptible to mechanical and electromagnetic stress during operation. On the other hand, according to the latter post-assembly impregnation method, the resin is evenly impregnated into secret parts such as the mutual connection parts of the coils. There is no coil processing after impregnation, so no damage will occur. moreover,
Resin is also inserted between the iron core and the coil to create a strong bond.
For these reasons, the coils and cores of electrical machines are preferably impregnated with resin after assembly. This also applies to DC rotating machines. The armature of a DC machine has dozens of coils housed in iron D and has a commutator.

これが低速から高速まで、大きな機械力に耐えて回転し
なければならない。耐緑性や耐塵挨性も要求されるが、
そのためには組立後舎浸がよい。更に信頼性を増すには
、コイルエンド部のすきまも樹脂で充填するのがよい。
このような樹脂を充填した一体構造の電気機械を製作す
るには、一般に注形というう方法がとられている。注形
は普通、金属製の容器に機器を入れ、容器と壁と機器の
間、および機器の細部に樹脂を充填するものであり、機
器の外周には厚さ5〜1仇舷の樹脂層が形成される。直
流機の電機子はシャフト、整流子等を持ち、この表面に
樹脂を付けてはならない。また、鉄心の表面は界磁極と
の間で磁路を形成するので、ここにも樹脂層ができては
ならない。本発明はシャフト、整流子、鉄心等の表面に
は含浸樹脂が付着せず、しかもコイルと鉄心は十分に一
体的に無溶剤樹脂が含浸されるようにした直流機雷磯子
の製造方法を提供することを目的とする。
This must rotate from low speeds to high speeds while withstanding large mechanical forces. Green resistance and dust resistance are also required,
For this purpose, it is best to soak it in the house after assembly. To further increase reliability, it is recommended to fill the gaps at the coil ends with resin.
A method called casting is generally used to manufacture such resin-filled monolithic electric machines. Casting is usually a process in which the equipment is placed in a metal container and resin is filled between the container, the wall and the equipment, and in the details of the equipment, with a resin layer 5 to 1 m thick around the outside of the equipment. is formed. The armature of a DC machine has a shaft, commutator, etc., and resin must not be applied to this surface. Furthermore, since the surface of the iron core forms a magnetic path with the field pole, no resin layer should be formed there either. The present invention provides a method for manufacturing a DC mine isogo in which the impregnated resin does not adhere to the surfaces of the shaft, commutator, iron core, etc., and the coil and the iron core are sufficiently integrally impregnated with the solvent-free resin. The purpose is to

以下、本発明の一実施例について、図面を参照して説明
する。
An embodiment of the present invention will be described below with reference to the drawings.

直流機の電機子はシャフト1に鉄心2と電気子腕3,4
および整流子5が装着されている。
The armature of a DC machine has a shaft 1, an iron core 2, and armature arms 3 and 4.
and a commutator 5 are installed.

