JPS6012765B2 - Manufacturing method of high coercive force and high surface magnetic flux density plastic composite magnet - Google Patents
Manufacturing method of high coercive force and high surface magnetic flux density plastic composite magnetInfo
- Publication number
- JPS6012765B2 JPS6012765B2 JP51103356A JP10335676A JPS6012765B2 JP S6012765 B2 JPS6012765 B2 JP S6012765B2 JP 51103356 A JP51103356 A JP 51103356A JP 10335676 A JP10335676 A JP 10335676A JP S6012765 B2 JPS6012765 B2 JP S6012765B2
- Authority
- JP
- Japan
- Prior art keywords
- plastic composite
- composite magnet
- ferrite powder
- manufacturing
- coercive force
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Hard Magnetic Materials (AREA)
Description
【発明の詳細な説明】 本発明はプラスチック複合磁石の製造法に関する。[Detailed description of the invention] The present invention relates to a method of manufacturing a plastic composite magnet.
更に詳しくは、新規な六方晶フェライト粉末と各種熱可
塑性樹脂との混合によって得られるプラスチック複合磁
石の製造法に関する。通常、プラスチック複合磁石は、
各種熱可塑性樹脂とフェライト粉末とを混糠して製造さ
れる。More specifically, the present invention relates to a method for producing a plastic composite magnet obtained by mixing a novel hexagonal ferrite powder and various thermoplastic resins. Typically, plastic composite magnets are
Manufactured by mixing various thermoplastic resins and ferrite powder.
この用途に用いられるフェライト粉末としては、間相反
応を利用した乾式法により製造されたものが殆んどであ
る。しかるに、従来の乾式法により得られるフェライト
粉末はその製法に起因する下記の如き種々の欠点を有し
ている。即ち、従来の乾式法による場合、製造過程で受
けるフェライト化反応を進行させるための焼成温度が1
000〜130000という高い温度であるため、必要
な反応が進行するだけではなく、フェライト粒子自体の
焼精も進行することとなり、後続の工程で相当強烈な機
械的粉砕を行うことが必要となる。このため粉末粒子に
衝撃歪が生じ、プラスチック複合磁石において重要な抗
磁力が十分大きな値とならない。また機械的粉砕による
ため、粉末の粒度分布が広くなる傾向がさげられない。
このような問題点を解決するため鋭意研究を行った結果
本発明者等はフェライト化の前段階の反応に湿式法即ち
液相下で行わせる新規なフェライト粉末を用いることに
よって極めて優れたプラスチック複合磁石とつくること
に成功した。すなわち上記の方法によって得られたフェ
ライト粉末を各種熱可塑性樹脂と混合してプラスチック
複合磁石を作ることにより、従来のプラスチック複合磁
石に比し、極めて優れた特性を有するプラスチック複合
磁石を得ることができた。上述の本発明者等が開発した
方法によって得られるフェライト粉末は形がし、粒子の
均一性に優れ、適正粒度を有している。また湿式工程に
後続する焼成処理を従来の乾式法で採用される焼成温度
に比べ遥かに低い温度で行うことができるため、先に述
べた如き高温処理に起因する欠点を免れた、プラスチッ
ク複合磁石を得ることができる。本発明のプラスチック
複合磁石は、従来のものに比し改善された抗磁力、磁束
密度を有していることが確認された。六方晶フェライト
粉末と各種プラスチック材から複合磁石を製造する場合
、その磁気特性に最も大きな影響を及ぼす因子は、素原
料たるハードフェラィト粉末自体の磁気特性と、プラス
チック材へのフェライト粉末の混合率である。Most of the ferrite powders used for this purpose are manufactured by a dry method that utilizes interphase reactions. However, ferrite powder obtained by the conventional dry method has various drawbacks as described below due to its manufacturing method. That is, in the case of the conventional dry method, the firing temperature for promoting the ferritization reaction during the manufacturing process is 1.
Since the temperature is as high as 0.000 to 130.000 C, not only the necessary reactions proceed, but also the sintering of the ferrite particles themselves, making it necessary to carry out fairly intense mechanical crushing in the subsequent process. As a result, impact strain occurs in the powder particles, and the coercive force, which is important in plastic composite magnets, does not reach a sufficiently large value. Furthermore, since mechanical pulverization is used, there is a tendency for the particle size distribution of the powder to become broader.
