JPS60126902A - F-v converting circuit - Google Patents

F-v converting circuit

Info

Publication number
JPS60126902A
JPS60126902A JP23475683A JP23475683A JPS60126902A JP S60126902 A JPS60126902 A JP S60126902A JP 23475683 A JP23475683 A JP 23475683A JP 23475683 A JP23475683 A JP 23475683A JP S60126902 A JPS60126902 A JP S60126902A
Authority
JP
Japan
Prior art keywords
phase
circuit
phase shift
frequency
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23475683A
Other languages
Japanese (ja)
Other versions
JPH0244402B2 (en
Inventor
Nobuaki Okabashi
岡橋 伸彰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP23475683A priority Critical patent/JPH0244402B2/en
Publication of JPS60126902A publication Critical patent/JPS60126902A/en
Publication of JPH0244402B2 publication Critical patent/JPH0244402B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D3/00Demodulation of angle-, frequency- or phase- modulated oscillations
    • H03D3/02Demodulation of angle-, frequency- or phase- modulated oscillations by detecting phase difference between two signals obtained from input signal
    • H03D3/06Demodulation of angle-, frequency- or phase- modulated oscillations by detecting phase difference between two signals obtained from input signal by combining signals additively or in product demodulators

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Abstract

PURPOSE:To improve the linearity of F-V conversion characteristics to frequency through simple circuit constitution by using an entire-band passing phase linear type phase shifting circuit which makes a +90 deg. (or -90 deg.) phase shift at specific frequency and an entire-band passing type phase shifting circuit which makes a +90 deg. (or -90 deg. phase shift as well. CONSTITUTION:The entire-band passing phase linear type phase shifting circuit 9 is a circuit which makes a +90 deg. phase shift at the specific frequency and has linear phase characteristics to the extent of a phase shift, and is +90 deg. and -90 deg. out of phase with a phase shifting circuit 10 and C11 at the specific frequency respectively. Adding circuits 12 and 13 adds two AC signals together on vector basis and detecting circuits 14 and 15 detect an AC signal and output a DC component. Consequently, an output voltage e0 depends upon only the phase difference psi between the signals regardless of frequency components. Further, the phase shifting circuit 9, 10 and 11 are an entire-band passing type, so there is no variation in amplitude with signal frequency. Therefore, the F-V conversion characteristics have excellent linearity regardless of signal frequency.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、特定の周波数からの周波数偏移分を電圧に変
換するF−V変換回路に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an F-V conversion circuit that converts a frequency deviation from a specific frequency into a voltage.

〔従来技術〕[Prior art]

従来、この種のF−V変換回路は、特定の周波数に対し
、同調をとる回路、例えば帯域通過F波器を使用し、そ
の同調周波数において、入出力信号量位相差が同相であ
シ、同調周波数から離れるに従って位相差が拡大するの
を利用し、位相差を検出することKより、周波数を電圧
に変換していた。
Conventionally, this type of F-V conversion circuit uses a circuit that tunes to a specific frequency, such as a band-pass F-wave device, and at that tuning frequency, input and output signal amount phase differences are in phase. The frequency is converted into voltage by detecting the phase difference, which takes advantage of the fact that the phase difference increases as it moves away from the tuning frequency.

しかし、この回路の構成では、同調回路を用いているた
め1、信号周波数に対する振幅の変化があり、また、位
相差検出についても周波数の影響をうけるため、F−V
変換特性の周波数に対する直線性が低下する欠点があっ
た。
However, since this circuit configuration uses a tuned circuit, there is a change in amplitude with respect to the signal frequency, and phase difference detection is also affected by the frequency, so F-V
There was a drawback that the linearity of the conversion characteristics with respect to frequency deteriorated.

従来のF−V変換回路の一例を第1図に示す。An example of a conventional F-V conversion circuit is shown in FIG.