鉄心2の図示しないスロットにはコイル6が納められ、
これはラィザ7によって整流子5に接続されている。大
形直流機の場合には、シャフト方向「即ち図のX矢の方
向から見ると、ラィザ7部は扇子の骨のように、隙間が
開いているが、中形以下の特に車両用主電動機等におい
ては、ここがラィザ7の導体とそれを1枚1枚隔離する
絶縁板で満たされ、一体の円板となっている。この実施
例は「 この後者の場合について説明するので、特別に
塞ぐことはしなくても、塞がれているものとする。そし
て電機子8同の外周にフィルムを巻付けて内筒8を形成
し、鉄心2、コイル6および整流子5の外周にフィルム
を巻付けて外筒9,10を形成し、この内筒8と外筒9
の間に樹脂を注入するものである。これは実際には次の
ように行う。鉄心2はあらかじめワニス処理し、その積
層間の小さい隙間を樹脂で埋めておく。これをシヤフト
ーに取付け、上下からほぼ円筒状の電機子胴3および4
で押さえる。さらに整流子5を装着する。反整流子側の
電機子胴3の上の鋼絶縁11を施すときに、それらの間
にフィルムを挟み巻きつけて内筒8を形成する。その内
筒8のフィルムの端末は接着剤でシールしておく。次に
コイル6を鉄心スロットに納め、口出部はラィザ7に半
田付あるいは溶接によって接続する。コイル6のスロッ
ト外相互の間には隙間ができるが、そこにはガラスウー
ル、又はガラス紐を短く切ったもの「或は石綿等の繊維
質材料の充填部材(図示せず)をつめる。このコイルエ
ンド部の上に厚さ0.1柳ないし0.25側のガラステ
ープを半重ねで1回あるいは2回巻き、ガラステープ層
12を形成する。。この状態で100〜〜12び0にお
いて1幼時間乾燥する。乾燥炉から取出して未だ温かい
うちに、ラィザ7からコイルループ部13まで十分に被
う幅のフィルムを巻きつけて、第1の外筒9を形成する
。この外筒9のフィルムの端末も接着剤をすけてシール
する。この第1の外筒9を押えるために、半硬イけ伏の
ワニス処理をした押えテープ14を数個所巻きつける。
この押えテープ14は電機子の熱によって融着し、外れ
ることはない。さらに整流子5部を被うようにフィルム
を巻きつけ、第2の外筒10を形成する。この外筒10
のフィルムの端末は接着する必要がない。そしてこの第
2の外筒10も半硬イ日伏のワニス処理をした押えテー
プ15で固定する。尚第1の外筒9と第2の外筒1川ま
1体のもので構成しても構わない。このようにしてでき
た添付図面のような構成のものを、整流子5個を下にし
て立てた姿勢で含浸槽内に設置し、脱気する。そのあと
、上方すなわちコイルループ部13の内筒8と第1の外
筒9の間から無溶剤樹脂を注入する。樹脂が下方のラィ
ザ7接続部から順次満たされ「ループ部13に達したと
きに注入を止め、その後いまらくの時間、真空引きを続
け、十分に脱泡する。次に含浸槽に大気を導入し4ない
し5気圧に加圧する。いまらく放置したのち、乾燥炉に
移し、加熱して樹脂を硬化させる。その後、内筒8、押
えテープ14,15および外筒9,10を取去る。ガラ
ステープ層12には樹脂が含浸されているが、これもで
きるだけ取去る。そのあと上下のコイルエンド部にパイ
ンドテープを巻き、加熱処理して電機子が完成する。含
浸樹脂は鉄心スロット閉口部の襖(図示せず)にも付く
が、これは後の仕上工程で落す。このような方法による
と、電機子外径を増さないという基本要件を破ることな
く、鉄心スロット、電機子胴3,4、ラィザ7および電
機子表面で囲まれた部分は、すべて樹脂で満たされる。
A coil 6 is housed in a slot (not shown) of the iron core 2,
It is connected to the commutator 5 by a riser 7. In the case of large-sized DC motors, when viewed from the shaft direction (that is, from the direction of the etc., this area is filled with the conductors of the riser 7 and insulating plates that isolate them one by one, forming an integrated disk. It is assumed that the armature 8 is blocked even if it is not blocked.Then, a film is wrapped around the outer periphery of the armature 8 to form the inner cylinder 8, and a film is wrapped around the outer periphery of the iron core 2, the coil 6, and the commutator 5. are wound to form outer cylinders 9 and 10, and this inner cylinder 8 and outer cylinder 9
The resin is injected in between. This is actually done as follows. The iron core 2 is treated with varnish in advance, and small gaps between the laminated layers are filled with resin. This is attached to the shaft, and the almost cylindrical armature bodies 3 and 4 are
