JPS6012767B2 - Manufacturing method of high-density Ni-Zn ferrite - Google Patents

Manufacturing method of high-density Ni-Zn ferrite

Info

Publication number
JPS6012767B2
JPS6012767B2 JP51126147A JP12614776A JPS6012767B2 JP S6012767 B2 JPS6012767 B2 JP S6012767B2 JP 51126147 A JP51126147 A JP 51126147A JP 12614776 A JP12614776 A JP 12614776A JP S6012767 B2 JPS6012767 B2 JP S6012767B2
Authority
JP
Japan
Prior art keywords
ferrite
raw material
density
particle size
initial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51126147A
Other languages
Japanese (ja)
Other versions
JPS5351497A (en
Inventor
志郎 村上
勉 飯村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP51126147A priority Critical patent/JPS6012767B2/en
Publication of JPS5351497A publication Critical patent/JPS5351497A/en
Publication of JPS6012767B2 publication Critical patent/JPS6012767B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】 本発明は、高い凝結密度を有し、高周波帯城において優
れた磁気特性を示すNi−Znフェライトの製造方法に
係るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing Ni--Zn ferrite, which has a high coagulation density and exhibits excellent magnetic properties in a high frequency band.

近年、情報処理の発展に従い、磁気記録産業の進歩はめ
ご・ましいものがある。
In recent years, with the development of information processing, the magnetic recording industry has made remarkable progress.

その結果、磁気記録の分野においては、情報量の増大に
対処するため、記録密度の向上が一層重要な課題となり
、ビデオテープレコーダ、電子計算機などに用いられる
磁気ヘッドの記録周波数は、ますます高周波へ移行する
傾向にある。そのため、これらの機器に用られる磁気ヘ
ッドの性能に対する要求は更に厳しくなり、従来より一
段と高周波特性の優れた材料が望まれるようになった。
現在、前述したビデオテープレコーダおよび電子計算機
用磁気ヘッド材料として、フェライトが実用化されてい
るが、前者はMn−Zn系のホットプレスあるいは単結
晶フェライトがその主流をなしている。
As a result, in the field of magnetic recording, improving recording density has become an even more important issue in order to cope with the increase in the amount of information, and the recording frequencies of magnetic heads used in video tape recorders, electronic computers, etc. are becoming increasingly high. There is a tendency to shift to As a result, performance requirements for the magnetic heads used in these devices have become even more demanding, and materials with even better high frequency characteristics than before have been desired.
Currently, ferrite is in practical use as a magnetic head material for the above-mentioned video tape recorders and electronic computers, and in the former, Mn--Zn hot-pressed or single-crystal ferrite is the mainstream.

一方、後者においてはNi−Znフェライトが主に使用
されているが、精密加工を必要とするため高密度である
ことは勿論のこと、磁気特性、特に使用周波数帯域にお
いて初透磁率の高いことが要求される。一般に、フェラ
イトの初透磁率の周波数依存性(以下ムーf特性と記す
)は、周波数依存性のあまりない低周波帯域と、より高
周波において初透磁率が徐々に減少して行く帯域とに分
けて考えることができる。
On the other hand, Ni-Zn ferrite is mainly used in the latter, but it requires precision machining, so it is of course high density, and it also has magnetic properties, especially high initial permeability in the frequency band used. required. Generally, the frequency dependence of the initial magnetic permeability of ferrite (hereinafter referred to as Mu f characteristic) can be divided into a low frequency band with little frequency dependence and a band where the initial magnetic permeability gradually decreases at higher frequencies. I can think.