図において、1は、特定の周波数において同調をとる帯
域通過F波器であり、その特性は、入力信号1 ell
 sinωt K対し、l ex l 5in(a+t
+ψ)で示されるとする。ここで、ψは信号周波数によ
り直線的に変化する位相差である。
In the figure, 1 is a bandpass F-wave filter that tunes at a specific frequency, and its characteristics are that the input signal 1 ell
For sinωt K, l ex l 5in(a+t
+ψ). Here, ψ is a phase difference that varies linearly depending on the signal frequency.

2.3は、特定の周波数において90°移相する比較的
簡単な構成の移相回路であり、その特性は、入力信号l
 el l sinwt K対し、elsin(<i+
t+π−2tan−’ωCR)で示されるとする。この
移相回路の構成の一例を第7図に示す。
2.3 is a relatively simple phase shift circuit that shifts the phase by 90° at a specific frequency, and its characteristics are as follows:
For el l sinwt K, elsin(<i+
t+π-2tan-'ωCR). An example of the configuration of this phase shift circuit is shown in FIG.

また、4,5は信号加算回路、6,7は検波回路、8は
m原信号の減算回路である。
Further, 4 and 5 are signal addition circuits, 6 and 7 are detection circuits, and 8 is a subtraction circuit for m original signals.

このような構成において、入力信号をel とし、入力
端子に接続された帯域通過F波器1の出力信”号をiと
する。61とiとは、各々次式にて与えられる。
In such a configuration, the input signal is el, and the output signal of the bandpass F-wave device 1 connected to the input terminal is i. 61 and i are given by the following equations.

i = l et l 5ina+t ・・−・・・・
 (1)ez=latlsin(a+t+ψ) ・・・
−−−−−−(2)とこで、1511は51の最大振幅 ωは角周波数 ψ は帯域通過ν波器による位相差 中心周波数KThいて90°移相する移相回路2により
、信号aXは、移相された信号6′1になる。また、同
様に、中心周波数において90°移相する移相回路3に
より、信号a2は、移相された信号6′2となる。これ
らは、各々次式のように示される。
i = l et l 5ina+t ・・・-・・・・・・
(1) ez=latlsin(a+t+ψ)...
--------(2) Here, 1511 is the maximum amplitude ω of 51, the angular frequency ψ is the phase difference center frequency KTh by the bandpass ν wave generator, and the signal aX is , resulting in a phase-shifted signal 6'1. Similarly, the signal a2 becomes a phase-shifted signal 6'2 by the phase shift circuit 3 which shifts the phase by 90° at the center frequency. These are each expressed as in the following equations.

;=’1 = l ellsin(ωt+r−2tan
−’a+CR) −(31;=’z = l 5t l
 sin (act +p+tr −2tan−” ω
cR)・・・+41上記(3)式めみ′1と上記(2)
式の52とを、加算回路4で加算すると、その出力5g
2と振幅l eoz lは、各々次式で与えられる。
;='1=l ellsin(ωt+r-2tan
-'a+CR) -(31;='z = l 5t l
sin (act +p+tr -2tan-" ω
cR)...+41 Memi'1 of the above (3) formula and the above (2)
When the equation 52 is added in the adder circuit 4, the output is 5g.
2 and the amplitude l eoz l are respectively given by the following equations.

602= 61+ 62 = 21 el l cos (!!−−!l−−t2
H−”ωCR)2 sin(ωt+−+−−tan ωcR)’2 1eo*I=215tlcos(−−−−tan ωC
R) 2 一方、上記(4)式の62と上記(1)式の61とを、
加算回路5で加算すると、その出力eolと振幅1eo
tlは、各々次式で与えられる。
602= 61+ 62 = 21 el l cos (!!--!l--t2
H-"ωCR)2 sin(ωt+-+--tan ωcR)'2 1eo*I=215tlcos(-----tan ωC
R) 2 On the other hand, 62 in the above formula (4) and 61 in the above (1) formula,
When added by the adder circuit 5, the output eol and the amplitude 1eo
tl is given by the following equations.

