JPS60127318A - Reactive antioxidant composition - Google Patents

Reactive antioxidant composition

Info

Publication number
JPS60127318A
JPS60127318A JP58233600A JP23360083A JPS60127318A JP S60127318 A JPS60127318 A JP S60127318A JP 58233600 A JP58233600 A JP 58233600A JP 23360083 A JP23360083 A JP 23360083A JP S60127318 A JPS60127318 A JP S60127318A
Authority
JP
Japan
Prior art keywords
reaction
polymer
antioxidant
compound
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58233600A
Other languages
Japanese (ja)
Other versions
JPS6348886B2 (en
Inventor
Shoji Goto
後藤 正二
Yoshihisa Fujimoto
佳久 藤本
Yoshiharu Fujita
藤田 義治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd, Asahi Kasei Kogyo KK filed Critical Asahi Chemical Industry Co Ltd
Priority to JP58233600A priority Critical patent/JPS60127318A/en
Publication of JPS60127318A publication Critical patent/JPS60127318A/en
Publication of JPS6348886B2 publication Critical patent/JPS6348886B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To provide titled composition capable of increasing resistance to oxidative deterioration by its bonding to polymer sensitive to such deterioration, consisting mainly of a compound of specific formula obtained by the reaction between isophorone diisocyanate and phenolic compound of specified formula. CONSTITUTION:The objective composition consisting mainly of a compound of formula II (A is isophorone diisocyanate residue; B is phenolic compound residue; n is 0-3), which can be obtained by dissolving in a solvent (e.g. N,N- dimethyl acetamide). (A) isophorone diisocyanate and (B) a phenolic compound of formula I (R1 is t-butyl, sec-butyl or neopentyl) [e.g., 1,3,5-tris(4-t-butyl-3-hydroxy- 2,6-dimethylbenzyl)isocyanuric acid] followed by reaction.

Description

【発明の詳細な説明】 本発明は、ポリマーに結合させることができる活性基を
有する酸化防止剤組成物に関する。更に詳しくは、日光
や熱などによる酸化劣化が激しいポリウレタンに結合さ
せることができ、その酸化劣化を防止することができる
酸化防止剤組成物に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to antioxidant compositions having active groups that can be attached to polymers. More specifically, the present invention relates to an antioxidant composition that can be bonded to polyurethane, which is subject to severe oxidative deterioration due to sunlight, heat, etc., and can prevent the oxidative deterioration thereof.

ポリイン7アネート、比較的低分子量のポリマージオー
ル及び低分子量の多官能性活性水素化合物から得られる
ポリウレタンは機械的性質が優れること、加工し易いこ
と等からフオーム、エラストマー、塗料、合成皮革、繊
維等の広い用途に使用されているが、加工時における劣
化防止及び耐久性付与のために酸化防止剤の使用が不可
欠である0 一般にポリウレタンの酸化防止剤として、その効果が優
れている点からフェノール系酸化防止剤が用いられ、中
でも特に下記一般式で示すフェノール系化合物は、 (式中、Roはt−ブチル基、1lee−ブチル基及び
ネオペンチル基から選ばれた基を表わす)燃焼ガスや塩
素や日光による変色等の副作用がない点で好ましい酸化
防止剤である。しかしながら、このフェノール系化合物
を衣料用途の繊維やテープや人工皮革のポリウレタンに
配合した場合、最終製品に至る精練、漂白、染色、熱処
理等の加工工程及び使用段階における家庭洗濯やドライ
クリ−二ング時に製品から酸化防止剤が流出し、その酸
化防止効果がなくなるという問題がちる。
Polyurethane obtained from polyin 7anate, a relatively low molecular weight polymer diol, and a low molecular weight polyfunctional active hydrogen compound has excellent mechanical properties and is easy to process, so it can be used in foams, elastomers, paints, synthetic leather, fibers, etc. However, the use of antioxidants is essential to prevent deterioration during processing and to impart durability. Generally, phenolic antioxidants are used as antioxidants for polyurethane due to their excellent effects. Antioxidants are used, especially phenolic compounds represented by the following general formula (wherein Ro represents a group selected from t-butyl, 1lee-butyl, and neopentyl), which are used to protect against combustion gas, chlorine, It is a preferable antioxidant because it does not cause side effects such as discoloration due to sunlight. However, when this phenolic compound is blended into polyurethane for textiles, tapes, and artificial leather for clothing, it can be used during processing steps such as scouring, bleaching, dyeing, and heat treatment leading to the final product, as well as during home washing and dry cleaning during the use stage. There is a problem that antioxidants leak out from the product and lose their antioxidant effect.

製品からの酸化防止剤の流出をなくす方法として、酸化
防止剤をポリマー鎖に結合させる方法が考えられる。例
えば、ジイソシアネートとジオールから末端がNGO基
のプレポリマーを得、次いでこのブレポリマー溶液をジ
アミ/(鎖延長剤ンで鎖延長しポリウレタンを合成する
一般的な方法において、プレポリマー合成時、或いはプ
レポリマー合成後に、或いは鎖延長時に酸化防止剤のフ
ェノール系化合物を共存させ、プレポリマ一端のNCO
基にフェノール系化合物が有する0H基を反応させて安
定剤をポリマーに結合させる方法が考えられる。しかし
ながら、酸化防止効果に優れ且つ副作用のない一般式で
示すフェノール系化合物の場合状、分子構造から明らか
なようにNGO基と反応できるOH基を3ケ有している
ため、架橋反応がさけ難く、溶液下で反応させる場合に
はポリマー溶液(ドープ)はゲル化してしまい、成型に
使用できるドープが得られない。
One possible way to eliminate the leakage of antioxidants from products is to bond them to polymer chains. For example, in the general method of synthesizing polyurethane by obtaining a prepolymer with an NGO group at the end from diisocyanate and diol, and then chain-extending this prepolymer solution with a chain extender, After polymer synthesis or during chain extension, a phenolic compound as an antioxidant is allowed to coexist to reduce NCO at one end of the prepolymer.
A method of bonding the stabilizer to the polymer by reacting the 0H group of the phenolic compound with the group may be considered. However, in the case of the phenolic compound represented by the general formula, which has excellent antioxidant effects and has no side effects, crosslinking reactions are difficult to avoid because it has three OH groups that can react with NGO groups, as is clear from the molecular structure. If the reaction is carried out in a solution, the polymer solution (dope) will gel, making it impossible to obtain a dope that can be used for molding.

