JPS60126826A - Electron beam exposing device - Google Patents

Electron beam exposing device

Info

Publication number
JPS60126826A
JPS60126826A JP58234520A JP23452083A JPS60126826A JP S60126826 A JPS60126826 A JP S60126826A JP 58234520 A JP58234520 A JP 58234520A JP 23452083 A JP23452083 A JP 23452083A JP S60126826 A JPS60126826 A JP S60126826A
Authority
JP
Japan
Prior art keywords
electron beam
deflector
pattern
lens
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58234520A
Other languages
Japanese (ja)
Inventor
Hiroshi Yasuda
洋 安田
Haruo Tsuchikawa
土川 春穂
Nobuyuki Yasutake
安武 信幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP58234520A priority Critical patent/JPS60126826A/en
Publication of JPS60126826A publication Critical patent/JPS60126826A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Electron Beam Exposure (AREA)

Abstract

PURPOSE:To reduce the transition time of an electron beam by a method wherein the first electron beam deflecting device with which the desired region of a sample will be determined, the second electron beam deflecting device with which region 1 will be determined, and the third electron beam deflecting device to be used to perform an exposure on a single unit pattern are provided. CONSTITUTION:The light of a microscopic electron light source 1 is made to irradiate on the first aperture 4 through the intermediary of an irradiation lens 3, and its image is image-formed on the second aperture 7 using a forming lens 6. The cross section of an electron beam is formed into the rectangular beam of arbitrary size using a beam forming deflector 5. Said rectangular beam is reduced by reduction lens 8 and projected on the surface of a sample 11 by a projection lens 9. The irradiation position on the surface of the sample 11 is set by the movement of a stage 12 and the first deflector 20a, the second deflector 20b and the third deflector 20c, an ON or OFF position is given to the electron beam by the blanking electrode which is operated in synchronization with a positioning deflector, and an exposure is performed.

Description

【発明の詳細な説明】 (a) 発明の技術分野 本発明は電子ビーム露光装置、特に超大規模半導体集積
回路装置のウェーハ直接露光に適するパターン精度と露
光処理所要時間が実現される電子ビーム露光装置に関す
る。
Detailed Description of the Invention (a) Technical Field of the Invention The present invention relates to an electron beam exposure apparatus, particularly an electron beam exposure apparatus that achieves pattern accuracy and exposure processing time suitable for direct exposure of wafers of ultra-large scale semiconductor integrated circuit devices. Regarding.

(b) 技術の背景 半導体集積回路装置(以下ICと略称する)の大規模化
のためlこ、そのパターンの微細化と高密度化が推進さ
れているか、このパターンを実現する微細加工技術は、
レジストをパターニングする技術と、このレジストパタ
ーンをマスクトシて半導体基体等をエツチングする技術
との複合技術である。
(b) Background of the technology As the scale of semiconductor integrated circuit devices (hereinafter abbreviated as IC) increases, the miniaturization and density of their patterns are being promoted, and what is the microfabrication technology to realize these patterns? ,
This is a combined technique of patterning a resist and etching a semiconductor substrate using the resist pattern as a mask.

レジストをパターニングするための露光方法として電子
ビーム露光方法は、(イ)解像力が光に比べて高く、最
小線幅0.1〔μm〕程度までの微細図形を描画するこ
とができる。(ロ)パターンの位置′!f1度が高く、
視野或いはストライプの継ぎ精度が高し)。
As an exposure method for patterning a resist, the electron beam exposure method (a) has higher resolution than light and can draw minute figures with a minimum line width of about 0.1 [μm]. (b) Pattern position′! f1 degree is high,
High field of view or stripe joint accuracy).

eう前記(ロ)の特徴によって視野を継いで大きなパタ
ーンを描画することができる。に)コンピュータ処理で
入力データを加工できる。(ホ)光露光に比較して工程
数が少ない。などの長所を有して、単に高解像力である
のみならず、パターンジェネレータとしての機能及び製
作時間が短縮される利点を備えている。
Due to the above-mentioned feature (b), it is possible to draw a large pattern by continuing the field of view. 2) Input data can be processed by computer processing. (e) The number of steps is smaller compared to light exposure. Not only does it have high resolution, but it also functions as a pattern generator and shortens production time.