ムーf特性が平坦な低周波帯域においては、磁壁移動に
よる磁化機構が王であると考えられており、フェライト
暁綾体の結晶粒径、空孔分布、あるいは不純物量などの
違いによって初透磁率は大きく変化する。一方、初透磁
率が減少し始める周波数は、それぞれのフェライト固有
の結晶異方性定数によってほぼ決定され、この事実はス
ネークの限界としてよく知られている。現在のフェライ
ト磁気ヘッドの使用状況を見ると、r−f特性が平坦な
帯城から初透磁率が漸次減少して行く帯城にまたがって
使用されているのが一般的であり、材料についてもその
使用帯城初透磁率の高いことが要求される。このように
初透磁率が大きく変化する帯城において、それを高く保
つことは非常に困難な問題である。従来は、高周波にお
ける高い初透磁率を意識するあまり、低周波(山一f特
性が平坦な周波数帯域)における初透磁率を犠牲にする
かあるいはその逆の場合が多く、両者を同時に満足する
ことは困難であった。
In the low frequency band where the Mu f characteristic is flat, the magnetization mechanism due to domain wall movement is considered to be the dominant mechanism, and the initial magnetic permeability changes depending on the crystal grain size, pore distribution, or amount of impurities in the ferrite crystal body. changes greatly. On the other hand, the frequency at which the initial permeability begins to decrease is approximately determined by the crystal anisotropy constant specific to each ferrite, and this fact is well known as the Snake limit. Looking at the current state of use of ferrite magnetic heads, it is common that they are used across a range from a flat band with a flat r-f characteristic to a band with a gradual decrease in initial permeability, and the materials used also vary. Its use requires high initial magnetic permeability. In a belt castle where the initial magnetic permeability varies greatly in this way, it is a very difficult problem to maintain it high. Conventionally, in order to focus on high initial permeability at high frequencies, the initial permeability at low frequencies (frequency bands with flat peak-f characteristics) was often sacrificed, or vice versa, and it was difficult to satisfy both at the same time. was difficult.

本発明はこれらの欠点を改善し、実際に磁気ヘッドとし
て使用される周波数帯域において十分に高い初透磁率を
得、併せてホットプレスなど特殊な方法を用いることな
く、通常の暁緒によって高密度Ni−Znフェライトを
製造する方法を提供するものである。
The present invention improves these shortcomings, obtains a sufficiently high initial magnetic permeability in the frequency band actually used as a magnetic head, and also produces high-density Ni by ordinary drilling without using special methods such as hot pressing. - A method of manufacturing Zn ferrite is provided.

一般的なフェライトの製造方法としては乾式法が挙げら
れるが、Ni−Znフェライトの場合、原料にはNi○
、Zn○、Fe203等の酸化物又は惨酸塩、硫酸塩、
硝酸塩、炭酸塩など、仮焼時あるいは暁結時に分解して
酸化物となるものを用いることが多い。
The dry method is a common method for producing ferrite, but in the case of Ni-Zn ferrite, the raw material is Ni○
, Zn○, Fe203 etc. oxides or salts, sulfates,
Nitrate, carbonate, and other substances that decompose into oxides during calcination or freezing are often used.

より高性能のフェライトを製造しようとする際、磁気特
性に悪影響を与える不純物の含有量が少ない原料を用い
る必要があるのは勿論であるが、それに加えて原料の粉
体としての性質、すなわち粒度、形状などにも十分の注
意を払う必要がある。通常の乾式法では、まず各原料粉
を混合した後仮隣し、それを粉砕し成形したものを競結
するが、異種の原料粉を混合し競結するのであるから、
その均一性が当然問題となる。すなわち、混合粉におけ
る原料粒子の分布の均一性、仮競粉中の反応物の組成の
均一性、焼緒体におけるイオン分布の均一性などが重要
である。特にNi−Znフェライトにおけるように、焼
結の初期にZnフェライトが形成され、それにNiイオ
ンが拡散するような焼縞形態をとる場合には、Niイオ
ンの拡散の難易がイオン分布の均一性を左右し、ひいて
は磁気特性にも大きな影響を与えることとなる。原料の
Ni○あるいはニッケル化合物の粒径が大きい場合、拡
散が行なわれても局所的にNiイオンの多い部分、ある
いはその反対にNiイオンの少ない部分が生じやすく、
イオン分布が不均一になると考えられる。イオン分布が
不均一であれば、結晶異方性などが部分的に異なり磁壁
移動が妨害されるため、r−f特性が平坦な周波数帯域
の初透磁率は低下することが予想される。
When trying to manufacture ferrite with higher performance, it is of course necessary to use raw materials with a low content of impurities that adversely affect magnetic properties, but in addition, it is necessary to use raw materials with a low content of impurities that adversely affect magnetic properties. , it is necessary to pay sufficient attention to the shape, etc. In the normal dry method, each raw material powder is first mixed, then temporarily placed next to each other, and then crushed and molded.
Naturally, its uniformity becomes a problem. That is, the uniformity of the distribution of raw material particles in the mixed powder, the uniformity of the composition of reactants in the preliminary powder, the uniformity of the ion distribution in the baking powder, etc. are important. Particularly in the case of Ni-Zn ferrite, where Zn ferrite is formed in the early stage of sintering and takes the form of burnt stripes in which Ni ions are diffused, the difficulty of Ni ion diffusion may affect the uniformity of ion distribution. This will have a large impact on the magnetic properties. If the particle size of the raw material Ni○ or nickel compound is large, even if diffusion occurs, areas with a large amount of Ni ions or vice versa, areas with a small amount of Ni ions are likely to occur locally.
It is thought that the ion distribution becomes non-uniform. If the ion distribution is non-uniform, crystal anisotropy etc. will differ locally and domain wall motion will be hindered, so it is expected that the initial magnetic permeability in a frequency band where the rf characteristic is flat will decrease.