本発明者らは、ゲル化等を伴なうことはなくポリウレタ
ンに結合させることができ、且つ酸化防止効果に優れ、
且つ副作用のない酸化防止剤について鋭意研究を重ねた
結果、特定のジイソシアネートと特定の3官能のフェノ
ール系化合物との反応組成物は優れた酸化防止効果を持
ち、且つゲル化等を起こさずに容易にポリウレタン分子
#Iに結合させることができることを見い出し、本発明
の完成に至った。
The present inventors have discovered that it can be bonded to polyurethane without gelation, has excellent antioxidant effects,
As a result of extensive research on antioxidants that do not cause side effects, we have found that a reaction composition of a specific diisocyanate and a specific trifunctional phenol compound has an excellent antioxidant effect and can be easily treated without causing gelation. It has been discovered that it is possible to bind polyurethane molecule #I to polyurethane molecule #I, leading to the completion of the present invention.

即ち、本発明はインホロンジイソシアネートと下記一般
式(I)で示すフェノール系化合物よシ得られる一般式
■で示す化合物を主成分とする組成物(式中、R□はt
−ブチル基、Bee−ブチル基及びネオペンチル基から
選ばれた基を表わす)A−NHCO40−B−00CH
N−A−NHCO枯0−B @(式中、Aはインホロン
ジインシアネートの残基を、Bは一般式(1)のフェノ
ール系化合物の残基を表わす。nは0〜3の範囲である
。)本発明の反応性酸化防止剤組成物はインホロンジイ
ソシアネートと一般式(I>で示すフェノール系化合物
(以下フェノール系化合物と略す)を反応させることに
よって得られる。一般式(1)で表わされるフェノール
系化合物の例としては1,3.5−)リス(4−t−ブ
チル−3−ヒドロキシ−2,6−シメチルベンジル)イ
ソシアヌール112.1,3.5−トリス(4−5ee
−ブチル−3−ヒドロキシ−2,6−シメチルペンジル
)インシアヌール酸、1,3.5−)LX(4−ネオペ
ンチル−3−ヒドロキシ−2,6−シメチルベ/ジル)
インシアヌール酸などが挙けられる。製造上及び効果か
ら特に好ましいのは1,3.5−トリス(4−t−ブチ
ル−3−ヒドロキシ−2,6−シメチルベンジル)イン
シアヌール酸である。
That is, the present invention provides a composition containing as a main component a compound represented by the general formula ■ obtained from inphorone diisocyanate and a phenolic compound represented by the following general formula (I) (wherein R□ is t).
-A-NHCO40-B-00CH (representing a group selected from -butyl group, Bee-butyl group and neopentyl group)
N-A-NHCO 0-B @ (wherein, A represents the residue of inphorone diincyanate, and B represents the residue of the phenolic compound of general formula (1). n is in the range of 0 to 3. ) The reactive antioxidant composition of the present invention is obtained by reacting inphorone diisocyanate with a phenolic compound (hereinafter abbreviated as phenolic compound) represented by the general formula (I>). Examples of the phenolic compounds represented include 1,3,5-)lis(4-t-butyl-3-hydroxy-2,6-dimethylbenzyl)isocyanur 112.1,3,5-tris(4- 5ee
-butyl-3-hydroxy-2,6-dimethylpenzyl)incyanuric acid, 1,3.5-)LX (4-neopentyl-3-hydroxy-2,6-dimethylbenzyl)
Examples include incyanuric acid. Particularly preferred from the viewpoint of production and effectiveness is 1,3.5-tris(4-t-butyl-3-hydroxy-2,6-dimethylbenzyl)incyanuric acid.

反応はインホロンジイソシアネート及びフェノール系化
合物に対して不活性で、且つ反応組成物を溶解する溶媒
中で行なうのがよい。好ましい溶媒として、N、N−ジ
メチルアセトアミド、N、N−ジエチルアセトアミド、
N−メチル−2−ピロリドン等のアミド系極性有機溶媒
が挙げられる。不均一反応をさけるために、溶媒に先ず
フェノール系化合物を溶解し、ついでこの中にインホロ
ンジイソシアネートを一度に加え、攪拌下に反応させる
。反応時の温度は、低すぎると反応に時間ががかりすぎ
、高すぎるとフェノール系化合物の3ケのOH基が全て
反応した、従って酸化防止効果のない化合物の生成が起
き易くなるので、通常は30℃〜90℃、よシ好ましく
は30℃〜70’Cの範囲がよい。
The reaction is preferably carried out in a solvent that is inert to inphorone diisocyanate and the phenolic compound and that dissolves the reaction composition. Preferred solvents include N,N-dimethylacetamide, N,N-diethylacetamide,
Examples include amide polar organic solvents such as N-methyl-2-pyrrolidone. In order to avoid a heterogeneous reaction, the phenolic compound is first dissolved in a solvent, and then inphorone diisocyanate is added thereto at once and reacted with stirring. If the temperature during the reaction is too low, the reaction will take too long, and if it is too high, all three OH groups of the phenolic compound will have reacted, and therefore compounds with no antioxidant effect will be likely to be produced. The temperature range is preferably from 30°C to 90°C, more preferably from 30°C to 70'C.