半導体装置の製造に際して電子ビーム露光方法は前述の
利点から、(1)レチクルマスク描画、 (II)マス
ターマスク描画及び(lil>ウェーハ直接描画の何れ
にも適用される。
In manufacturing semiconductor devices, the electron beam exposure method can be applied to any of (1) reticle mask writing, (II) master mask writing, and (lil>wafer direct writing) due to the above-mentioned advantages.

(C) 従来技術と問題点 現在電子ビーム露光方法では、超微細なバターニングと
描画時間の短縮とを両立させるために。
(C) Prior art and problems The current electron beam exposure method aims to achieve both ultra-fine patterning and shortening of drawing time.

第1図ta)に例示する如き装置を使用して可変矩形ビ
ーム方式が多く行なわれている。
A variable rectangular beam system is often used using a device as illustrated in FIG. 1(ta).

本方式においては、微小電子光源IIこよって照射レン
ズ3を介して第1アパーナユア4を照射し、その像を成
形レンズ6iこよって第2アパーチユア7上に結像させ
る。ここでビーム成形偏向器5によって前記の像を変位
させることによって、第2アパーチユア7を通過する電
子ビームの断面を任意の大きさの矩形ビームに成形する
ことができる。
In this method, the first aperture 4 is irradiated by the microelectronic light source II through the irradiation lens 3, and its image is formed on the second aperture 7 by the shaping lens 6i. By displacing the image using the beam shaping deflector 5, the cross section of the electron beam passing through the second aperture 7 can be shaped into a rectangular beam of any size.

この矩形ビームを縮少レンズ8によって必要な大きさζ
こ縮少して投影レンズ9により試料11面上に投影する
が、試料11面上の照射位置はステージ12の移動と位
置決め主、副偏向器10 a、10bによって設定され
2位置決め偏向器10 a、10bと同期して動作する
ブランキング電極2によって電子ビームがオン・オフさ
れて露光が行なわれる。なお第1図(b)に各位置にお
ける電子ビームの餅筒形状の例を示す。
This rectangular beam is reduced to the required size ζ by the reduction lens 8.
The irradiation position on the sample 11 is set by the movement of the stage 12 and the positioning main and sub-deflectors 10a and 10b. Exposure is performed by turning the electron beam on and off by the blanking electrode 2 which operates in synchronization with the electrode 10b. Note that FIG. 1(b) shows an example of the rice cake cylinder shape of the electron beam at each position.

前記の方法による描画は試料面上を第2図(a)乃至(
C)に例示する如き領域に区分して行なわれる。
Drawing by the above method is performed on the sample surface in Figures 2(a) to (
The process is divided into areas as exemplified in C).

スf、gわぢマスクブランク或いはウェー73面を例え
ば−辺の長さ10 [7nm〕のフィールドに区分しく
第2図(a))、 このフィールドを史に例えば−辺の
長さ100〔μm)のサブフィールドに区分して(第2
図(bl)、このサブフィールドを単位として描画が実
行される(第2図(C))。
Divide the mask blank or wafer 73 into fields with side lengths of 10 [7 nm], for example (Fig. 2(a)), and record this field as a field with side lengths of, for example, 100 [μm]. ) into subfields (second
(bl), drawing is executed in units of this subfield (FIG. 2(C)).

前記フィールドの選択(1ステージの移動により。Selection of said field (by one stage movement).

ツブフィールドの選択は位置決め偏向器のうち主偏向器
10aによって行なわれ、サブフィールド内の照射位置
は副偏向器10bによって設定される。
The selection of the sub-field is performed by the main deflector 10a of the positioning deflectors, and the irradiation position within the sub-field is set by the sub-deflector 10b.