eo1=el+e2 =2 l j:s l cos (、+、−taHωC
R)sin(ωt+−+−−t3n ωCR)2 1 eoI l =21 el l CO8(T+T 
−tan ωCR)これらの信号;=o2. ealを
各々検波回路6及び7にて検波し、減算回路8にて差を
とると、その出力電圧eoは、次式で与えられる。
eo1=el+e2 =2 l j:s l cos (, +, -taHωC
R) sin(ωt+−+−−t3n ωCR)2 1 eoI l =21 el l CO8(T+T
-tan ωCR) These signals; = o2. When eal is detected by the detection circuits 6 and 7, and the difference is taken by the subtraction circuit 8, the output voltage eo is given by the following equation.

eo=l =01 l −l 6oz l+=Kl e
+ 1sin(!!−tan−”ωcR)sin−(5
1ここで、Kは一定の係数である。
eo=l =01 l -l 6oz l+=Kl e
+ 1 sin (!!-tan-”ωcR) sin-(5
1 where K is a constant coefficient.

上記各信号e1 、 a2 、み’1 * e’2 +
 eol 、 e02の相互関係を第2図のベクトル図
にて示す。
Each of the above signals e1, a2, mi'1 * e'2 +
The mutual relationship between eol and e02 is shown in the vector diagram of FIG.

ところで、従来の回路では、上記(5)式で示される通
り、出力電圧eQは、周波数成分ωと位相差ψに影響さ
れる。従って、従来のものは、周波数偏移分と位相ψを
直線的に変化させても、周波数成分ωにより直線性を低
下させる欠点がある。
By the way, in the conventional circuit, the output voltage eQ is influenced by the frequency component ω and the phase difference ψ, as shown by the above equation (5). Therefore, the conventional method has the disadvantage that even if the frequency deviation and the phase ψ are changed linearly, the linearity is degraded by the frequency component ω.

また、従来回路では、特定の周波数に対し、同調回路を
用いると、信号周波数に対し振幅の変化があるため、上
述したiは、161≠1511となって、出力電圧eQ
の振幅が周波数の影響を受け、F−V変換の直線性が低
下する欠点がある。この特性の一例を第3図に示す。
In addition, in the conventional circuit, when a tuning circuit is used for a specific frequency, the amplitude changes with respect to the signal frequency, so the above-mentioned i becomes 161≠1511, and the output voltage eQ
There is a drawback that the amplitude of is affected by the frequency, and the linearity of the F-V conversion is reduced. An example of this characteristic is shown in FIG.

このように% F−V変換回路にて周波数の影響をなく
すためには、同期回路および移相回路とも周波数に対し
影響を受けないようにする必要があシ、非常に複雑な回
路構成となる。
In this way, in order to eliminate the influence of frequency in the %F-V conversion circuit, it is necessary to make both the synchronous circuit and the phase shift circuit unaffected by frequency, resulting in a very complicated circuit configuration. .

〔発明の目的〕[Purpose of the invention]

本発明は、上記欠点に鑑みてなされたもので、比較的簡
単な回路構成で、F−V変換特性が周波数に依らず直線
性のよいF−V変換回路を提供することを目的とする。
The present invention has been made in view of the above-mentioned drawbacks, and an object of the present invention is to provide an F-V conversion circuit having a relatively simple circuit configuration and having good linearity in F-V conversion characteristics regardless of frequency.