イソホロンジインシアネートと7工ノール系化合物の反
応比線、インホロンジイソシアネートの割合が多くなる
と未反応のインホロンジイソシアネートが残り易くなシ
、またフェノール系化合物のOH基が2t以上反応した
化合物が生成し易くなり、従ってポリ−v−への結合の
際にドープを増粘させたす、tた酸化防止効果も乏しく
なり好ましくない。
The reaction ratio line of isophorone diisocyanate and hexaphenolic compound shows that as the ratio of inphorone diisocyanate increases, unreacted inphorone diisocyanate tends to remain, and compounds in which 2 or more OH groups of phenolic compounds have reacted are generated. This is undesirable since it increases the viscosity of the dope upon bonding to poly-V-, and the antioxidant effect is also poor.

逆にフェノール系化合物の割合が多くなるとNCO基を
末端に持った、従ってポリマーに結合できる酸化防止効
果を有する化合物の生成が少なくなり、また未反応の3
ケのOH基を持ったフェノール系化合物が残シ易くなル
、従ってポリマーへの結合の際にゲル化等をひきおこす
ので好ましくない。
Conversely, when the proportion of phenolic compounds increases, the production of compounds with an antioxidant effect that have NCO groups at their ends and can be bonded to polymers decreases, and unreacted 3
This is not preferable because the phenolic compound having an OH group tends to remain undesirably and therefore causes gelation when bonded to the polymer.

通常はモル比(フェノール系化合物のモル数/インホロ
ンジイソシアネートのモルa)1.O〜2.0゜好まし
くは1.0〜1.5で反応させるのがよい。
Usually the molar ratio (number of moles of phenolic compound/mole a of inphorone diisocyanate) is 1. It is preferable to carry out the reaction at a temperature of 0 to 2.0 degrees, preferably 1.0 to 1.5 degrees.

本発明の酸化防止剤組成物はポリマーに結合させること
ができ、その結合させる反応性基としてNCO基を有し
ていることを特徴としているが。
The antioxidant composition of the present invention can be bonded to a polymer, and is characterized in that it has an NCO group as a reactive group to be bonded.

NCO基が仕込みインホロンジイソシアネートの総NC
O基当量に対して50当量−以上残存している反応物は
未反応のインホロンジイソシアネートが多く含まれてお
り、従ってポリマーへの結合の際にドープを著しく増粘
させ、また目的とする化合物の生成量は低く、ポリマー
に結合させ酸化防止効果を発揮させるためには多量の使
用を必要とし好ましくない・0逆に残存NCO基量が少
ないと未反応のイソホロンジインシアネートは殆んどな
く、増粘等をおこさずにポリマーに結合させることがで
きるが、ポリマーに結合できる目的とする成分量は少な
くなシ好ましくない。最適量は仕込みそル比、反応温度
によって異なるが、仕込みインホロ/ジイソシアネート
の総NCO基当量に対して10当量−〜50当量−5よ
り好ましくは15当量−〜45当量チのNCO基が残存
する反応組成物である。
Total NC of inphorone diisocyanate containing NCO group
Reactants remaining in an amount of 50 equivalents or more relative to the O group equivalent contain a large amount of unreacted inphorone diisocyanate, and therefore significantly increase the viscosity of the dope upon bonding to the polymer, and may also cause the target compound to The amount of isophorone diincyanate produced is low, and a large amount is required to bind it to the polymer and exhibit its antioxidant effect, which is undesirable.On the other hand, if the amount of residual NCO groups is small, there is almost no unreacted isophorone diincyanate. Although it can be bonded to a polymer without causing thickening or the like, it is not preferable because the amount of the target component that can be bonded to the polymer is small. The optimum amount varies depending on the charging ratio and reaction temperature, but 10 equivalents to 50 equivalents, more preferably 15 equivalents to 45 equivalents of NCO groups remain based on the total NCO group equivalents of the charged inholo/diisocyanate. A reaction composition.

希望の残存NCO基量の反応組成物を得るには、反応系
中の残存NCO基濃度を公知の方法で分析し、残存NG
O基量が希望のNCO基量になった時点で加熱を止めて
反応の進行を停止する。貯蔵中の反応の進行を防ぐ為に
、反応組成物はできるだけ低温に保持するのが好ましく
、通常aO℃以下、長期間貯蔵する場合には15℃以下
に保持しておくのが望ましい。
In order to obtain a reaction composition with a desired amount of residual NCO groups, the concentration of residual NCO groups in the reaction system is analyzed by a known method, and the remaining NG
When the amount of O groups reaches the desired amount of NCO groups, heating is stopped to stop the progress of the reaction. In order to prevent the reaction from progressing during storage, it is preferable to keep the reaction composition as low as possible, usually below aO 0 C, preferably below 15°C when stored for a long period of time.

尚、反応系中への水分の持ち込みは極力さけ、原料は予
じめ十分に乾燥、脱水し、反応は窒素シール下に行なう
のが好ましい。また貯蔵中も窒素シールしておくのが好
ましい。
It is preferable to avoid introducing moisture into the reaction system as much as possible, to sufficiently dry and dehydrate the raw materials in advance, and to carry out the reaction under a nitrogen blanket. It is also preferable to keep it sealed with nitrogen during storage.

本発明の反応性酸化防止剤組成物は A−NHCO+ 0−B −00CHN−A−NHCO
枯0−Bなる一般式で示す化合物を主成分とする。式中
、Aはインホロ/ジイソシアネートの残基であり、Bは
一般式(Dで示すフェノール系化合物の残基であり、n
はO#3の範囲である。
The reactive antioxidant composition of the present invention is A-NHCO+ 0-B -00CHN-A-NHCO
The main component is a compound represented by the general formula 0-B. In the formula, A is a residue of inholo/diisocyanate, B is a residue of a phenolic compound represented by the general formula (D), and n
is in the range of O#3.