As a result of intensive research to solve these problems, the present inventors have developed an extremely superior plastic composite by using a new ferrite powder that performs the pre-ferrite reaction in a wet process, that is, in a liquid phase. I succeeded in making it with a magnet. In other words, by mixing the ferrite powder obtained by the above method with various thermoplastic resins to make a plastic composite magnet, it is possible to obtain a plastic composite magnet that has extremely superior properties compared to conventional plastic composite magnets. Ta. The ferrite powder obtained by the method developed by the inventors described above has good shape, excellent particle uniformity, and has an appropriate particle size. Furthermore, since the firing process that follows the wet process can be performed at a much lower temperature than the firing temperature used in the conventional dry process, plastic composite magnets are free from the drawbacks caused by high-temperature processes as described above. can be obtained. It was confirmed that the plastic composite magnet of the present invention has improved coercive force and magnetic flux density compared to conventional magnets. When manufacturing a composite magnet from hexagonal ferrite powder and various plastic materials, the factors that have the greatest influence on its magnetic properties are the magnetic properties of the hard ferrite powder itself, which is the raw material, and the mixing ratio of ferrite powder to the plastic material. It is.
現存のプラスチック複合磁石では、フェライト粉末の混
合率は85〜90%が限界とされている。このためプラ
スチック複合磁石の磁気特性は、抗磁力(IHc)25
00〜300ぴだ、表面磁束密度700〜85的が限界
値になっている。本発明者等はこのような限界を打破し
、更に改善された特性値を有するプラスチック複合磁石
を開発することを目的として研究を行い、フェライト粉
末自体の磁性値を向上させること、およびプラスチック
材に対し改善された混合率で混合させることのできる原
料素材を開発することの両面から種々検討を加えた。既
に述べた如く、従来の乾式法で得られるフェライト粉末
は、機械的な粉砕によって数ミクロンの粒径にそろえら
れるため、粒子に顕著な衝撃歪が生じ、これが製品の磁
性値特に抗磁力を著しく低下させる原因の一つとなって
いる。In existing plastic composite magnets, the mixing ratio of ferrite powder is said to be limited to 85 to 90%. Therefore, the magnetic properties of plastic composite magnets are coercive force (IHc) of 25
The limit values are 00 to 300 pida and a surface magnetic flux density of 700 to 85. The present inventors have conducted research with the aim of breaking through these limitations and developing a plastic composite magnet with further improved characteristic values. On the other hand, various studies were conducted from the viewpoint of developing raw materials that can be mixed at an improved mixing ratio. As mentioned above, ferrite powder obtained by the conventional dry method is mechanically crushed to a particle size of several microns, which causes significant impact strain on the particles, which significantly reduces the magnetic value, especially the coercive force, of the product. This is one of the reasons for the decline.
このため、焼き鈍し等の後処理が必要とされ、また機械
的な粉砕が行なわれるため粒子の不揃いは避けられない
欠点となっている。一方、公知の方法として湿式法も知
られておりこれによって液相下で得られたものは上述の
如き欠点がなく特にプラスチック材との混合時に問題と
なる粒子の配向性は乾式法で得られたものに比べ著しく
良好であるという結果がでているが、従来の緑式法で得
られるフェライト粉末は粒子が細かすぎるために乾式方
法で得られるものに比べプラスチック材との混合性が劣
るという欠点がある。For this reason, post-processing such as annealing is required, and since mechanical pulverization is performed, irregularities in particles are an unavoidable drawback. On the other hand, a wet method is also known as a known method, and the products obtained in the liquid phase by this method do not have the above-mentioned drawbacks, and the particle orientation, which is a problem when mixed with plastic materials, is not obtained by the dry method. However, it is said that the ferrite powder obtained by the conventional green method has particles that are too fine, so it has poor miscibility with plastic materials compared to that obtained by the dry method. There are drawbacks.