〔発明の構成〕[Structure of the invention]

上記目的を達成すべく本発明は、特定の周波数からの周
波数偏移分を電圧に変換するF−V変換回路において、
信号入力端に接続された、特定の周波数にて+90°(
又は−90°)移相する全域通過位相直線型移相回路A
と、その出力信号と入力信号を加算する加算回路と、信
号入力端に接続された、特定の周波数にて+90°(又
は−90@)移相する全域通過型移相回路Bと、上記位
相直線型移相回路Aの出力端に接続された、特定の周波
数にて一90°(又は+90°)移相する全域通過型移
相回路Cと、その出力信号と上記の+90°(又は−9
0°)移相回路Bの出力信号を加算する加算回路とを備
えて成ることを特徴とする。
In order to achieve the above object, the present invention provides an F-V conversion circuit that converts a frequency deviation from a specific frequency into a voltage.
+90° (
or -90°) phase-shifting all-pass phase linear phase shift circuit A
, an adder circuit that adds the output signal and the input signal, an all-pass type phase shift circuit B connected to the signal input terminal that shifts the phase by +90° (or -90@) at a specific frequency, and the above-mentioned phase An all-pass type phase shift circuit C that shifts the phase by 190 degrees (or +90 degrees) at a specific frequency is connected to the output terminal of the linear phase shift circuit A, and the output signal and the above +90 degrees (or - 9
0°) and an adder circuit that adds the output signals of the phase shift circuit B.

〔実施例〕〔Example〕

本発明の実施例について第4図を参照して説明する。こ
こで、第4図は本発明F−V変換回路の一実施例を示す
ブロック図である。
An embodiment of the present invention will be described with reference to FIG. Here, FIG. 4 is a block diagram showing one embodiment of the F-V conversion circuit of the present invention.

同図に示す実施例のF−V変換回路は、全域通過位相直
線型移相回路囚9と移相回路■10と移相回路011、
加算回路12.13と、検波回路14.15と、減算回
路16とから成る。
The F-V conversion circuit of the embodiment shown in the figure includes an all-pass phase linear type phase shift circuit 9, a phase shift circuit 10, a phase shift circuit 011,
It consists of an addition circuit 12.13, a detection circuit 14.15, and a subtraction circuit 16.

全域通過位相直線型移相回路囚9は、特定の周波数に対
し、+90°移相し、周波数偏移鳳に対する位相特性が
直線的になる移相回路である。
The all-pass phase linear phase shift circuit 9 is a phase shift circuit that shifts the phase by +90° with respect to a specific frequency and has a linear phase characteristic with respect to the frequency shift.

移相回路@10は、特定の周波数に対し、+90”移相
する回路である。
The phase shift circuit @10 is a circuit that shifts the phase by +90'' with respect to a specific frequency.

移相回路011は、特定の周波数に対し、−90”移相
する回路である。この回路の比較的簡単な構成の一例を
第8図に示す。
The phase shift circuit 011 is a circuit that shifts the phase by -90'' with respect to a specific frequency. An example of a relatively simple configuration of this circuit is shown in FIG.

加算回路12.13は、二つの交流信号をベクトル的に
加算する回路である。また、検波回路14.15は、交
流信号検波し、直流成分を出力する回路である。さらに
、減算回路16は、直流信号の差の電圧を出力す゛る回
路である。
Addition circuits 12 and 13 are circuits that add two AC signals vectorially. Further, the detection circuits 14 and 15 are circuits that detect AC signals and output DC components. Further, the subtraction circuit 16 is a circuit that outputs a voltage representing the difference between the DC signals.

このように構成されるF−V変換回路は、次のように動
作する。
The F-V conversion circuit configured as described above operates as follows.

先づ、アナログ入力信号み!が、全域通過位相直線型移
相回路(A)9にて、信号局波数に応じて移相され、次
式で示すようice、となる。
First, look at the analog input signal! is phase-shifted in the all-pass phase linear phase shift circuit (A) 9 according to the signal station wave number, and becomes ice as shown in the following equation.

e3 = l el l sin (ωt +’+tp
 )上記式において、Ietlは、アナログ入力信号の
振幅である。また、〜+ψは、61の周波数に応じた移
相幇で、特定の周波数をfo、信号周波数をfとすると
、ψω(fo−f)で示される。なお、ro=tのとき
は、ψ=0である。
e3 = l el l sin (ωt +'+tp
) In the above equation, Ietl is the amplitude of the analog input signal. In addition, ~+ψ is a phase shift according to the frequency of 61, and if fo is the specific frequency and f is the signal frequency, it is expressed as ψω(fo-f). Note that when ro=t, ψ=0.