(式中、R11t:t−ブチル基、5ee−ブチル基及
びネオペンチ々基から選ばれた基を表わす)一般に2官
能化合物(Xと記す)と3官能化合物(Yと記す)を反
応させた場合、XとYの1対1反応物、即ちX−Y、ま
たこれが反応していったX−Y−X−Y、X−Y−X−
Y−X−Y等を効率よく合成することは殆んど不可能で
あ4が、驚くべきことに本発明の特定のジイソシアネー
トと上記特定のフェノール系化合物の反応の場合には、
2官能化合物と3官能化合物との反応にもか\わらず、
1対1反応物x−y (本発明の一般式■で示す化合物
に於いて、n=0にあたる)が極めて効率よく生成する
。更に反応が進んだX−Y −X−Y (n=1にあた
る) 、X−Y −X−Y −X−Y(n−2にあたる
)なる化合物も生成するが、これらの化合物はポリマー
に結合できるNCO基を有しており、また酸化防止効果
゛を発揮する上で必要なベンゼン核に直結した0H基も
有しているので酸化防止効果も保持しており、本発明の
目的を達成できる化合物である。本発明の反応性酸化防
止剤はA−NHCO(−0−B−00CHN−A−NH
CO暫0−Bなる一般式で表わされ、nは0〜3の範囲
の化合物である。nの大きな、即ち分子量の高い化合物
はポリマーに結合させた場合、ポリマーの機械的性質や
耐熱性の低下をきたすので好ましくない。nが低い化合
物はどこのような性質への悪影響が少なくなるので好ま
しい。特にnが0の一般式で示す化合物が全体の50重
量%以上を占める反応組成物は好ましい。
(In the formula, R11t represents a group selected from t-butyl group, 5ee-butyl group, and neopentyl group) Generally, when a bifunctional compound (denoted as X) and a trifunctional compound (denoted as Y) are reacted , the one-to-one reaction product of X and Y, that is, X-Y, and the reacted X-Y-X-Y, X-Y-X-
Although it is almost impossible to efficiently synthesize Y-X-Y etc.4, surprisingly, in the case of the reaction between the specific diisocyanate of the present invention and the above-mentioned specific phenol compound,
Despite the reaction between bifunctional and trifunctional compounds,
A one-to-one reactant xy (corresponding to n=0 in the compound represented by the general formula (1) of the present invention) is produced extremely efficiently. The reaction further progresses to produce compounds X-Y -X-Y (corresponding to n=1) and X-Y -X-Y -X-Y (corresponding to n-2), but these compounds are not bonded to the polymer. It also has an 0H group directly connected to the benzene nucleus, which is necessary for exhibiting the antioxidant effect, so it maintains the antioxidant effect and can achieve the purpose of the present invention. It is a compound. The reactive antioxidant of the present invention is A-NHCO (-0-B-00CHN-A-NH
It is represented by the general formula CO 0-B, where n is a compound in the range of 0 to 3. A compound with a large n, that is, a high molecular weight, is not preferable because, when bonded to a polymer, the mechanical properties and heat resistance of the polymer deteriorate. Compounds with a low n value are preferred because they have less adverse effect on other properties. Particularly preferred is a reaction composition in which the compound represented by the general formula in which n is 0 accounts for 50% by weight or more of the total weight.

nが低い化合物を多く含んだ反応組成物を得るには、反
応温度を低くし、またNCO基とO■I基の反応に用い
られるスズ系や3級アミン系等の触媒を用いず温和な条
件下で反応させるのが好ましい。
In order to obtain a reaction composition containing a large amount of compounds with low n, the reaction temperature should be lowered and a mild reaction method should be used without using a tin-based or tertiary amine-based catalyst used for the reaction between NCO groups and O■I groups. Preferably, the reaction is carried out under conditions.

尚、未反応のフェノール系化合物、イソホロンジイソシ
アネートの残存は、前者の残存はドープのゲル化因、後
者の残存はドープの増粘因となるので少なくしなければ
ならないが、全重量の10重斌チ以下であれば成型に適
するドープを得る事ができる。目的とする化合物が生成
しているかの確認は公知の方法、例えばGPCや液クロ
分析によって行なうことができる。
The remaining unreacted phenolic compound and isophorone diisocyanate must be kept to a minimum, as the former causes the dope to gel, and the latter causes the dope to thicken. A dope suitable for molding can be obtained if it is less than or equal to . Confirmation of whether the target compound is produced can be performed by a known method such as GPC or liquid chromatography.

このようにして得られる本発明の反応性酸化防止剤組成
物は末端に反応活性なNCO基を有してるため、活性水
素を持っているいかなるポリマーにも結合させることが
できるが、特に酸化劣化が激しいポリウレタンに結合さ
せ、ポリウレタンに酸化劣化に対する耐久性を付与する
のに有用である。
Since the reactive antioxidant composition of the present invention obtained in this way has a reactive NCO group at the end, it can be bonded to any polymer having active hydrogen, but it is particularly susceptible to oxidative degradation. It is useful for bonding to polyurethanes with strong oxidative properties and imparting resistance to oxidative degradation to polyurethanes.