これに対し本発明者等は従釆の湿式法と乾式法とを紙合
せた方法でつくったフェライト粉末を用いる新規な複合
磁石の製造法を発明したが、これによって得られるプラ
スチック複合磁石は、特に抗磁力およびプラスチック材
とフェライト粉末との混合性に優れたプラスチック複合
磁石であることが判明した。In response, the present inventors have invented a new method for manufacturing composite magnets using ferrite powder made by combining the conventional wet method and dry method, but the plastic composite magnet obtained by this method is It has been found that the plastic composite magnet has particularly excellent coercive force and good mixability of plastic material and ferrite powder.
そのフェライト粉末の製造法自体については、本発明と
同時に特許出願した「六方晶フェライト粉末とその製造
法」(侍関昭51−103357)と題する発明に関す
明細書中に詳述したので本明細書においては詳細な説明
は省略する。本発明は上誌の新規な方法によって得られ
る高性能の新規な六方晶フェライト粉末をプラスチック
材と混合して改善された磁気特性を有する新規なプラス
チック複合磁石を製造する方法を提供するものである。
本発明の実施において採用されるフェライト粉末は、一
般に、第一鉄塩を反応出発原料としてアルカ川こより液
中に生成せしめたFe(OH)2とMC03(MはBa
、Sr、PbまたはCaを表す)との共次物をpH9〜
12、好ましくはpH9〜10、液温50〜80oo、
好ましくは50〜70q0に保持し、そのまま一定量(
例えば4.0〜5.0そ/分)の空気を微細な気泡状態
で吹き込ながら反応を進行させることによって液相下に
共枕物を得る第1工程と、第1工程で得られた共次物を
400〜900q0好ましくは400〜600qo更に
好ましくは500〜550℃の温度で焼成処理する第2
工程とからなる方法によって製造される。The method for producing the ferrite powder itself is described in detail in the specification of the invention entitled "Hexagonal Ferrite Powder and Method for Producing the Same" (Samurai Seki 51-103357), which was patented at the same time as the present invention. A detailed explanation is omitted in this book. The present invention provides a method for manufacturing a novel plastic composite magnet having improved magnetic properties by mixing the new high-performance hexagonal ferrite powder obtained by the above-mentioned novel method with a plastic material. .
The ferrite powder employed in the practice of the present invention is generally Fe(OH)2 and MC03 (M is Ba
, representing Sr, Pb or Ca) at pH 9~
12, preferably pH 9-10, liquid temperature 50-80oo,
Preferably, it is maintained at 50 to 70q0, and a certain amount (
A first step in which a co-pillar material is obtained under a liquid phase by allowing the reaction to proceed while blowing air in the form of fine bubbles (e.g., 4.0 to 5.0 so/min); A second step of firing the conjoint product at a temperature of 400 to 900 qo, preferably 400 to 600 qo, more preferably 500 to 550°C.
It is manufactured by a method consisting of steps.
以下の記載および特許請求の範囲において、「液相下で
得られた共耽物」という場合、特にことわりなき限り上
記の第1工程によって得られた共沈物を指すものである
。上述の第1工程および第2工程を総て得られた六方晶
フェライト粉末を、更に熱処理炉で700〜900q0
の温度で1〜3時間焼成して該六方晶フェライト粉末の
粒子径が1.0〜7.0仏となるまで粒子成長させた場
合は、更に混合性の改善されたフェライト粉末となり、
粒度分布中も狭く好適なフェライト粉末が得られる。こ
のようにして得られたものは、X線回折の同定において
ほぼ完全なマグネットプランバイトの回折線を示し、フ
ェライト化が十分進行していることが確認された。この
ようにして得られた粉末を簡単な解砕によって単一粒子
に解きほぐし、フェライト素原料とする。本発明の実施
し、おいて、フェライト素原料と混合してプラスチック
複合磁石を作るために使用するプラスチック材としては
、公知の熱可塑性樹脂で少なくとも圧縮成形、押出成形
、射出成形の何れかの成形法に適用できる任意のものを
用いることができる。In the following description and claims, the term "coprecipitate obtained in a liquid phase" refers to the coprecipitate obtained in the first step, unless otherwise specified. The hexagonal ferrite powder obtained through the first and second steps described above is further heated to 700 to 900 q0 in a heat treatment furnace.