描画の実行に際してパターンのデータは第3図のブロッ
ク図の如く処理される、すなわち、バッファメモリ21
に収容されたパターンに関するデータよりデータ分解器
22においてパターンが前記可変矩形の組合わせに分解
される。この分解された各照射のデータに歪補正回路2
3において光軸からの距離等lこよるパターンの歪の発
生を除去するための座標変換が行なわれて、各照射につ
いりが決定される。しかる後にこれらのデータはそれぞ
れデジタル/アナログコンバータ24a、b及びC並び
に増幅器25a、b及びCによって電圧又は′に流に変
換されて、ビーム成形偏向器5.主偏向器10a及び副
偏向器10blこ入力される。
When drawing is executed, pattern data is processed as shown in the block diagram of FIG.
The data decomposer 22 decomposes the pattern into combinations of the variable rectangles based on the data regarding the pattern stored in the data decomposer 22 . A distortion correction circuit 2 uses this decomposed data of each irradiation.
In step 3, coordinate transformation is performed to eliminate pattern distortion caused by distance from the optical axis, etc., and the intensity of each irradiation is determined. These data are then converted into voltages or currents by digital/analog converters 24a, b and C and amplifiers 25a, b and C, respectively, to beam forming deflectors 5. The main deflector 10a and the sub deflector 10bl are input.

上述の如き電子ビーム露光方法ζこおいて露光処理に必
要な時間を決定する主たる要因に、電子ビーム照射時間
と照射後に次の照射位置に移動するために費される遷移
時間とがある。照射時間は電子ビーム強度とレジスト感
度とによって決定され。
In the above-mentioned electron beam exposure method ζ, the main factors that determine the time required for exposure processing are the electron beam irradiation time and the transition time required to move to the next irradiation position after irradiation. The irradiation time is determined by the electron beam intensity and resist sensitivity.

遷移時間による損失は副偏向ζこ支配される。The loss due to the transition time is dominated by the sub-deflection ζ.

静電型偏向器を用いる副偏向はアナログ信号周波数を前
くすることによって遷移時間が短縮される。しかしなが
ら信号周波数帯域を拡大すれば前記増幅器25ヒ′にお
いて信号対雑音比が低下して描画されるパターンの寸法
誤差の増大を招く結果となる。従来の電子ビーム露光に
おいては、パターンの許容寸法誤差を例えば0.05(
μm〕とするとき信号周波数の上限は10 (M)]i
Z )程度で、遷移時間は最小200(ns)程度が実
現されているに退きない。
Sub-deflection using an electrostatic deflector reduces the transition time by bringing the analog signal frequency forward. However, if the signal frequency band is expanded, the signal-to-noise ratio in the amplifier 25' decreases, resulting in an increase in the dimensional error of the drawn pattern. In conventional electron beam exposure, the allowable dimensional error of the pattern is, for example, 0.05 (
μm], the upper limit of the signal frequency is 10 (M)]i
Z), the minimum transition time is about 200 (ns).

超大規模半導体集積回路装[(以下VLSI と略称ス
る)のパターンをウェーハに電子ビーム露光するために
は、1照射あたりの所要時間、すなわち電子ビームの照
射時間と平均遷移時間との合計を例えは100(ns 
:l 程度に短縮することが要望され、そのためには平
均遷移時間を例えば20(ns:1 程度に短縮するこ
とが必要となる。
In order to expose a wafer to a pattern of a very large-scale semiconductor integrated circuit device (hereinafter abbreviated as VLSI) with an electron beam, the time required for one irradiation, that is, the sum of the electron beam irradiation time and the average transition time, is is 100 (ns
It is desired to shorten the average transition time to about 20 (ns:1), for example, to about 20 (ns:1).

この様な時間短縮を寸法誤差の増大を伴なうことなく実
現することは先に述べた露光装置では極めて困難であっ
て、斬新な電子ビーム露光装置がめられている。
It is extremely difficult to achieve such time reduction without increasing dimensional errors using the above-mentioned exposure apparatus, and a novel electron beam exposure apparatus is being sought.

(di 発明の目的 本発明は、良好なパターン精度を確保しつつ。(di Purpose of the invention The present invention ensures good pattern accuracy.