結合させる方法はポリマーに応じて、またポリマー製造
時に行なうか、成型後に行なうかで種々考えられる。以
下にポリウレタンの場看について例示するが、これによ
って本発明の反応性酸化防止剤組成物の有用性が限定さ
れるものではない。一般に乾式成形や湿式成形に用いる
ポリウレタンは、過剰のジイソシアネートとジオールを
反応させて末端にNGO基を持ったプレポリマーを合成
し、このプレポリマーを溶媒に溶解し、次いで鎖延長剤
としてジアミン、分子量調整剤としてモノアミンよりな
るアミン溶液を加えてプレポリマーを鎖延長することに
よって合成されるが、ポリウレタン合成時に結合させる
場合には、lりの方法は予じめ過剰の鎖延長剤のジアミ
ンに本発明のNC0基末端を有する反応組成物を添加し
て、反応組成物が結合したモノアミンを含有したジアミ
ン溶液を調製し、必要ならばこれに分子量調整剤として
ジエチルアミン等の他のモノアミンを追加し、このアミ
ン溶液でプレポリマーの鎖延長を行ない、ポリマー末端
に本発明の酸化防止剤組成物を結合させる。他の方法は
、鎖延長をプレポリマーが有するNCO基よル過剰当量
のアミンで行なってNH,基末端のポリマーを合成し、
このポリマー溶液に本発明のNCO基末端を有する反応
組成物を添加してポリマー末端に本発明の酸化防止剤組
成物を結合させる。成型後に行なう場合には、繊維、シ
ート。
Various bonding methods can be considered depending on the polymer and whether it is carried out during polymer production or after molding. Examples of polyurethane are shown below, but this does not limit the usefulness of the reactive antioxidant composition of the present invention. Generally, polyurethane used for dry molding and wet molding is produced by reacting excess diisocyanate and diol to synthesize a prepolymer with NGO groups at the end, and then dissolving this prepolymer in a solvent. It is synthesized by chain-extending the prepolymer by adding an amine solution consisting of a monoamine as a modifier, but when bonding during polyurethane synthesis, the second method is to add an amine solution consisting of a monoamine as a modifier to the diamine in advance. Adding the inventive NC0 group-terminated reaction composition to prepare a diamine solution containing the monoamine to which the reaction composition is attached, and if necessary adding another monoamine such as diethylamine as a molecular weight modifier, The prepolymer is chain-extended with this amine solution, and the antioxidant composition of the present invention is bonded to the polymer terminals. Another method is to synthesize an NH, group-terminated polymer by carrying out chain extension with an excess equivalent of amine based on the NCO groups possessed by the prepolymer;
The NCO group-terminated reaction composition of the present invention is added to this polymer solution to bind the antioxidant composition of the present invention to the polymer terminals. If done after molding, use fibers or sheets.

フィルム等に成型した後、成型物を本発明の酸化防止剤
組成物溶液で処理して、成型物表面のポリウレタンの末
端NH,基、−NHCOO−結合、−NHCONH−結
合等に結合させる、1本発明の反応性酸化防止剤組成物
を結合させたポリマーに、必要ならば公知の安定剤、顔
料、染料、増量剤等を配合してもかまわない。
After molding into a film or the like, the molded product is treated with the antioxidant composition solution of the present invention to bond to the terminal NH, group, -NHCOO- bond, -NHCONH- bond, etc. of the polyurethane on the surface of the molded product, 1 If necessary, known stabilizers, pigments, dyes, extenders, etc. may be added to the polymer bound with the reactive antioxidant composition of the present invention.

本発明の反応性酸化防止剤組成物は黄変等の副作用のな
い優れた酸化防止効果を有し、しかも反応活性な基を有
しているのでポリマーに結合させることができ、従って
通常行なわれる単なる配合の場合のような加工工程や製
品の使用段階での酸化防止剤の流出がないのでその優れ
た酸化防止効果が種々の処理を受けても変化しない特徴
を有する。また、酸化防止剤が流出しないため少量添加
で十分な効果を上げることができ、従って一般に酸化防
止剤は高価格であるので、酸化防止剤の使用量を少なく
できることは経済的に非常に有利である。更に、本発明
の優れた酸化防止効果を有する酸化防止剤組成物は極め
て効率よく合成できる特徴を有する。
The reactive antioxidant composition of the present invention has an excellent antioxidant effect without side effects such as yellowing, and furthermore, since it has a reactive group, it can be bonded to a polymer, so it can be bonded to a polymer using conventional methods. Since there is no leakage of the antioxidant during the processing process or during the use of the product, unlike in the case of simple compounding, its excellent antioxidant effect remains unchanged even when subjected to various treatments. In addition, since the antioxidant does not leak out, a sufficient effect can be achieved by adding a small amount. Therefore, since antioxidants are generally expensive, it is economically advantageous to be able to reduce the amount of antioxidant used. be. Furthermore, the antioxidant composition of the present invention having excellent antioxidant effects has the characteristic that it can be synthesized extremely efficiently.

本発明の反応性酸化防止剤組成物は反応活性なNCO基
を有している為、活性水素を持っているポリマーに結合
させて処理を受けても長期間にわたり一定の耐酸化劣化
性をポリマーに持たせるのに有用である。特に幅広い用
途に使用されるが、酸化劣化し易いポリウレタンに結合
させて酸化劣化に対する耐久性を付与するのに有用であ
る。
Since the reactive antioxidant composition of the present invention has a reactive NCO group, it can be bonded to a polymer having active hydrogen to maintain a certain level of oxidative deterioration resistance over a long period of time even after treatment. It is useful to have the It is particularly used in a wide range of applications, and is useful for imparting durability against oxidative deterioration by bonding to polyurethane, which is susceptible to oxidative deterioration.

以下、実施例によシ本発明を具体的に説明するが1本発
明はこれらの実施例の範囲に限定されるものではない。
EXAMPLES The present invention will be specifically explained below with reference to Examples, but the present invention is not limited to the scope of these Examples.

#、実施例中の特性値の測定は以耐光脆化性テスト 各サンプル(繊維状やフィルム状)をフェードメーター
(スガ試験機株式会社製)で紫外線照射した後、テンシ
ロン試験機で破断強度を測定し、強度保持率((照射後
サンプルの破断強度/照射前サンプルの破断強度) X
 10G )をめた。
#, The measurement of the characteristic values in the examples is as follows: Light embrittlement resistance test Each sample (fiber-like or film-like) was irradiated with ultraviolet rays using a fade meter (manufactured by Suga Test Instruments Co., Ltd.), and then the breaking strength was measured using a Tensilon tester. The strength retention rate ((breaking strength of sample after irradiation/breaking strength of sample before irradiation))
10G).

耐熱性テスト 表面温度が180℃の円筒状金属表面VC100qIl
伸長した各サンプルを接触させ、サンプルが切断するま
での時間を測定した。
Heat resistance test Cylindrical metal surface VC100qIl with surface temperature of 180℃
Each stretched sample was brought into contact and the time until the sample was cut was measured.

ガス変色テスト 約0.03−の容積のチャンバー中にプロパン燃焼ガス
を導入し、室内温度を60℃に保持しながら各サンプル
を一定時間暴露し、変色程度を下記の基準で目視判定し
た。
Gas discoloration test Propane combustion gas was introduced into a chamber with a volume of about 0.03-cm, and each sample was exposed for a certain period of time while maintaining the room temperature at 60° C., and the degree of discoloration was visually judged according to the following criteria.