When the hexagonal ferrite powder is fired for 1 to 3 hours at a temperature of
A suitable ferrite powder with a narrow particle size distribution can be obtained. The material obtained in this manner showed almost perfect magnetoplumbite diffraction lines in X-ray diffraction identification, and it was confirmed that ferrite formation had progressed sufficiently. The powder thus obtained is loosened into single particles by simple crushing and used as a ferrite raw material. In carrying out the present invention, the plastic material used to mix with the ferrite raw material to make the plastic composite magnet is a known thermoplastic resin and is molded by at least one of compression molding, extrusion molding, and injection molding. Any applicable law may be used.
フェライト粉末をプラスチック材との混合率は目的に応
じて任意に選ぶことができるが、既に述べた如く従来法
で得たフェライト粉末では混合率85〜90%が限界で
あったのに対し、本発明で用いる新規なフェライト粉末
の場合92〜95%という高い混合率が得られる点に特
徴がある。The mixing ratio of ferrite powder and plastic material can be arbitrarily selected depending on the purpose, but as mentioned above, the mixing ratio of 85 to 90% was the limit for ferrite powder obtained by conventional methods, whereas this method The novel ferrite powder used in the invention is characterized in that a high mixing ratio of 92 to 95% can be obtained.
特許請求の範囲における混合率の限定はこの意味のもの
であり、必要ならばもっと低い混合率とすることも当然
可能である。フェライト粉末とプラスチック材との混練
は任意の公知の混線機を用いて行うことができる。This is the meaning of the limitations on the mixing ratio in the claims, and it is of course possible to set the mixing ratio lower if necessary. The ferrite powder and the plastic material can be kneaded using any known mixer.
プラスチックとフェライト粉末との混合成形体は流動性
がよく、従って、例えば押出成形の場合、成形機はプラ
ンジャー式、スクリュー式の何れでもよい。成形条件と
しては、例えばシリンダー温度150〜250qo、押
出圧力500〜1500k9/めで好都合に行うことが
できる。一例としてバリウムフェライト粉末とメタクリ
ル樹脂との複合磁石を製造する場合について述べると次
の如くである。A mixed molded product of plastic and ferrite powder has good fluidity, and therefore, for example, in the case of extrusion molding, the molding machine may be either a plunger type or a screw type. The molding conditions can be conveniently carried out, for example, at a cylinder temperature of 150 to 250 qo and an extrusion pressure of 500 to 1500 k9/m. As an example, the case of manufacturing a composite magnet of barium ferrite powder and methacrylic resin will be described as follows.
まずフェライト原料粉末として、液相下で先に述べた如
くして六方晶フェライト用共沈物を生成させ、得られた
共枕物を、従来の固相反応を利用する乾式法で採用され
る熱処理温度に比べ遥かに低い400〜600℃の温度
で焼成して得られる六方晶フェライト粉末、またはこれ
を更に熱処理炉で700〜900℃の温度で1〜3時間
焼成して粉末の平均粒子蓬が1.0〜7.0仏となるま
で粒子生長させて更に混合性のよいものとしたフェライ
ト粉末を簡単な解砕によって単一粒子に解きほぐしたも
のを用いる。一方プラスチック材としてはメタクリル酸
メチルに0.1〜0.5%の亜硫酸触媒を加え、加熱重
合して重合率約10〜30%の紙鋼なシロップ状の重合
体を作りこれを用いる。このシロップにフェライト粉末
92重量%以上を混合し、公知の混綾機でよく混練処理
する。このようにして得られるプラスチック複合磁石の
特性の一例は、フェライト粉末の混合率92〜95%、
抗磁力(IHc)3200〜380ぴX、表面磁束密度
850〜120の、飽和磁化(oS)50〜65emu
/夕であった。これに対し従来法で得られる複合磁石の
一例を示せば、フェライト粉末の混合率が上限値の90
%の場合で得られるプラスチック複合磁石の抗磁力(I
Hc)は2800表面磁束密度750〜80の、飽和磁
化(〇s)45〜5氏mu′夕であり、本発明によって
得られるプラスチック複合磁石が実質的に優れているこ
とが明らかである。また上記の第1工程と第2工程とを
経て得られる新規なフェライト粉末の磁気特性は抗磁力
(mc)4800〜5300ェルステッド(0e)、飽
和磁化(〇s)50.0〜65.企mu/夕という従来