従って、磁壁移動の初透磁率への寄与を大きくするため
にはできるだけ粒径の小さいNi○あるいはニッケル化
合物を用いて、暁結体におけるイオン分布の均一性を高
める必要がある。また、粒径の小さいNi○あるいはニ
ッケル化合物を用いれば、Niイオンの拡散が容易にな
り嘘絹が促進される効果も考えられる。本発明は上記の
事実に基も、てなされたもので、以下に実施例を挙げて
詳細に説明する。実施例 1 第1表および第1図に二種のNi○、すなわちAおよび
Bを原料に用いた場合のNi一Znフェライトの諸特性
を示す。
Therefore, in order to increase the contribution of domain wall motion to the initial magnetic permeability, it is necessary to use Ni○ or a nickel compound with a particle size as small as possible to improve the uniformity of the ion distribution in the crystalline structure. Furthermore, if Ni◯ or a nickel compound having a small particle size is used, diffusion of Ni ions is facilitated, which may have the effect of promoting false silk. The present invention has been developed based on the above facts, and will be described in detail below with reference to Examples. Example 1 Table 1 and FIG. 1 show various properties of Ni-Zn ferrite when two types of Ni○, namely A and B, were used as raw materials.

二種のNi○の平均粒径はそれぞれAが1.2〃、Bが
4.8rであり、A,およびA2は原料Aを、またB,
およびB2は原料Bを用いた試料である。いずれの試料
もNi017.7モル%、Zn032.8モルおよびF
e20349.5モル%の配合比の原料を、水又はアル
コール、アセトンなどの有機溶媒中で混合し、1300
oo以下で仮暁した後、ボールミル又は振動ミルで粉砕
し、得られた粉末を加圧成形して1300午○以下で空
気中又は酸素中焼結して作製した。第1表 第1表および第1図から明らかなように、平均粒径の小
さい原料Aを用いた試料A,、A2は、平均粒径の大き
い原料Bを用いた試料B、B2にくらべ、3M比以下に
おいて初透磁率が大きく本発明の効果が顕著であり、こ
の種の材質を用いることによって、磁気ヘッド特性の改
善が十分に期待される。
The average particle diameters of the two types of Ni○ are 1.2r for A and 4.8r for B, respectively.
and B2 are samples using raw material B. All samples contained 17.7 mol% Ni0, 32.8 mol% Zn0, and F
e203 Raw materials with a blending ratio of 49.5 mol% are mixed in water or an organic solvent such as alcohol or acetone, and 1300
After being frozen at a temperature of 1,300 pm or less, the powder was pulverized using a ball mill or a vibration mill, and the resulting powder was pressure-molded and sintered in air or oxygen at a temperature of 1,300 pm or less. As is clear from Table 1 and Figure 1, Samples A and A2 using raw material A with a small average particle size are more effective than Samples B and B2 using raw material B with a large average particle size. At a ratio of 3M or lower, the initial magnetic permeability is large and the effect of the present invention is remarkable, and by using this kind of material, it is fully expected that the magnetic head characteristics will be improved.