hold it down. Furthermore, a commutator 5 is attached. When applying the steel insulation 11 on the armature shell 3 on the side opposite to the commutator, a film is sandwiched and wound between them to form the inner cylinder 8. The end of the film in the inner tube 8 is sealed with adhesive. Next, the coil 6 is placed in the core slot, and the outlet is connected to the riser 7 by soldering or welding. A gap is created between the outer slots of the coil 6, and this space is filled with glass wool, short cut glass string, or a filling material (not shown) made of a fibrous material such as asbestos. A glass tape with a thickness of 0.1 to 0.25 is wrapped once or twice over the coil end portion in a half-fold manner to form the glass tape layer 12.In this state, the glass tape layer 12 is formed at 100 to 12 and 0. Dry for 1 hour. Remove from the drying oven and while still warm, wrap a film wide enough to cover from the riser 7 to the coil loop portion 13 to form the first outer cylinder 9. This outer cylinder 9 The ends of the film are also sealed past the adhesive. In order to hold down this first outer cylinder 9, semi-hard varnished presser tape 14 is wrapped around it in several places.
This holding tape 14 is fused by the heat of the armature and will not come off. Furthermore, a film is wound around the commutator 5 to form a second outer cylinder 10. This outer cylinder 10
There is no need to glue the ends of the film. This second outer cylinder 10 is also fixed with a presser tape 15 treated with semi-hard Hibushi varnish. Note that the first outer cylinder 9 and the second outer cylinder may be constructed as one body. The structure thus constructed as shown in the attached drawings was placed in an impregnating tank in an upright position with the five commutators facing down, and degassed. After that, the solvent-free resin is injected from above, that is, between the inner tube 8 and the first outer tube 9 of the coil loop portion 13. The resin is filled sequentially from the connection part of the riser 7 at the bottom, and when it reaches the loop part 13, the injection is stopped, and the vacuum is then continued for some time to sufficiently degas it.Next, atmospheric air is introduced into the impregnation tank. Pressurize to 4 to 5 atmospheres. After leaving it for a while, move it to a drying oven and heat to harden the resin. Then, remove the inner cylinder 8, presser tapes 14, 15, and outer cylinders 9, 10. The tape layer 12 is impregnated with resin, which is also removed as much as possible. After that, the upper and lower coil ends are wrapped with pinned tape and heat treated to complete the armature. The impregnated resin is applied to the core slot closing part. (not shown), but this will be removed in a later finishing process.With this method, the core slots and armature shell can be removed without violating the basic requirement of not increasing the armature outer diameter. 3, 4, the area surrounded by the riser 7 and the armature surface is all filled with resin.