アナログ信号elと63は、加算回路阜2にて加算され
、”01となる。その振幅は、次式のように与えられる
Analog signals el and 63 are added in addition circuit 2 to become "01".The amplitude thereof is given by the following equation.

1eoII=Iel+ez I =2 l ax l cos (−+ −) 2 一方、アナログ入力信号61 は、移相回路Q3)IO
にて移相され、6t となる。また、アナログ入力信号
1!3 は、移相回路011にて移相され、=’ とな
る。これらは、各々次式にて与えられる。
1eoII=Iel+ez I=2 lax l cos (-+ -) 2 On the other hand, the analog input signal 61 is input to the phase shift circuit Q3) IO
The phase is shifted at 6t. Further, the analog input signal 1!3 is phase-shifted by the phase shift circuit 011, and becomes ='. These are each given by the following equations.

Q’l= l el l sin (ωt+r−2tB
H−” wCR)e’a= l i=x l sin 
(ωt+’+ ψ−2jan−’ wCR)信号さ−と
昌は、加算回路13にて加算されミ03となる。その振
幅は、次式で与えられる。
Q'l= l el l sin (ωt+r-2tB
H-” wCR)e'a= l i=x l sin
(ωt+'+ψ-2jan-'wCR) The signals Sa- and Chang are added in the adder circuit 13 to become Mi03. Its amplitude is given by the following equation.

1 晶oal=l 晶: +るtl ;2する* l cos (!!−j! )2 次に、上記A’oxを検波回路14に通して直流成分を
取出す。一方、 eoaを検波回路15に通して直流成
分を取出す。これらを、減算回路16にて減算し、検波
出力電圧の差の電圧eo を出力せしめる。e6は、次
式で与えられる。
1 crystal oal=l crystal: +ru tl ; 2 * l cos (!!-j! )2 Next, the above A'ox is passed through the detection circuit 14 to extract the DC component. On the other hand, eoa is passed through a detection circuit 15 to extract a DC component. These are subtracted by a subtraction circuit 16 to output a voltage eo that is the difference between the detected output voltages. e6 is given by the following formula.

eo = 1=’、11−Jans l=に’l et
 l 5tn− ここで、K′は一定の係数 上記み□、み、、6′□、み’l 、 e’ol 、 
e’(1gの相互関係について、第5図にベクトル図を
示す。
eo=1=', 11-Jans l='l et
l 5tn- Here, K' is a constant coefficient.
A vector diagram is shown in FIG. 5 regarding the mutual relationship of e'(1g.

、本実施例では、上式で示すように、出力電圧egは、
周波数成分に関係なく、信号の位相差ψのみに関係して
いる。また各移相回路9,10.11は、全域通過型を
使用しているため信号周波数に対する振幅の変化はない
。従って、F−V変換特性Kbいて、信号周波数に依ら
ず、良好な直線性を得ることができる。この特性の一例
を第6図に示す。
, in this example, as shown in the above equation, the output voltage eg is:
It is related only to the phase difference ψ of the signals, regardless of the frequency components. Further, since each phase shift circuit 9, 10, 11 uses an all-pass type, there is no change in amplitude with respect to the signal frequency. Therefore, good linearity can be obtained with the F-V conversion characteristic Kb regardless of the signal frequency. An example of this characteristic is shown in FIG.