また、試料A,、A2は暁結密度においても優れ、粒径
の小さいNiOを用いたことによる暁鯖促進の効果が現
われており、本発明の優秀性が認められる。実施例 2 第2表に実施例1のA,、B,と配合組成を除いては同
じ条件で作製したNi−ZnフェライトA3、&の諸特
性を示す。
In addition, Samples A and A2 were also excellent in grain density, demonstrating the effect of promoting grain formation due to the use of NiO having a small particle size, and the superiority of the present invention is recognized. Example 2 Table 2 shows various properties of Ni-Zn ferrite A3, & produced under the same conditions as A, B, and of Example 1 except for the compounding composition.

A3、馬はそれぞれ原料A、Bを用いたものであり、配
合組成はいずれもNi022.7モル%、Zn027.
8モル%およびFe20349.5モル%である。第2
表より明らかなように0.5〜7.0M比の周波数帯域
においてんはB3よりも初透磁率が大きく、配合組成が
異なる場合でも実施例1と同様の効果が認められる。第
2表 実施例 3 第3表に修酸ニッケルを原料に用いた場合のNi−Zn
フェライトC,、C2の諸特性を示す。
A3 and Horse are those using raw materials A and B, respectively, and the blended compositions of both are Ni022.7 mol% and Zn027.
8 mol% and Fe20349.5 mol%. Second
As is clear from the table, in the frequency band of 0.5 to 7.0 M ratio, B3 has a higher initial permeability than B3, and the same effect as Example 1 is observed even when the blending composition is different. Table 2 Example 3 Table 3 shows Ni-Zn when nickel oxalate is used as a raw material.
Various characteristics of ferrite C, C2 are shown.

実施例1のA,、Bと同じ組成になるように各原料を配
合し、同様の方法で試料を作製した。なお、袴酸塩の分
解点はこの場合の仮焼温度よりもはるかに低温であるが
、仮銃温度と同一温度で修酸ニッケルの熱分解を行ない
、形骸粒子中の単一粒子の平均粒径は3仏以下であるこ
とを確認した。第3表やはりこの場合にも実施例1ある
いは2において粒径の小さいNi○を用いた場合と同様
に、優れた磁気特性が得られる。
Each raw material was blended to have the same composition as A, B of Example 1, and a sample was prepared in the same manner. Although the decomposition point of hakamate is much lower than the calcination temperature in this case, nickel oxalate is thermally decomposed at the same temperature as the calcination temperature, and the average particle size of a single particle in the token particles is The diameter was confirmed to be less than 3 Buddhas. Table 3 Again, in this case, as in Example 1 or 2, when Ni○ having a small particle size was used, excellent magnetic properties can be obtained.

以上のように、平均粒径が小さく3ム以下のNi○又は
ニッケル化合物を原料に用いれば、本発明の効果が十分
に発揮されるが、平均粒径が3ムより大きくなるにつれ
初透磁率は徐々に低下し、所望の特性が得られなくなる
As described above, if Ni○ or a nickel compound with a small average particle size of 3 μm or less is used as a raw material, the effects of the present invention can be fully exhibited, but as the average particle size becomes larger than 3 μm, the initial magnetic permeability increases. gradually decreases, and desired characteristics cannot be obtained.

したがって、本発明の効果が顕著に現われる平均粒径の
限度は3仏以下とした。本発明によるNi一Znフェラ
イトを実際に磁気ヘッドに用いれば、初透磁率が高いこ
とからヘッド特性の改善が十分に期待され、また、高密
度であるため精密加工が容易になるなど、工業的にもそ
の効果は極めて大なるものである。
Therefore, the limit of the average particle size at which the effects of the present invention are significantly exhibited is set to be 3 mm or less. If the Ni-Zn ferrite according to the present invention is actually used in a magnetic head, it is expected that head characteristics will be fully improved due to its high initial magnetic permeability, and its high density will facilitate precision processing, making it suitable for industrial use. However, the effect is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明Ni−Znフェライトの初透磁率の周波
数依存性を表わす特性曲線図である。
FIG. 1 is a characteristic curve diagram showing the frequency dependence of the initial magnetic permeability of the Ni--Zn ferrite of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 各原料粉を混合した後仮焼きし、それを粉砕し成型
したものを焼結するフエライトの製造方法において、上
記原料粉のうちの酸化ニツケルもしくはニツケル化合物
原料粉として、単一粒子又は形骸粒子に内包される粒子
の平均粒径が3μ以下の原料粉を用いたことを特徴とす
るNi−Znフエライトの製造方法。
1. In a method for producing ferrite in which raw material powders are mixed, calcined, pulverized, molded, and then sintered, single particles or skeleton particles are used as the nickel oxide or nickel compound raw material powder among the raw material powders. 1. A method for producing Ni--Zn ferrite, characterized in that raw material powder is used in which the average particle diameter of the particles encapsulated in the powder is 3 μm or less.
JP51126147A 1976-10-22 1976-10-22 Manufacturing method of high-density Ni-Zn ferrite Expired JPS6012767B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51126147A JPS6012767B2 (en) 1976-10-22 1976-10-22 Manufacturing method of high-density Ni-Zn ferrite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51126147A JPS6012767B2 (en) 1976-10-22 1976-10-22 Manufacturing method of high-density Ni-Zn ferrite