コイル6の対地絶縁や電機子耳同絶縁11にも十分に樹
脂が含浸される。。コイル6相互間のかなり大きい隙間
も樹脂で満たされる。大きい樹脂だまりは普通、亀裂を
生ずるが、本方法の場合には、その中に充填部村として
ガラス繊維、石綿等の補強材が入っているので防止され
る。すべての部分が樹脂で接着されるので、振動や衝撃
に強いのは勿論のこと、湿気や塵挨の侵入する通路もな
い。しかも含浸樹脂を注入するとき、樹脂は飛沫となっ
て、飛散りやすし、が、第2の外筒10があるので、整
流子5の表面に付着することが無い。車両用主電動機の
ような直流機においては電機子銅3,4や鉄心2には軸
方向に通風孔が設けられている。また反整流子側のコイ
ルループ部13と胴絶縁11と電機子胴3の軸方向突出
長さの関係は、沿面絶縁や材料強度の制約を受けて一般
的に図のようにコイルループ部13が最も出た形となっ
ている。本実施例においては、このコイルループ部13
よりも十分に突出長さの長い内筒8を設けるようにした
ので、これと外筒9との間にコイルループ部13が十分
に没する液面高さまで含浸樹脂を注入することができる
。コイルの周囲やスロット内の空隙に含浸樹脂が浸入す
ると樹脂液面は次第に低下するが、このときにもコイル
ルーフ。部13の周囲に含浸樹脂が十分に存在する状態
を保つことができるので、コイルループ部13にも樹脂
が十分に含浸される。また、このようにしても含浸樹脂
は内筒8によってせき止められているので、上記の通風
孔に侵入して冷却を阻害するということがない。以上述
べた如く、本発明によればコイルループ部13から整流
子5にわたって円筒状にフィルムを巻きつけて外筒とし
、また、反整流子側の電機子飼3の端を延長する形にフ
ィルムの円筒を取りつけて内筒8とし、整流子5を下方
にして外筒9と内筒8の間に樹脂を注入して、硬化させ
るので、不要の部分には樹脂が殆殆ど付着せず、しかも
所要の部分には十分に樹脂が充満する。
The ground insulation of the coil 6 and the armature ear insulation 11 are also sufficiently impregnated with the resin. . Even the fairly large gaps between the coils 6 are filled with resin. Large resin puddles normally cause cracks, but in the case of this method, this is prevented because a reinforcing material such as glass fiber or asbestos is included as a filler. Since all parts are bonded with resin, it is not only resistant to vibration and shock, but also has no passageway for moisture or dust to enter. Moreover, when the impregnating resin is injected, the resin becomes droplets and easily scatters, but because of the presence of the second outer cylinder 10, it does not adhere to the surface of the commutator 5. In a DC machine such as a main electric motor for a vehicle, the armature coppers 3 and 4 and the iron core 2 are provided with ventilation holes in the axial direction. In addition, the relationship between the axial protrusion lengths of the coil loop portion 13 on the anti-commutator side, the shell insulation 11, and the armature shell 3 is generally as shown in the figure, due to creepage insulation and material strength constraints. is the most prominent form. In this embodiment, this coil loop portion 13
Since the inner tube 8 is provided with a sufficiently longer protrusion length than the inner tube 8, the impregnated resin can be injected between the inner tube 8 and the outer tube 9 to a level where the coil loop portion 13 is sufficiently submerged. As the impregnated resin enters the voids around the coil and in the slot, the resin liquid level gradually decreases, but even at this time the coil roof. Since a sufficient amount of impregnated resin can be maintained around the portion 13, the coil loop portion 13 is also sufficiently impregnated with the resin. Further, even in this case, since the impregnated resin is blocked by the inner cylinder 8, there is no possibility that the impregnated resin will enter the above-mentioned ventilation hole and impede cooling. As described above, according to the present invention, a film is wrapped in a cylindrical shape from the coil loop portion 13 to the commutator 5 to form an outer cylinder, and the film is wrapped in a shape extending from the end of the armature cage 3 on the side opposite to the commutator. A cylinder is attached to form the inner cylinder 8, and resin is injected between the outer cylinder 9 and the inner cylinder 8 with the commutator 5 facing downward and hardened, so that almost no resin adheres to unnecessary parts. Moreover, the required portions are sufficiently filled with resin.