○:非暴露サンプルと差なし Δ:非暴露サンプルと比べ変色に差が認められる×:変
色程度が大きい 反応組成物解析 (1)残NGO基量測定 一定量の反応液をn−ブチルアミンのクロルベンゼン溶
液に加え、残ったアミンを塩酸規定液で中和滴定しめた
○: No difference from unexposed sample Δ: Difference in discoloration compared to unexposed sample ×: Large degree of discoloration Analysis of reaction composition (1) Measurement of remaining NGO group amount A fixed amount of the reaction solution was added to n-butylamine chloride. It was added to the benzene solution, and the remaining amine was neutralized and titrated with a normal hydrochloric acid solution.

(2) 組成物分析 高速液体クロマトグラフ(ウォーターズ社製、U6Kf
i)にて溶媒にクロ四ホルムを用いテ反応組成物の分析
を行なった。淘1分子量はポリスチレン換算分子量であ
る。
(2) Composition analysis high performance liquid chromatograph (manufactured by Waters, U6Kf
In i), the reaction composition was analyzed using chlorotetraform as a solvent. The molecular weight of Tao 1 is the molecular weight in terms of polystyrene.

実施例1 十分脱水したN、N−ジメチルアセトアミド1000f
と乾燥した粉末状1.3.5− )リス(4−t−ブチ
ル−3−ヒドロキシ−2,6−シメチルベ/ジルンイソ
シアヌール酸aso f (o、sモル)を反応容器に
仕込んだ。溶解が完了した後、イソホロンジインシアネ
ート891(0,4モル)を一度に添加し、攪拌下に5
0℃で反応を開始した。40時間後に冷却し、反応を停
止した。得られた反応物の残存NC0基当量チ((残存
するNCO基当量/仕込み時のNCO基当量) x l
oo )は41.3%であつ几。また、GPC分析の結
果、反応生成物中には1対1の反応生成物が約75重量
%含まれ、未反応のフェノール系化合物が数重量%残っ
ていたが、未反応のインホロンジイソシアネートは殆ん
ど含まれていなかった。同1分子量3700付近の高分
子量体が若干台まれていた。
Example 1 Thoroughly dehydrated N,N-dimethylacetamide 1000f
and dried powdered 1.3.5-)lis(4-t-butyl-3-hydroxy-2,6-dimethylbe/dirunisocyanuric acid asof (o, s mol)) were charged into a reaction vessel. After the dissolution is complete, add isophorone diincyanate 891 (0,4 mol) in one portion and add 5 ml under stirring.
The reaction was started at 0°C. After 40 hours, the mixture was cooled to stop the reaction. Residual NCO group equivalent of the obtained reaction product ((Remaining NCO group equivalent/NCO group equivalent at the time of preparation) x l
oo) was 41.3%. Additionally, as a result of GPC analysis, the reaction product contained approximately 75% by weight of 1:1 reaction products, and several weight% of unreacted phenolic compounds remained, but unreacted inphorone diisocyanate Most were not included. The high molecular weight substance having a molecular weight of around 3700 was slightly depressed.

実施例2 実施例1で得た反応組成物をポリウレタンに結合させる
例を示す。
Example 2 An example of bonding the reaction composition obtained in Example 1 to polyurethane is shown.

分子量が200Aリテトラメチレ/エーテルグリコール
200fと4.4′−ジフェニルメタンジイソシアネ−
) 50fを70℃で1.5時間反応させ両末端がイン
シアネート基であるプレポリマーを得た。
Litetramethylene/ether glycol 200f with a molecular weight of 200A and 4,4'-diphenylmethane diisocyanate
) 50f was reacted at 70° C. for 1.5 hours to obtain a prepolymer having incyanate groups at both ends.

これにN、N−ジメチルアセトアミド500 fを加え
て溶解し均一溶液にした。
To this, 500 f of N,N-dimethylacetamide was added and dissolved to make a homogeneous solution.

他方、エチレンジアミン6fとN、N−ジメチルアセト
アミド40tの溶液を5℃に冷却し、激しい攪拌下に実
施例1で得た反応組成物浴液30fをゆつくシ添加し1
反応組成物とエチレンジアミンが結合したモノアミンを
含有したアミ、ン溶液を調製した。
On the other hand, a solution of 6f of ethylenediamine and 40t of N,N-dimethylacetamide was cooled to 5°C, and 30f of the reaction composition bath solution obtained in Example 1 was slowly added with vigorous stirring.
An amine solution containing the reaction composition and a monoamine bound to ethylenediamine was prepared.

5℃に冷却した上記プレポリマー溶液を激しく攪拌しな
がらこのアミン溶液を一度に添加して鎖延長反応を行な
い1本発明の酸化防止剤が分子端に結合したポリウレタ
ン溶液を得た。このポリウレタン溶液はゲル化もなく、
30℃における粘度は2500ボイズと成型に適する粘
度を有していた。
The amine solution was added all at once to the prepolymer solution cooled to 5° C. with vigorous stirring to carry out a chain extension reaction, thereby obtaining a polyurethane solution in which the antioxidant of the present invention was bonded to the molecular ends. This polyurethane solution does not gel,
The viscosity at 30°C was 2500 voids, which was suitable for molding.

このようにして得られたポリウレタン溶液をガラス板上
に流延し、70℃で3時間乾燥して厚さ約70μのフィ
ルムを得た。一部のフィルムは50℃のパークレンに2
時間浸漬、また沸とう水に4時間浸漬処理を行なった。
The polyurethane solution thus obtained was cast onto a glass plate and dried at 70° C. for 3 hours to obtain a film with a thickness of about 70 μm. Some films are placed in perchloren at 50℃ for 2 hours.
The samples were immersed for a period of time and then immersed in boiling water for 4 hours.