法では達成できなかった極め高い値を有している。First, as a ferrite raw material powder, a coprecipitate for hexagonal ferrite is generated in the liquid phase as described above, and the resulting co-precipitate is used in a dry method using a conventional solid phase reaction. Hexagonal ferrite powder obtained by firing at a temperature of 400 to 600°C, which is much lower than the heat treatment temperature, or further fired in a heat treatment furnace at a temperature of 700 to 900°C for 1 to 3 hours to obtain an average particle size of the powder. The ferrite powder is grown to have a particle size of 1.0 to 7.0 degrees and has good mixability, and is then loosened into single particles by simple crushing. On the other hand, as a plastic material, methyl methacrylate is added with 0.1 to 0.5% of a sulfurous acid catalyst, and heated and polymerized to produce a paper-like syrup-like polymer with a polymerization rate of about 10 to 30%. 92% by weight or more of ferrite powder is mixed with this syrup and thoroughly kneaded using a known kneading machine. An example of the characteristics of the plastic composite magnet obtained in this way is that the mixing ratio of ferrite powder is 92 to 95%;
Coercive force (IHc) 3200-380 piX, surface magnetic flux density 850-120, saturation magnetization (oS) 50-65 emu
/It was evening. On the other hand, an example of a composite magnet obtained by the conventional method shows that the mixing ratio of ferrite powder is at the upper limit of 90%.
The coercive force (I
Hc) is 2800, the surface magnetic flux density is 750-80, and the saturation magnetization (〇s) is 45-5 m2, which clearly shows that the plastic composite magnet obtained by the present invention is substantially superior. The magnetic properties of the new ferrite powder obtained through the first and second steps are as follows: coercive force (mc): 4800-5300 Oersted (0e), saturation magnetization (〇s): 50.0-65. It has an extremely high value of 1/2 that could not be achieved with the conventional method.
このような、フェライト粉末少なくとも9な重量%を含
むプラスチック複合磁石は極めて優れたプラスチック複
合磁石であり、従来存在し得なかったものである。以下
実施例により説明する。Such a plastic composite magnet containing at least 9% by weight of ferrite powder is an extremely excellent plastic composite magnet that could not have existed before. This will be explained below using examples.
実施例 1
液相化で六方晶フェライト用共次物を生成させ、得られ
た共沈物を450℃で2時間焼成し「得られたBao−
餌e2Q粉末を更に80000で1時間再焼成してプラ
スチック材との混合性のよいフェライト粉末を製造した
。Example 1 A co-precipitate for hexagonal ferrite was produced by liquid phase formation, and the resulting co-precipitate was fired at 450°C for 2 hours to produce the "obtained Bao-
The feed e2Q powder was further calcined at 80,000 for 1 hour to produce ferrite powder with good miscibility with plastic materials.
これを簡単な解砕で解きほぐした後別に用意したメタク
リル酸メチルに0.4%の亜硫酸触媒を加えて加熱重合
して製造したシロップ状の重合体に混合した。混合物を
スリュー式押出成形機で厚さ15m′肌のプラスチック
複合磁石板に成形した。プラスチック材に対するフェラ
イト粉末の混合率は93%であった。プラスチック板よ
り切り取った試料を測定して得た磁性値は抗磁力(IH
c)350のe、表面磁束密度lo5庇、飽和磁化(O
S)55.氏mu′夕であった。実施例 2実施例1に
準じた方法で製造したSぬ。After loosening this by simple crushing, it was mixed with a syrup-like polymer produced by adding 0.4% sulfite catalyst to methyl methacrylate prepared separately and polymerizing it by heating. The mixture was molded into a plastic composite magnet plate with a thickness of 15 m' using a screw extruder. The mixing ratio of ferrite powder to plastic material was 93%. The magnetic value obtained by measuring the sample cut from the plastic plate is the coercive force (IH
c) 350 e, surface magnetic flux density lo5 eaves, saturation magnetization (O
S)55. It was Mr. Mu'Yu. Example 2 S-nucleus was manufactured by a method similar to Example 1.