露光処理所要時間特に電子ビーム遷移時間が短縮される
電子ビーム露光装置を提供することを目的とする。
It is an object of the present invention to provide an electron beam exposure apparatus in which the time required for exposure processing, particularly the electron beam transition time, is shortened.

(e) 発明の構成 本発明の前記目的は、試料の所望領域を決定する第1の
電子ビーム偏向手段と、該所望領域内の1領域を決定す
る第2の電子ビーム偏向手段と。
(e) Structure of the Invention The object of the present invention is to provide a first electron beam deflection means for determining a desired region of a sample, and a second electron beam deflection means for determining one region within the desired region.

該l領域内の単位パターンを露光するための第3の電子
ビーム偏向手段とを備え、該所望領域内に該単位パター
ンを順次くり返し露光するようにした電子ビーム露光装
置により達成される。
This is achieved by an electron beam exposure apparatus that is equipped with a third electron beam deflection means for exposing the unit pattern within the l area, and is configured to sequentially and repeatedly expose the unit pattern within the desired area.

すなわち本発明による′電子ビーム露光装置には前記目
的達成のための下記の手段が含まれている。
That is, the electron beam exposure apparatus according to the present invention includes the following means for achieving the above object.

(1)描画面の最小領域区分の縮少と該区分領域内の偏
向器ぢ周波数帯域の拡大。
(1) Reduction of the minimum area division of the drawing surface and expansion of the deflector frequency band within the division area.

先に説明した如く静電型偏向器による電子ビーム遷移時
間の短縮を制約する要因は、信号周波数帯域の拡大lこ
よる信号対雑音比の劣化である。本発明においては最小
領域区分(前記サブフィールド)を縮少することによっ
て偏向信号周波数の振幅を縮少して、雑音成分の絶対値
を増加することなく、振@縮少比の2乗程度度の信号周
波数帯域の拡大を可能にしている。
As explained above, the factor that restricts the shortening of the electron beam transit time using an electrostatic deflector is the deterioration of the signal-to-noise ratio due to the expansion of the signal frequency band. In the present invention, the amplitude of the deflection signal frequency is reduced by reducing the minimum area division (the subfield), and the amplitude is reduced to the extent of the square of the reduction ratio, without increasing the absolute value of the noise component. This makes it possible to expand the signal frequency band.

(11)電子ビーム位置決め偏向を3段階とすること。(11) Three stages of electron beam positioning deflection.

前記の縮少された最小区分領域の選択を、精度を低下す
ることなくかつ同程度の遷移時間で実行するために、従
来と同様に通常は電磁型の第1の偏向器と1選択された
周波数帯域の信号によって駆動される通常は静電型の第
2の偏向器とを設ける。
In order to carry out the selection of the reduced minimum segmentation area without loss of accuracy and with comparable transition times, the first deflector, typically of the electromagnetic type, is selected as before. and a second deflector, typically of electrostatic type, driven by a frequency band signal.

更に下記の手段によって本発明の効果が拡大される。Furthermore, the effects of the present invention are expanded by the following means.

(+::) 少なくとも一部の最小区分領域を描画すべ
きパターンの周期の整数倍に設定して繰返し露光を行な
うことを可能とする4゜ 従来の電子ビーム露光方法において前記サブフィールド
の区分は1通常描画すべきパターンとは無関係に露光装
置側で設定する。この結果同一の素子が周期的Iこ配置
されるメモリ装置等lこおいても一般にはサブフィール
ドがパターンと整合せず同一の素子が周期的に配置され
るという特徴が生かされていない。
(+::) 4° In the conventional electron beam exposure method, the division of the subfields is 1 Normally set on the exposure device side regardless of the pattern to be drawn. As a result, even in memory devices and the like in which the same elements are arranged periodically, the subfields generally do not match the pattern and the feature that the same elements are arranged periodically is not utilized.