しかもコイル口出部および曲線部の隙間には繊維質材料
の充填部材を補強用に充填するので、樹脂だまりによる
亀裂の心配がなく、無補修、無故障の直流機電機子を好
生産性で製造できる。
Moreover, since the gaps between the coil outlet and the curved part are filled with a fibrous material filling material for reinforcement, there is no need to worry about cracks caused by resin accumulation, and the DC machine armature can be manufactured without repair or failure with high productivity. Can be manufactured.

【図面の簡単な説明】[Brief explanation of drawings]

添付図面は本発明の直流機電機子の製造方法の一実施例
にて製造している途中の電機子を示す半部断面立面図で
ある。 2...鉄心、5・・・整流子、6…コイル、7・・・
ラィザ、8・・・内筒、9,10…外筒。
The accompanying drawing is a half-sectional elevational view showing an armature being manufactured in an embodiment of the method for manufacturing a DC machine armature according to the present invention. 2. .. .. Iron core, 5... Commutator, 6... Coil, 7...
Riser, 8...inner cylinder, 9, 10...outer cylinder.

Claims (1)

【特許請求の範囲】[Claims] 1 鉄心スロツトにコイルを収納し、反整流子側のコイ
ルエンドをほぼ円筒状の電機子胴で支承し、コイル出口
部を整流子のライザに接続したものをコイルと鉄心を一
体に樹脂含浸する直流機電機子の製造方法において、反
整流子側の電機子胴とコイルエンドとの間にほぼ円筒状
にコイルエンドより突出してフイルムを挾み巻きつけて
内筒を形成し、コイル出口部および曲線部の隙間に繊維
質材料の充填部材を充填し、その外周にガラステープを
巻き、コイルエンドの先端のコイルループ部よに突出し
た位置から整流子にわたって円筒状にフイルムを巻付け
て外筒とし、これを整流子を下方にして直立させ、内筒
と外筒との間に樹脂を注入して硬化させることを特徴と
した直流機電機子の製造方法。
1 The coil is housed in the core slot, the coil end on the opposite side of the commutator is supported by a nearly cylindrical armature body, the coil outlet is connected to the riser of the commutator, and the coil and core are impregnated with resin together. In a method for manufacturing a DC machine armature, an inner cylinder is formed by wrapping a film between the armature body on the side opposite to the commutator and the coil end in a substantially cylindrical shape protruding from the coil end, and forming an inner cylinder between the coil outlet and the coil end. A filler made of fibrous material is filled into the gap between the curved parts, a glass tape is wrapped around the outer periphery, and a film is wrapped in a cylindrical shape from a protruding position such as the coil loop part at the tip of the coil end to the commutator to form an outer cylinder. A method for manufacturing a DC machine armature, which comprises: standing the armature upright with the commutator facing downward; and injecting and curing resin between the inner cylinder and the outer cylinder.
JP1906379A 1979-02-22 1979-02-22 Direct current machine armature manufacturing method Expired JPS6012867B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1906379A JPS6012867B2 (en) 1979-02-22 1979-02-22 Direct current machine armature manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1906379A JPS6012867B2 (en) 1979-02-22 1979-02-22 Direct current machine armature manufacturing method

Publications (2)

Publication Number Publication Date
JPS55111655A JPS55111655A (en) 1980-08-28
JPS6012867B2 true JPS6012867B2 (en) 1985-04-03

Family

ID=11988966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1906379A Expired JPS6012867B2 (en) 1979-02-22 1979-02-22 Direct current machine armature manufacturing method

Country Status (1)

Country Link
JP (1) JPS6012867B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107769494B (en) * 2016-08-19 2019-11-29 中车株洲电力机车研究所有限公司 The manufacturing method and motor of motor

Also Published As

Publication number Publication date
JPS55111655A (en) 1980-08-28

Similar Documents

Publication Publication Date Title
JP2738572B2 (en) High voltage insulation of electrical machines
US4616407A (en) Insulating method for rotary electric machine
US3436815A (en) Encapsulation process for random wound coils
CA1299632C (en) Insulated coil assembly
US4392070A (en) Insulated coil assembly and method of making same
JP2007282410A (en) Rotating electric machine, stator coil thereof, its manufacturing method, and semiconductive sheet, semiconductive tape
JPS6012867B2 (en) Direct current machine armature manufacturing method
JPH09308158A (en) Low-voltage rotary machine stator insulating coil
JP7484621B2 (en) Manufacturing method of the stator
JPS59181939A (en) Insulating method of connecting portion of windings for rotary electric machine
JP7498098B2 (en) Prepreg mica tape, rotating electric machine, and method for manufacturing rotating electric machine
JPS6055846A (en) Forming method of salient-pole field pole
JPH0670516A (en) Manufacture of stator for electric rotary machine
JP2604063B2 (en) Manufacturing method of coil for electromagnet
JPH0218662Y2 (en)
JPS642528Y2 (en)
JPH07123342B2 (en) Mold Electric Manufacturing Method
JPS62210850A (en) Insulating treatment for electric coil
JPH08163839A (en) Manufacture of insulated coil for high voltage electric rotating machine
JPS6118331A (en) Insulating method for coil of rotary electric machine
JPS6048984B2 (en) Manufacturing method of generator for magnet generator
JPH05315126A (en) Mold coil and manufacture thereof
JPH0326780Y2 (en)
JP2921354B2 (en) Rotor of vehicle alternator and method of manufacturing the same
JPS6146143A (en) Coil insulating method of rotary electric machine