処理なし及び処理後のフィルムは1■巾にカット後、フ
ェードメーターで20時間照射して針元脆化性テストを
行なった。
The untreated and treated films were cut into 1-inch widths and irradiated with a fade meter for 20 hours to perform a needle base embrittlement test.

結果を表1に示した。The results are shown in Table 1.

比較例1 エチレンジアミン5.7 f 、分子量調整剤としてジ
エチルアミン0.73f、N、N−ジメチルアセトアミ
ド60f、よりなるアミン溶液を用いて%実施例1と同
じ条件で作ったプレポリマー溶液を鎖延長してポリウレ
タン溶液を得た。このポリウレタン溶液の粘度は235
Oポイズであった。この溶液を2分割し、1つの溶液に
は、実施例1で本発明の酸化防止剤組成物の合成に用い
たLL5−) リス(4−t−ブチル−3−ヒドロキシ
−2,6−シメチルペンジAI)インシアヌール酸をポ
リマー1002当D1.5を配合した。他の溶液には酸
化防止剤の配合は行なわなかった。この2種類のポリウ
レタン溶液からフィルムを作成し、実施例1と同様の処
理を行ない針元脆化性テストを行なった。この結果を表
1に示した。
Comparative Example 1 A prepolymer solution prepared under the same conditions as Example 1 was chain-extended using an amine solution consisting of 5.7 f of ethylenediamine, 0.73 f of diethylamine as a molecular weight regulator, and 60 f of N,N-dimethylacetamide. A polyurethane solution was obtained. The viscosity of this polyurethane solution is 235
It was O poise. This solution was divided into two parts, and one solution contained the LL5- AI) Incyanuric acid was blended with polymer 1002/D1.5. No antioxidant was added to the other solutions. Films were prepared from these two types of polyurethane solutions, treated in the same manner as in Example 1, and tested for needle base embrittlement. The results are shown in Table 1.

以下余白 表1から明らかなごとく本発明の酸化防止剤組成物をポ
リマー端に結合させたポリマー溶液より得たフィルムは
射光脆化性に優れ、しかも単なる酸化防止剤を配合した
比較例に比べ処理を受けた後でも優れた射光脆化性を維
持していることが判った。
As is clear from Table 1 below, the film obtained from the polymer solution in which the antioxidant composition of the present invention is bonded to the polymer edge has excellent light embrittlement resistance, and is more easily treated than the comparative example containing a simple antioxidant. It was found that excellent light embrittlement resistance was maintained even after exposure to irradiation.

実施例3及び比較例2〜4 イソホロンジインシアネートと1.3.5−)リス(4
−1−ブチル−3−ヒドロキシ−2,6−シメチルベン
ジル)イソシアヌール酸との合成条件を変えて1本発明
範囲の反応物(実施例3)、本発明の一般式<IOで示
す化合物含量が少なく反応が進んだ高分子量体を多く含
有した反応組成物(比較例2)1本発明の一般式(IQ
で示す化合物含量が少なく未反応物を多く含有した反応
組成物(比較例31比較例4)を得た。合成条件及び得
られた反応組成物の特性を表2に示した。得られた各反
応組成物は実施例1と同様にして、先ずエチレンジアミ
ン溶液に加え、次いで得たアミン溶液でもって同じ条件
で作ったプレポリマー溶液を鎖延長した。ゲル化もなく
、成型に適する粘度を有するポリマー溶液についてはそ
の後フィルムに成膜し。
Example 3 and Comparative Examples 2-4 Isophorone diincyanate and 1.3.5-)lith(4
-1-Butyl-3-hydroxy-2,6-dimethylbenzyl)isocyanuric acid by changing the synthesis conditions to obtain a reaction product within the scope of the present invention (Example 3), a compound represented by the general formula <IO of the present invention Reaction composition containing a large amount of high molecular weight substance (comparative example 2) with low content and advanced reaction (comparative example 2) 1 General formula (IQ
A reaction composition (Comparative Example 31 Comparative Example 4) containing a small amount of the compound represented by and a large amount of unreacted substances was obtained. Table 2 shows the synthesis conditions and the properties of the reaction composition obtained. Each reaction composition obtained was first added to an ethylenediamine solution in the same manner as in Example 1, and then a prepolymer solution prepared under the same conditions was chain-extended with the obtained amine solution. Polymer solutions that do not gel and have a viscosity suitable for molding are then formed into films.

その射光脆化性、耐熱性を測定した。これらの結果を表
3に示した。
Its light embrittlement and heat resistance were measured. These results are shown in Table 3.

以下余白 表3から本発明範囲の反応組成物を結合させたポリマー
のフィルム(実施例3)は射光脆化性にすぐれ、耐熱性
も良好でおるのに対して1本発明の一般式■で示す化合
物含量が少なく高分子量体が多く含まれてiる反応組成
物の場合(比較例2)。
As shown in Table 3 below, the polymer film (Example 3) bonded with the reaction composition of the present invention has excellent light embrittlement resistance and good heat resistance. In the case of a reaction composition containing a small amount of compounds and a large amount of high molecular weight substances (Comparative Example 2).

ポリマーへの結合量が少なく従ってパークレン処理後の
射光脆化性は低下し、使用量を多くしてポリマーへの結
合量を増すとパークレン処理後も射光脆化性は良好であ
るが、耐熱性の低下が大きくなル、また未反応物が多く
含まれている反応組成物の場合(比較例3、比較例4)
、ポリマーへの結合のさいにゲル化等がおき、成型に適
するポリマー溶液が得られないことが判った。
The amount of bonding to the polymer is small, so the light embrittlement after perchloren treatment decreases, and if the amount used is increased to increase the amount of bonding to the polymer, the light embrittlement is good even after percuren treatment, but the heat resistance decreases. In the case of reaction compositions with a large decrease in , or containing a large amount of unreacted substances (Comparative Examples 3 and 4)
It was found that gelation occurred during bonding to the polymer, making it impossible to obtain a polymer solution suitable for molding.