これに対して本発明の露光装置においては、パターンの
周期に整合して最小の領域区分を設定し7この結果最小
の領域区分が全描画面を通じて必ずしも均一の大きさで
かつ一定のモジュール上に設定されなくても、前記第2
の偏向器によってその選択を容易に行なうことができ、
パターンの周期性を効果的に利用するこ吉ができる。
In contrast, in the exposure apparatus of the present invention, the minimum area division is set in accordance with the period of the pattern.7 As a result, the minimum area division is not necessarily uniform in size and on a constant module throughout the entire drawing surface. Even if it is not set, the second
The selection can be easily made using the deflector of
Kokichi can effectively utilize the periodicity of the pattern.

(f) 発明の実施例 以下本発明を実施例により図面を参照して具体的に説明
する。
(f) Embodiments of the Invention The present invention will be specifically described below by way of embodiments with reference to the drawings.

本発明による電子ビーム露光装置の実施例を第4図に示
す。本露光装置には位置決め偏向器として第1の偏向器
20a、第2の偏向器20b及び第3の偏向器20cが
設けられている。第1の偏向器20aは電磁形で厳大複
振幅IQ(in) 程度。
An embodiment of an electron beam exposure apparatus according to the present invention is shown in FIG. This exposure apparatus is provided with a first deflector 20a, a second deflector 20b, and a third deflector 20c as positioning deflectors. The first deflector 20a is of an electromagnetic type and has a severe double amplitude IQ (in).

第2の偏向器2Qbは静電形で最大被振幅400〔μm
)程度、第3の偏向器20cは静電型で最大被振幅25
〔μm〕程度が何れも0.05(μm〕程度以下の誤差
で得られるものである。なお、第3の偏向器20Cのア
ナログ信号帯域幅は100 CMHz )以上をと拡大
されて、遷移時間は20(ns〕以下である。前記電子
ビーム露光装置にょるVLSIのパターン描画の例を説
明する。第5図(alはその1チツプのパターンを模式
的に例示し、31乃至38はそのパターンの部分を示す
。また第5図(blは前記パターンの32.33.36
及び37部分に多く現われるパターンの詳細を示す。
The second deflector 2Qb is an electrostatic type with a maximum amplitude of 400 μm.
), the third deflector 20c is an electrostatic type with a maximum amplitude of 25
[μm] is obtained with an error of about 0.05 (μm) or less.The analog signal bandwidth of the third deflector 20C is expanded to 100 CMHz or more, and the transition time is is 20 (ns) or less. An example of VLSI pattern drawing using the electron beam exposure apparatus will be explained. FIG. Also, Fig. 5 (bl is 32, 33, 36 of the above pattern) is shown.
The details of the patterns that often appear in the and 37 sections are shown.

本露光処理においては描画面例えばウェーハ面を第6図
(a)乃至(C)#こ例示する如く3段階に領域区分す
る。
In this exposure process, the drawing surface, for example, the wafer surface, is divided into three regions as shown in FIGS. 6(a) to 6(C).

すなわち、第6図(a)に示す如く、全描画面を一辺が
第1の偏向器20aの最大被振幅以下で2通常はチップ
サイズもしくはその整数倍の形状及び寸法に、第1次区
分領域41を設定する。この第1次区分領域41の選択
はステージの移動によって行なわれる。
That is, as shown in FIG. 6(a), the entire drawing surface is divided into primary divided regions with each side being less than or equal to the maximum amplitude of the first deflector 20a and having a shape and size that is usually the chip size or an integral multiple thereof. Set 41. This selection of the primary divided area 41 is performed by moving the stage.

第1次区分領域41に第6図(b)lこ示す如く一辺が
第2の偏向器20bの最大被振幅以下の第2次区分領域
42を、第2次区分領域42fこ第6図(C)に示す如
く一辺が第3の偏向器20cの最大複振幅板下の第3次
区分領域43をそれぞれ設定する。
In the primary divided area 41, as shown in FIG. 6(b)l, a secondary divided area 42 whose side is less than or equal to the maximum amplitude of the second deflector 20b is added to the secondary divided area 42f as shown in FIG. As shown in C), one side of the third division area 43 is set below the maximum double amplitude plate of the third deflector 20c.