餌e203粉末を、実施例1と同様のメタクリル樹脂に
混練し、厚さ15肌′机のプラスチック複合磁石板を製
作した。Bait e203 powder was kneaded with the same methacrylic resin as in Example 1 to produce a plastic composite magnet plate with a thickness of 15 mm.
プラスチック材に対するフェライト粉末の混合率は92
%であった。プラスチック板より切り出して測定した磁
気特性は、抗磁力(伍c)410のe、表面磁束密度1
00の、飽和磁化(〇s)53.段mu/夕であった。
実施例 3
実施例1に準じた方法で得たBも.府・Sro.250
・餌e203粉末を、実施例1と同様のメタクリル樹脂
に混練し、厚さ15の/肌のプラスチック複合磁石板を
製作した。The mixing ratio of ferrite powder to plastic material is 92
%Met. The magnetic properties cut out from a plastic plate and measured were: coercive force (5c) e of 410, surface magnetic flux density 1
00, saturation magnetization (〇s) 53. It was Danmu/Yu.
Example 3 B obtained by a method similar to Example 1 was also obtained. Prefecture/Sro. 250
- Bait e203 powder was kneaded with the same methacrylic resin as in Example 1 to produce a plastic composite magnet plate with a thickness of 15 mm.
プラスチック材に対するフェライト粉末の混合率は93
%であった。これより切り出して得た磁気測定値は抗磁
力(IHc)460は×、表面磁束密度111に、飽和
磁化(〇s)56.1emu/夕であった。実施例 4
実施例1に準じた方法で得た
Bら.45S【o.街PbMo0・餌e203粉末を同
様のメタクリル樹脂に濠練し、前記実施例同様のプラス
チック複合磁石板を製作した。The mixing ratio of ferrite powder to plastic material is 93
%Met. The magnetic measurement values extracted from this were that the coercive force (IHc) was ×460, the surface magnetic flux density was 111, and the saturation magnetization (〇s) was 56.1 emu/night. Example 4
B et al. obtained by a method according to Example 1. 45S [o. Machi PbMo0/bait e203 powder was kneaded in the same methacrylic resin to produce a plastic composite magnet plate similar to the above example.
Claims (1)
より液中に生成せしめたFe(OH)_2とMCO_3
(MはBa、Sr、PbまたはCaを表す)との共沈物
をpH9〜12、液温50〜80℃に保持し、そのまま
一定量の空気を微細な気泡状態で吹き込み、生成Fe(
OH)_2の一部をFe(OH)_3に酸化させること
によりFe(OH)_2の沈殿物の全部または大部分を
Fe_3O_4の沈殿物に変化させるとにより、濾過性
が良好でアルカリその他共存イオンの巻き込みの少ない
、かつ粒度分布巾の狭い共沈物を得る第1工程;(ロ)
第1工程で得られた共沈物を400〜600℃の温度
で焼成処理して抗磁力(IHc)4800〜5300エ
ルステツド(Oe)、飽和磁化(σ_s)50.0〜6
5.0emu/gの六方晶フエライト粉末を形成せしめ
る第2工程;および(ハ) 第2工程で得られた六方晶
フエライト粉末92〜95重量部を熱可塑性樹脂8〜5
重量部と単によく混錬するだけの操作を経て複合磁石に
成形する第3工程;からなることを特徴とする、高抗磁
力、高表面磁束密度プラスチツク複合磁石の製造方法。 2 前記第1工程におけるFe(OH)_2とMCO_
3との共沈をpH9〜10で行うことを特徴とする特許
請求の第囲第1項記載のプラスチツク複合磁石の製造方
法。 3 前記第1工程におけるFe(OH)_2とMCO_
3との共沈を液温50〜70℃で行うことを特徴とする
特許請求の第囲第1項または第2項のいずれかに記載の
プラスチツク複合磁石の製造方法。 4 前記第2工程における焼成処理を酸素ガス0.2〜
0.5l/分通気させながら行うことを特徴とする特許
請求の第囲第1〜3項のいずれかに記載のプラスチツク
複合磁石の製造方法。 5 前記第2工程における焼成処理を500〜550℃
の温度にて30分〜3.0時間行うことを特徴とする特
許請求の第囲第1〜4項のいずれかに記載のプラスチツ
ク複合磁石の製造方法。 6 前記の焼成して得た六方晶フエライト粉末を、更に
熱処理炉で700〜900℃の温度で1〜3時間再焼成
して平均粒子径1.0〜7.0μとなるまで粒子成長さ
せた粒度分布の狭い粉体物性をもつ六方晶フエライト粉
末とした後に熱可塑性樹脂とよく混練することを特徴と
する特許請求の第囲第1〜5項のいずれかに記載のプラ
スチツク複合磁石の製造方法。[Claims] 1 (a) Fe(OH)_2 and MCO_3 produced in a liquid with an alkali using ferrous salt as a reaction starting material.