実施例4及び比較例5〜フ 実施例λで得た本発明の酸化防止剤組成物を結合させた
ポリマー溶液、及び比較例1のポリマー溶液に各種の酸
化防止剤を配合したポリマー溶液(比較例5〜7)を4
ホールオリフイスから。
Example 4 and Comparative Examples 5 to 5 A polymer solution in which the antioxidant composition of the present invention obtained in Example λ was combined, and a polymer solution in which various antioxidants were blended with the polymer solution of Comparative Example 1 (comparative Examples 5-7) 4
From the hole orifice.

220℃の雰囲気中に吐出して紡糸、乾燥、仮ヨリ、オ
イリングし300m/分で捲き取って4Oデニ−ルの繊
維にした。
It was discharged into an atmosphere at 220°C, spun, dried, temporarily twisted, oiled, and wound at 300 m/min to form a 4O denier fiber.

この繊維についてガス変色テストを行なった。A gas color change test was conducted on this fiber.

これらの結果を表4に示した。These results are shown in Table 4.

表4 表4から本発明の酸化防止剤組成物はガスにふれても黄
変しないことが判つ九。
Table 4 From Table 4, it can be seen that the antioxidant composition of the present invention does not turn yellow even when exposed to gas.

Claims (1)

【特許請求の範囲】 L イソホロンジイソシアネートと下記一般式(I)で
示すフェノール系化合物よシ得られる一般式(6)で示
す化合物を主成分とする組成物(式中、RXはt−ブチ
ル基、5ee−ブチル基及びネオペンチル基から選ばれ
た基を表わす)A−N)ICO(−0−B−00CHN
−A−NHCO−)HO−B (It)(式中、Aはイ
ンホロ/ジイソシアネートの残基を、Bは一般式(pの
フェノール系化合物の残を表わす。nはθ〜3の範囲で
ある。)2一般式(II)で示すnが00化合物が50
重量−以上を占める特許請求範囲第1項記載の組成物 & 未反応のイソホロンジイソシアネート及び一般式(
I)で示すフェノール系化合物が10重量%以下である
特許請求範囲第1項記載の組成物
[Scope of Claims] L A composition containing as a main component a compound represented by the general formula (6) obtained from isophorone diisocyanate and a phenol compound represented by the following general formula (I) (wherein RX is a t-butyl group). , 5ee-butyl group and neopentyl group)A-N)ICO(-0-B-00CHN
-A-NHCO-)HO-B (It) (wherein A represents the residue of inholo/diisocyanate, B represents the remainder of the phenolic compound of the general formula (p), and n ranges from θ to 3. .)2 The compound represented by general formula (II) where n is 00 is 50
The composition according to claim 1 and unreacted isophorone diisocyanate and the general formula (
The composition according to claim 1, wherein the phenolic compound represented by I) is 10% by weight or less.
JP58233600A 1983-12-13 1983-12-13 Reactive antioxidant composition Granted JPS60127318A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58233600A JPS60127318A (en) 1983-12-13 1983-12-13 Reactive antioxidant composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58233600A JPS60127318A (en) 1983-12-13 1983-12-13 Reactive antioxidant composition

Publications (2)

Publication Number Publication Date
JPS60127318A true JPS60127318A (en) 1985-07-08
JPS6348886B2 JPS6348886B2 (en) 1988-10-03

Family

ID=16957593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58233600A Granted JPS60127318A (en) 1983-12-13 1983-12-13 Reactive antioxidant composition

Country Status (1)

Country Link
JP (1) JPS60127318A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020023892A1 (en) * 2018-07-27 2020-01-30 Milliken & Company Polymeric amine antioxidants
WO2020023883A1 (en) * 2018-07-27 2020-01-30 Milliken & Company Polymeric phenolic antioxidants

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020023892A1 (en) * 2018-07-27 2020-01-30 Milliken & Company Polymeric amine antioxidants
WO2020023883A1 (en) * 2018-07-27 2020-01-30 Milliken & Company Polymeric phenolic antioxidants
CN112513119A (en) * 2018-07-27 2021-03-16 美利肯公司 High molecular phenol antioxidant

Also Published As

Publication number Publication date
JPS6348886B2 (en) 1988-10-03

Similar Documents

Publication Publication Date Title
CA1068440A (en) Anionic polyurethanes
Hsu et al. Polyurethane ionomers. I. Structure–properties relationships of polyurethane ionomers
US3635870A (en) Segmented polyurethane elastomers
Chan et al. Polyurethane ionomers: effects of emulsification on properties of hexamethylene diisocyanate-based polyether polyurethane cationomers
DE1694180B2 (en) Process for the production of micro-porous flat structures
JPS588414B2 (en) One-shot manufacturing method for photo-stable non-foamed polyurethane
US3635907A (en) Process for the production of polyurethanes
EP0360707A1 (en) Polyamide-imide solutions and their preparation process
US3994881A (en) Spandex process and product based on tetra-halogenated diisocyanates and diamines
JP2625508B2 (en) Stabilized polyurethane
JPS60127318A (en) Reactive antioxidant composition
JPS583499B2 (en) Anticasareta polyurethane materials
CN113121830B (en) Graft copolymers of cellulose and/or derivatives thereof and PET
US3726836A (en) Viscosity-stabilized solution of polyurethane
Buruiana et al. Ionomeric polyurethanes of pyridinium type with side azobenzene groups
JPS583498B2 (en) Anti Casareta Polyurethane Elastomer Soseibutsu
KR0160468B1 (en) Method of manufacturing polyurethane elastic fiber
SU438664A1 (en) The method of obtaining linear elastic polyurethanes
JPS6358851B2 (en)
Buruiana et al. Poly (etherurethane) anionomers with azobenzene carboxylate groups: Synthesis and properties
US3719708A (en) Beta-semicarbazide propionic acid hydrazide
JPS63199261A (en) Polyamino acid urethane resin composition
JPS61218659A (en) Polyurethane composition
Chao et al. Study of the synthesis and physical properties of fire‐resistant polyurethane ionomers
US3761511A (en) Process for polymerizing {68 -caprolactones