前記第2次区分領域42の選択は第1の偏向器によって
実行され2通常は第2次区分領域42の中心点を基準点
として、電子ビームに第1の偏向器ににってこの基準点
に向う偏向を与える。また第3次区分領域43の選択は
第2の偏向器によって同様に実行される。
The selection of the secondary segmented area 42 is performed by a first deflector 2. Usually, the center point of the secondary segmented area 42 is used as a reference point, and the electron beam is directed to the first deflector to select this reference point. give a deflection towards. Further, the selection of the tertiary segmented area 43 is similarly performed by the second deflector.

本実施例1こおいては描画するパターン内に第5図(b
)に示す如き周期的繰返しパターンが多く現われており
、この部分においては第6図((1)に例示する如く、
第3次区分領域43の形状及び寸法をパターン周期の整
数倍としてこれを単位パターンとしその位置を電子ビー
ム照射数が最/J%となる様−と整合させる。
In this embodiment 1, in the pattern to be drawn, as shown in FIG.
), many periodic repeating patterns appear, and in this part, as shown in Figure 6 ((1),
The shape and dimensions of the tertiary divided area 43 are set to be an integral multiple of the pattern period, and this is used as a unit pattern, and its position is matched so that the number of electron beams irradiated is at most /J%.

この様に第3次区分領域43を設定すれば、その形状及
び寸法は必ずしも均一ではハ<、またその位置は上位の
区分領域内で必ずしも一定間隔のモジュール上に配列さ
れない。(第6図(C)参照)しかしながらこの不均一
性は第2の偏向器20bによる第3次区分の単位パター
ン領域の基準点への電子ビームの偏向を不等間隔とする
ことによって対処することができる。
When the tertiary divided areas 43 are set in this manner, their shapes and dimensions are not necessarily uniform, and their positions are not necessarily arranged on modules at regular intervals within the upper divided area. (See FIG. 6(C)) However, this non-uniformity can be countered by deflecting the electron beam to the reference point of the unit pattern area of the tertiary division by the second deflector 20b at unequal intervals. I can do it.

すなわち本発明の電子ビーム露光装置においては各電子
ビーム照射のデータは、第1の偏向器(Xn、 Yn 
) 、第2の偏向器(ξn、ηn)+ 第3の偏向器(
xn、 yn)及びビーム成形偏向器(an。
That is, in the electron beam exposure apparatus of the present invention, the data of each electron beam irradiation is transmitted to the first deflector (Xn, Yn
), second deflector (ξn, ηn) + third deflector (
xn, yn) and beam shaping deflectors (an.

b1〕)の−組によって与えられて、前記の如く同一の
パターンが繰返えされてその周期に整合して単位パター
ン領域を設定した範囲については第3の偏向器及びビー
ム成形偏向器に対するデータ(xn、yn)及び(an
、bn)は同一となる。なお、第2の偏向器に対するデ
ータ(ξn、ηn)は必ずしも静差数列とはならない1
、 本発明においては先に述べた如く電子ビーム位置決め偏
向を3段階として最小領域区分を従来より縮少し、その
結果パターン精度を低下することなく電子ビーム遷移時
間を従来の1/10程度とする高速化を実現しているが
1以上説明した如くパターンの繰返し周期を積極的に利
用することによって高速化を更に進めることができる。
data for the third deflector and the beam shaping deflector for the range in which the same pattern is repeated as described above and the unit pattern area is set in accordance with the cycle of b1]). (xn, yn) and (an
, bn) are the same. Note that the data (ξn, ηn) for the second deflector is not necessarily a static difference sequence.
As mentioned above, in the present invention, the electron beam positioning deflection is performed in three stages to reduce the minimum area division compared to the conventional one, and as a result, the electron beam transition time is reduced to about 1/10 of the conventional one without reducing pattern accuracy. However, as explained above, the speed can be further increased by actively utilizing the repetition period of the pattern.