Publications (2)

Publication Number Publication Date
JPS5351497A JPS5351497A (en) 1978-05-10
JPS6012767B2 true JPS6012767B2 (en) 1985-04-03

Family

ID=14927830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51126147A Expired JPS6012767B2 (en) 1976-10-22 1976-10-22 Manufacturing method of high-density Ni-Zn ferrite

Country Status (1)

Country Link
JP (1) JPS6012767B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60227072A (en) * 1984-04-25 1985-11-12 Miyoshi Valve Kk Constant flow valve

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3472780A (en) * 1962-07-25 1969-10-14 Philips Corp Low porosity nickel zinc ferrite
JPS4928077A (en) * 1972-07-14 1974-03-13

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3472780A (en) * 1962-07-25 1969-10-14 Philips Corp Low porosity nickel zinc ferrite
JPS4928077A (en) * 1972-07-14 1974-03-13

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60227072A (en) * 1984-04-25 1985-11-12 Miyoshi Valve Kk Constant flow valve

Also Published As

Publication number Publication date
JPS5351497A (en) 1978-05-10

Similar Documents

Publication Publication Date Title
Hibst Hexagonal ferrites from melts and aqueous solutions, magnetic recording materials
BRPI0620713B1 (en) “Magnetic oxide material, its magnetic recording medium, its combined magnet, its rotary machine and sintered magnetic magnet”
JPS6012767B2 (en) Manufacturing method of high-density Ni-Zn ferrite
JP2004532524A (en) Manufacturing method of ferrite type magnet
JP3115466B2 (en) Method for producing hexagonal ferrite particles
JP2003252618A (en) Magnetic nanoparticulate, its production method and magnetic nanoparticulate thin film
JPH01291406A (en) High-permittivity magnetic material and manufacture thereof
JPS6217841B2 (en)
JPS6343359B2 (en)
JP2001093716A (en) Powder for magnetic recording medium and method for manufacturing thereof
CN102050620B (en) VHF (very high frequency) soft magnetic barium ferrite material and preparation method thereof
JP3467838B2 (en) Ferrite resin and method for producing ferrite resin
JPH11251126A (en) Oxide permanent magnet and its manufacture
JP2691790B2 (en) Method for producing magnetic powder for magnetic recording medium
JPH04337521A (en) Magnetic powder for magnetic recording medium and magnetic recording medium formed by using the powder
JP2001006912A (en) Hard ferrite magnet and its manufacture
JPH0459619A (en) Magnetic powder for magnetic recording and magnetic recording medium therefrom
JP2006054220A (en) Low coercive force ferrite magnetic powder, magnetic paint, and magnetic sheet
JPH0387002A (en) Manufacture of magnetic powder for magnetic recording medium
JPS605044B2 (en) Ferrite manufacturing method
JPH11283820A (en) Anisotropic gradient ni-zn ferrite core for high frequency
JPS58135135A (en) Preparation of powder of needle-like crystal of iron beta-oxyhydroxide particle
JPS6364920A (en) Production of magnetic powder for magnetic recording
JPS6034244B2 (en) Manufacturing method of ferromagnetic powder
KR820001794B1 (en) Magnetic recording medium