(M represents Ba, Sr, Pb or Ca) was maintained at pH 9-12 and liquid temperature 50-80°C, and a certain amount of air was blown into it in the form of fine bubbles to produce Fe (
By oxidizing a part of OH)_2 to Fe(OH)_3, all or most of the Fe(OH)_2 precipitate is changed to a Fe_3O_4 precipitate, which provides good filterability and eliminates alkali and other coexisting ions. The first step of obtaining a coprecipitate with less entrainment and a narrow particle size distribution; (b)
The coprecipitate obtained in the first step was fired at a temperature of 400 to 600°C to obtain a coercive force (IHc) of 4800 to 5300 oersteds (Oe) and a saturation magnetization (σ_s) of 50.0 to 6.
A second step of forming a hexagonal ferrite powder of 5.0 emu/g; and (c) 92 to 95 parts by weight of the hexagonal ferrite powder obtained in the second step is added to 8 to 5 parts by weight of a thermoplastic resin.
A method for manufacturing a plastic composite magnet with high coercive force and high surface magnetic flux density, comprising: a third step of forming a composite magnet through an operation of simply kneading parts by weight. 2 Fe(OH)_2 and MCO_ in the first step
3. A method for producing a plastic composite magnet according to claim 1, characterized in that the coprecipitation with No. 3 is carried out at a pH of 9 to 10. 3 Fe(OH)_2 and MCO_ in the first step
3. A method for producing a plastic composite magnet according to claim 1 or 2, characterized in that the coprecipitation with 3 is carried out at a liquid temperature of 50 to 70°C. 4 The firing treatment in the second step is performed using oxygen gas of 0.2 to
A method for manufacturing a plastic composite magnet according to any one of claims 1 to 3, characterized in that the process is carried out while aerating at 0.5 l/min. 5 The firing treatment in the second step is performed at 500 to 550°C.
A method for manufacturing a plastic composite magnet according to any one of claims 1 to 4, characterized in that the manufacturing method is carried out at a temperature of 30 minutes to 3.0 hours. 6 The hexagonal ferrite powder obtained by the above firing was further fired in a heat treatment furnace at a temperature of 700 to 900°C for 1 to 3 hours to grow particles until the average particle size was 1.0 to 7.0μ. A method for manufacturing a plastic composite magnet according to any one of claims 1 to 5, characterized in that the hexagonal ferrite powder is prepared into a hexagonal ferrite powder having powder physical properties with a narrow particle size distribution, and then thoroughly kneaded with a thermoplastic resin. .