すなわち多数回繰返されるデータ部分(xn、yn)及
び(an、bn)を通常のデータ記憶lこ用いるRAM
より高速の読出しが可能なシフトレジスタに収容するこ
と、或いは一般的な可変矩形ヒームに限定せず矩形以外
の形状の電子ビームを用いて照射回数を削減することな
どが大きい効果を発揮する。
In other words, the data portions (xn, yn) and (an, bn) that are repeated many times are stored in a RAM that uses normal data storage.
Great effects can be achieved by accommodating the electron beam in a shift register capable of higher-speed reading, or by using an electron beam with a shape other than rectangular rather than limited to a general variable rectangular beam to reduce the number of irradiations.

(g) 発明の詳細 な説明した如く本発明によれば、パターン精度を低下す
ることなく電子ビーム遷移時間か従来より大幅に低減さ
れて、電子ビーム露光処理の所安時間の短縮が可能とな
り、VLSIつ上−ハ等の電子ビーム露光の推進に大き
い効果を与える。
(g) As described in detail, according to the present invention, the electron beam transition time is significantly reduced compared to the conventional method without deteriorating pattern accuracy, making it possible to shorten the required time for electron beam exposure processing. This has a great effect on the promotion of electron beam exposure for VLSI devices, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)及び(blは従来の可変矩形電子ビーム露
光装置の説明図、第2図(a)乃至(C1は従来の描画
領域区分の説明図、第3図は従来のデータ転送を示すブ
ロック図、第4図は本発明の電子ビーム露光装置の実施
例を示す図、第5図(a)及びfb)は本発明の実施例
のパターンを示す平面図、第6図(a)乃至(d)は本
発明の実施例の描画領域区分の説明図である。 図において、1は微小電子光源、2はブランキング電極
、3は照射レンズ、4は第1アバーナユア、5はビーム
成形偏向器、Gは成形レンズ、7は第2アパーチユ乙 
8は縮少レンズ、9は投影レンズ、11は試料、12は
ステージ、20a乃至Cは第1乃至第3の位置決め偏向
器、31乃至38はVSLIパターンの部分、41は第
1次区分領域、42は第2次区分領域、43は第3次区
分領域を示す。 第2組 (0L)(b)(C〕 第3 図 第5 匡 Cb)
Figures 1 (a) and (bl) are explanatory diagrams of a conventional variable rectangular electron beam exposure system, Figures 2 (a) to (C1 are explanatory diagrams of conventional drawing area divisions, and Figure 3 is an explanatory diagram of conventional data transfer. FIG. 4 is a diagram showing an embodiment of the electron beam exposure apparatus of the present invention, FIG. 5(a) and fb) are plan views showing patterns of the embodiment of the present invention, and FIG. 6(a) 7(d) are explanatory diagrams of drawing area divisions in the embodiment of the present invention. In the figures, 1 is a microelectronic light source, 2 is a blanking electrode, 3 is an irradiation lens, 4 is a first aperture, and 5 is a beam shaping device. Deflector, G is molded lens, 7 is second aperture B
8 is a reduction lens, 9 is a projection lens, 11 is a sample, 12 is a stage, 20a to C are first to third positioning deflectors, 31 to 38 are parts of the VSLI pattern, 41 is a first division area, Reference numeral 42 indicates a second divided area, and numeral 43 indicates a third divided area. 2nd group (0L) (b) (C) Figure 3 Figure 5 Tadashi Cb)

Claims (1)

【特許請求の範囲】[Claims] 試料の所望領域を決定する第1の電子ビーム偏向手段と
、該所望領域内の1領域を決定する第2の電子ビーム偏
向手段と、該1領域内の単位パターンを露光するための
第3の電子ビーム偏向手段とを備え、該所望領域内に該
単位パターンを順次くり返し露光するようにしたことを
特徴とする電子ビーム露光装置。
A first electron beam deflection means for determining a desired region of the sample, a second electron beam deflection means for determining one region within the desired region, and a third electron beam deflection means for exposing a unit pattern within the one region. 1. An electron beam exposure apparatus, comprising an electron beam deflecting means, and configured to sequentially and repeatedly expose the unit pattern within the desired area.
JP58234520A 1983-12-13 1983-12-13 Electron beam exposing device Pending JPS60126826A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58234520A JPS60126826A (en) 1983-12-13 1983-12-13 Electron beam exposing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58234520A JPS60126826A (en) 1983-12-13 1983-12-13 Electron beam exposing device