なお、上記実施例は、特定の周波数において全域通過位
相直線型移相回路A9の移相量を−90−全域通過移相
回路BIOの移相量を一90°、全域通過移相回路C1
lの移相量を+90°になるよう回路を構成してもその
効果は同じである。
In addition, in the above embodiment, at a specific frequency, the phase shift amount of the all-pass phase linear phase shifter A9 is -90 degrees, the phase shift amount of the all-pass phase shift circuit BIO is -90 degrees, and the all-pass phase shift circuit C1 is
Even if the circuit is configured so that the amount of phase shift of l is +90°, the effect is the same.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、特定の周波数に対し+9
0°(又は−90°)移相する全域通過位相直線型移相
回路Aを使用し、その出力信号と入力信号とを加算する
加算回路と、入力信号を+90゜(又は−90″′)移
相する移相回路B及び上記位相直線型移相回路の出力信
号を一90°(tたは+90°)移相する移相回路Cと
、これらの移相回路B、Cの各出力信号を加算する加算
回路とを設ける構成としたことにより、比較的簡単な回
路構成により、信号周波数の影響のない、比較的直線の
よ論F−V変換を実現する効果がある。
As explained above, the present invention provides +9
An all-pass phase linear phase shift circuit A that shifts the phase by 0° (or -90°) is used, an adder circuit that adds the output signal and the input signal, and an adder circuit that adds the input signal by +90° (or -90''). A phase shift circuit B that shifts the phase, a phase shift circuit C that shifts the output signal of the phase linear phase shift circuit by 190 degrees (t or +90 degrees), and each output signal of these phase shift circuits B and C. By providing a configuration including an adder circuit for adding , there is an effect of realizing relatively linear logical F-V conversion without influence of signal frequency with a relatively simple circuit configuration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のF−V変換回路の一例を示すブロック図
、第2図は上記回路における各部の電圧の関係を示すベ
クトル図、第3図は上記回路の特性を示すグラフ、第4
図は本発明F−V変換回路の一実施例を示すブロック図
、第5図は上記実施例の各部の電圧の関係を示すブロッ
ク図、第6図は上記実施例の特性の一例を示すグラフ、
第7図は従来の回路に用いられる移相回路の一例を示す
回路図、第8図は上記実施例に用いられる移相回路0の
一例を示す回路図である。 1・・・特定の周波数を中心周波数とする帯域通過F波
器 2.3・・・特定周波数において+90°移相する移相
回路 4.5・・・加算回路 6.7・・・検波回路8・・・
減算回路 9・・・全域通過位相直線型移相回路AlO・・・特定
の周波数にて+90°移相する移相回路B 11・・・特定の周波数にて一90°移相する移相回路
C 12、13・・・加算回路 14 、15・・・検波回
路16・・・減算回路 出願人 日本電気株式会社
Fig. 1 is a block diagram showing an example of a conventional F-V conversion circuit, Fig. 2 is a vector diagram showing the voltage relationship of each part in the above circuit, Fig. 3 is a graph showing the characteristics of the above circuit, and Fig. 4
The figure is a block diagram showing one embodiment of the F-V conversion circuit of the present invention, FIG. 5 is a block diagram showing the voltage relationship of each part of the above embodiment, and FIG. 6 is a graph showing an example of the characteristics of the above embodiment. ,
FIG. 7 is a circuit diagram showing an example of a phase shift circuit used in a conventional circuit, and FIG. 8 is a circuit diagram showing an example of a phase shift circuit 0 used in the above embodiment. 1...Bandpass F wave filter with a specific frequency as the center frequency 2.3...Phase shift circuit that shifts the phase by +90° at a specific frequency 4.5...Addition circuit 6.7...Detection circuit 8...
Subtraction circuit 9...All-pass phase linear phase shift circuit AlO...Phase shift circuit B that shifts phase by +90 degrees at a specific frequency 11...Phase shift circuit that shifts phase by -90 degrees at a specific frequency C 12, 13... Addition circuit 14, 15... Detection circuit 16... Subtraction circuit Applicant NEC Corporation

Claims (1)