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP51103356A JPS6012765B2 (en) | 1976-08-30 | 1976-08-30 | Manufacturing method of high coercive force and high surface magnetic flux density plastic composite magnet |
US05/826,704 US4120807A (en) | 1976-08-30 | 1977-08-22 | Process for producing hexagonal-system ferrite powder |
GB35632/77A GB1586783A (en) | 1976-08-30 | 1977-08-25 | Process for the production of a hexagonalsystem ferrite powder a plastic-ferrite composite magnet containing the ferrite powder so produced and a process for producing the composite magnet |
DE2738830A DE2738830C3 (en) | 1976-08-30 | 1977-08-29 | Process for the production of ferrite powder belonging to the hexagonal system, its further processing and use of the possibly further processing ferrite powder for the production of a plastic / ferrite composite magnet |
US05/878,022 US4120806A (en) | 1976-08-30 | 1978-02-15 | Hexagonal-system ferrite powder, composite plastic-ferrite magnet comprising same and process for production thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP51103356A JPS6012765B2 (en) | 1976-08-30 | 1976-08-30 | Manufacturing method of high coercive force and high surface magnetic flux density plastic composite magnet |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5328296A JPS5328296A (en) | 1978-03-16 |
JPS6012765B2 true JPS6012765B2 (en) | 1985-04-03 |
Family
ID=14351844
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP51103356A Expired JPS6012765B2 (en) | 1976-08-30 | 1976-08-30 | Manufacturing method of high coercive force and high surface magnetic flux density plastic composite magnet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6012765B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH022566U (en) * | 1988-06-17 | 1990-01-09 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55173419U (en) * | 1979-05-31 | 1980-12-12 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4848996A (en) * | 1971-10-13 | 1973-07-11 | ||
JPS4860296A (en) * | 1971-12-03 | 1973-08-23 | ||
JPS48101595A (en) * | 1972-04-10 | 1973-12-20 | ||
JPS4923676A (en) * | 1972-06-22 | 1974-03-02 | ||
JPS5052107A (en) * | 1973-09-11 | 1975-05-09 | ||
JPS51103357A (en) * | 1975-03-10 | 1976-09-11 | Fuji Satsushi Kogyo Kk | YUSUIBUNRIHOHOOYOBISOCHI |
-
1976
- 1976-08-30 JP JP51103356A patent/JPS6012765B2/en not_active Expired
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4848996A (en) * | 1971-10-13 | 1973-07-11 | ||
JPS4860296A (en) * | 1971-12-03 | 1973-08-23 | ||
JPS48101595A (en) * | 1972-04-10 | 1973-12-20 | ||
JPS4923676A (en) * | 1972-06-22 | 1974-03-02 | ||
JPS5052107A (en) * | 1973-09-11 | 1975-05-09 | ||
JPS51103357A (en) * | 1975-03-10 | 1976-09-11 | Fuji Satsushi Kogyo Kk | YUSUIBUNRIHOHOOYOBISOCHI |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH022566U (en) * | 1988-06-17 | 1990-01-09 |
Also Published As
Publication number | Publication date |
---|---|
JPS5328296A (en) | 1978-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4308155A (en) | Rubber or plastic magnet and magnetic powder for making the same | |
JPH02219889A (en) | Ceramic alumina abrasive grain planted with iron oxide | |
JPS5964530A (en) | Production of ferrite powder | |
US4120807A (en) | Process for producing hexagonal-system ferrite powder | |
US2700023A (en) | Process of making molded ceramic ferromagnetic products | |
US4120806A (en) | Hexagonal-system ferrite powder, composite plastic-ferrite magnet comprising same and process for production thereof | |
JPS6012765B2 (en) | Manufacturing method of high coercive force and high surface magnetic flux density plastic composite magnet | |
JPH09124322A (en) | Production of soft magnetic hexagonal ferrite powder, and sintered product and radio wave absorber using the same | |
US4116752A (en) | Production of single crystalline ferrite particles | |
JPH0832554B2 (en) | Method for producing rare earth oxide powder | |
US4042516A (en) | Bonded magnets containing single crystalline ferrite particles | |
JPS5856302A (en) | Manufacture of magnetic powder used for high density magnetic recording | |
KR102664653B1 (en) | Method for preparing ferrite sintered magnet | |
JP3467838B2 (en) | Ferrite resin and method for producing ferrite resin | |
US3155623A (en) | Method for making barium ferrite magnets | |
JPH0430723B2 (en) | ||
JPS6343359B2 (en) | ||
JPS6022484B2 (en) | Manufacturing method of oxide permanent magnet | |
SU1005198A1 (en) | Method of manufacturing manganese-containing ferrites with rectangular hysteresis loop | |
JPS6177625A (en) | Manufacture of ferrite magnetic powdery body for magnetic paint | |
JPH01117002A (en) | Manufacture of oxide permanent magnet | |
SU920048A1 (en) | Method of preparing dense refractory material | |
JPS5820891B2 (en) | Method for manufacturing ferrite particles | |
RU1841349C (en) | Method for producing ferrite materials | |
JPS63170218A (en) | Production of ferrite powder |