Publications (1)

Publication Number Publication Date
JPS60126826A true JPS60126826A (en) 1985-07-06

Family

ID=16972307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58234520A Pending JPS60126826A (en) 1983-12-13 1983-12-13 Electron beam exposing device

Country Status (1)

Country Link
JP (1) JPS60126826A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60244024A (en) * 1984-05-18 1985-12-03 Hitachi Ltd Electron beam exposure device
JPS62226624A (en) * 1986-03-28 1987-10-05 Hitachi Ltd Electron beam lithography equipment
JPH02281612A (en) * 1989-03-24 1990-11-19 Internatl Business Mach Corp <Ibm> Electron beam projection system
JPH03219617A (en) * 1990-01-24 1991-09-27 Jeol Ltd Method for charged particle beam lithography

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5527689A (en) * 1978-08-21 1980-02-27 Jeol Ltd Electro beam exposing method
JPS5577144A (en) * 1978-12-07 1980-06-10 Jeol Ltd Electron beam exposure method
JPS58110043A (en) * 1981-12-04 1983-06-30 ザ・パ−キン−エルマ−・コ−ポレイシヨン Particle beam device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5527689A (en) * 1978-08-21 1980-02-27 Jeol Ltd Electro beam exposing method
JPS5577144A (en) * 1978-12-07 1980-06-10 Jeol Ltd Electron beam exposure method
JPS58110043A (en) * 1981-12-04 1983-06-30 ザ・パ−キン−エルマ−・コ−ポレイシヨン Particle beam device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60244024A (en) * 1984-05-18 1985-12-03 Hitachi Ltd Electron beam exposure device
JPS62226624A (en) * 1986-03-28 1987-10-05 Hitachi Ltd Electron beam lithography equipment
JPH02281612A (en) * 1989-03-24 1990-11-19 Internatl Business Mach Corp <Ibm> Electron beam projection system
JPH03219617A (en) * 1990-01-24 1991-09-27 Jeol Ltd Method for charged particle beam lithography

Similar Documents

Publication Publication Date Title
TWI373692B (en) Charged particle beam lithography system and charged particle beam drawing method
US9690201B2 (en) Drawing method and method of manufacturing article
KR100246875B1 (en) A method for drawing charge beam
JPH07191199A (en) Method and system for exposure with charged particle beam
KR100253052B1 (en) Method for forming a pattern and apparatus for forming a pattern
JP2009054944A (en) Method of creating lithographic data, and lithographic apparatus using charged particle beams
JP7189729B2 (en) Multi-charged particle beam writing apparatus and multi-charged particle beam writing method
GB2349737A (en) Electron beam exposure apparatus
US7102147B2 (en) Charged particle beam exposure method and method for producing charged particle beam exposure data
JP3310400B2 (en) Electron beam exposure method and exposure apparatus
US6200710B1 (en) Methods for producing segmented reticles
WO1999059183A1 (en) Electron beam exposure method and electron beam exposure apparatus
JP2835140B2 (en) Blanking aperture array, manufacturing method thereof, charged particle beam exposure apparatus, and charged particle beam exposure method
US4644170A (en) Method of electron beam exposure
JP6262007B2 (en) How to get settling time
JPS60126826A (en) Electron beam exposing device
Yasuda et al. Fast electron beam lithography system with 1024 beams individually controlled by blanking aperture array
JP3159810B2 (en) Electron beam drawing method and apparatus
KR20010051381A (en) Method of producing mask data for partial one-shot transfer exposure and exposure method
US11476086B2 (en) Multi-beam writing method and multi-beam writing apparatus
US4625121A (en) Method of electron beam exposure
JP4312205B2 (en) Charged particle beam drawing apparatus and charged particle beam drawing method
JPS5924538B2 (en) Pattern formation method
JP3206448B2 (en) Electron beam lithography system
JP2002033263A (en) Method and system for electron beam lithography, and method for fabricating photomask