【特許請求の範囲】 特定の周波数からの周波数偏移分を電圧に変換するF−
V変換回路にシbて、 信号入力端に接続された、特定の周波数にて+90°(
又は−90°)移相する全域通過位相直線型移相回路A
と、その出力信号と入力信号を加算する加算回路と、信
号入力端に接続された、特定の周波数にて+90°(又
は−90°)移相する全域通過型移相回路Bと、上記位
相直線型移相回路Aの出力端に接続された、特定の周波
数にて−90゜(又は+90°)移相する全域通過型移
相回路Cと、その出力信号と上記の+90°(又は−9
0°)移相回路Bの出力信号を加算する加算回路とを備
えて成ることを特徴とするF−V変換回路。
[Claims] F- that converts a frequency deviation from a specific frequency into a voltage.
+90°(
or -90°) phase-shifting all-pass phase linear phase shift circuit A
, an adder circuit that adds the output signal and the input signal, an all-pass type phase shift circuit B connected to the signal input terminal that shifts the phase by +90° (or -90°) at a specific frequency, and the above-mentioned phase An all-pass phase shift circuit C that shifts the phase by -90° (or +90°) at a specific frequency is connected to the output terminal of the linear phase shift circuit A, and the output signal and the above +90° (or -90°) 9
0°) An F-V conversion circuit comprising: an addition circuit for adding output signals of the phase shift circuit B.
JP23475683A 1983-12-13 1983-12-13 FFVHENKANKAIRO Expired - Lifetime JPH0244402B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23475683A JPH0244402B2 (en) 1983-12-13 1983-12-13 FFVHENKANKAIRO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23475683A JPH0244402B2 (en) 1983-12-13 1983-12-13 FFVHENKANKAIRO

Publications (2)

Publication Number Publication Date
JPS60126902A true JPS60126902A (en) 1985-07-06
JPH0244402B2 JPH0244402B2 (en) 1990-10-03

Family

ID=16975857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23475683A Expired - Lifetime JPH0244402B2 (en) 1983-12-13 1983-12-13 FFVHENKANKAIRO

Country Status (1)

Country Link
JP (1) JPH0244402B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62282349A (en) * 1986-05-30 1987-12-08 Fujitsu Ltd System call control system in device handler

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62282349A (en) * 1986-05-30 1987-12-08 Fujitsu Ltd System call control system in device handler

Also Published As

Publication number Publication date
JPH0244402B2 (en) 1990-10-03

Similar Documents

Publication Publication Date Title
US3101448A (en) Synchronous detector system
US20040119622A1 (en) System and method for designing and using analog circuits operating in the modulation domain
EP0304027B1 (en) Phase shifter
JPH0235483B2 (en)
JPS60126902A (en) F-v converting circuit
US4561113A (en) Distortion canceller for FM receiver
EP0375717B1 (en) A controlled oscillator
KR950005160B1 (en) Integrated digital fm discriminator
US3229231A (en) Single side band hall-type modulator and demodulator
US3123769A (en) Phase
US2084836A (en) Alternating current meter
US2968759A (en) Phase rotation circuit
JP2005252641A (en) Narrowband time code receiver
Sekushin Impedance of electrochemical cell with hysteresis effects in voltammetric characteristics
SU548762A1 (en) Shaft Angle to Voltage Converter
RU1803955C (en) Single-phase voltage-to-three-phase voltage converter
JPS607209A (en) Phase shift synergetic fm demodulator
SU1197046A2 (en) Two-phase harmonic oscillator
SU801301A2 (en) Device for correlation receiving of phase-manipulated signals
SU780147A1 (en) Frequency multiplier
SU1022253A1 (en) Filter of symmetrical components
SU1379631A1 (en) Method and device for correcting the flow rate electromagnetic transducer signal
SU1242862A1 (en) Device for correcting characteristics of non-linear elements
US3392339A (en) Electric amplifiers with a non-linear dielectric element
JPH0323008B2 (en)