JPS60126412A - Breakwater and revetment caisson - Google Patents

Breakwater and revetment caisson

Info

Publication number
JPS60126412A
JPS60126412A JP23280183A JP23280183A JPS60126412A JP S60126412 A JPS60126412 A JP S60126412A JP 23280183 A JP23280183 A JP 23280183A JP 23280183 A JP23280183 A JP 23280183A JP S60126412 A JPS60126412 A JP S60126412A
Authority
JP
Japan
Prior art keywords
wave
water
retardation
caisson
basin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23280183A
Other languages
Japanese (ja)
Other versions
JPS633084B2 (en
Inventor
Ryoichi Kashima
鹿島 遼一
Masayuki Katou
加藤 正進
Nobuyuki Abe
阿部 宣行
Hiroshi Hasegawa
寛 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP23280183A priority Critical patent/JPS60126412A/en
Publication of JPS60126412A publication Critical patent/JPS60126412A/en
Publication of JPS633084B2 publication Critical patent/JPS633084B2/ja
Granted legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B3/00Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
    • E02B3/04Structures or apparatus for, or methods of, protecting banks, coasts, or harbours
    • E02B3/06Moles; Piers; Quays; Quay walls; Groynes; Breakwaters ; Wave dissipating walls; Quay equipment

Abstract

PURPOSE:To dissipate wave through effective reduction against a wave force, by a method wherein a wave absorbing surface is formed on the front of a caisson body, a retardation basin for overflow is formed on the body, and drainage holes, being open to the inshore side, are provided. CONSTITUTION:A wave absorbing surface is formed on the front on the inshore side of a caisson body 1, and a wave dissipation chamber A covered with an upper surface slit wall body is formed. A retardation basin, having a capacity enough to allow for retardation of overflow and being formed with concrete structure at the upper part thereof, is formed on the caisson body 1. Drainage holes 7, which are of sufficient size and number to complete retardation of the retardation basin 6 during a time in which a subsequent wave breaks upon, are formed to interconnect the retardation basin 6 and the inshore side. This enables provision of wave dissipation structure having a high wave dissipation effect, and permits economical design of a breaker and a revetment.

Description

【発明の詳細な説明】 本発明は水深の深い所に設けられる防波堤や護岸ケーソ
ン、特に消波機能の向上に関するもので−1−ハr ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to breakwaters and revetment caisson installed in deep water areas, particularly to improving the wave-dissipating function.

通常の防波堤や護岸ケーソン堤の短所として、波の反射
率が高いこと、あるいは強大な波力が作用することが挙
げられる。その対策として例えば第1図に示す断面図の
ように防波堤や護岸を形成するケーソン(1)の前面に
、消波ブロック(2)を投入して波力の軽減を行い反射
越流を低減することが従来から広く行われている。しか
しこの方法では水深が深い場合消波ブロック(2)の安
定化が問題となり、これに加えて大量のプロ、りを必要
とすることから経済的に不利になる。このためこの方法
は比較的浅い海域における防波堤、更には護岸用として
利用されているのが殆どである。
The disadvantages of regular breakwaters and seawalls are that they have a high wave reflectivity and are subject to strong wave force. As a countermeasure, for example, as shown in the cross-sectional view shown in Figure 1, a wave-dissipating block (2) is placed in front of the caisson (1) that forms a breakwater or seawall to reduce wave force and reduce reflected overflow. This has been widely practiced for a long time. However, in this method, stabilization of the wave-dissipating block (2) becomes a problem when the water depth is deep, and in addition, a large amount of professional equipment is required, which is economically disadvantageous. For this reason, this method is mostly used for breakwaters and seawalls in relatively shallow waters.

そこで大水深用として第2図に示すように、ケーソン(
1)に消波構造をもたせたものが提案されている。これ
は第2図に示すようにケーソン本体(1)の外海側に、
前面にスIJ 、 ) (3)を設けた断面長方形状の
遊水空間(4)を形成して消波する、所謂直立消波構造
と云われるものである。この方法によれば前記した消波
プロ、りの安定性など消波プロッ 2− りによる方法の難点は一掃される。しかしその反面この
構造では、波の周期が長くなるに伴い消波機能の減退を
生ずることから、これに対応[7て遊水空間(4)を大
形にしなければならない。その結果堤体断面の大形化を
捷ぬかれ得ないため、経済的設計上不利になるのを避は
得ない難点がある。
Therefore, as shown in Figure 2, a caisson (
1) with a wave-dissipating structure has been proposed. As shown in Figure 2, this is located on the open sea side of the caisson body (1).
This is a so-called upright wave-dissipating structure in which waves are dissipated by forming a rectangular water play space (4) with a rectangular section (3) on the front surface. According to this method, the disadvantages of the method using wave-dissipating plots, such as the stability of wave-dissipating plots mentioned above, can be eliminated. On the other hand, however, with this structure, the wave-dissipating function decreases as the wave period becomes longer, so the retarding space (4) must be made larger to accommodate this. As a result, the cross-section of the embankment cannot be avoided, which inevitably leads to disadvantages in terms of economical design.

本発明は前記したような直立消波構造に比して、消波効
果の大きい消波構造物を提供し、従来より小形々堤体断
面により長周期の波浪に対しても、効果的な波力の軽減
による消波が可能となるようにして、経済的な段組を可
能としたものである。
The present invention provides a wave-dissipating structure that has a greater wave-dissipating effect than the upright wave-dissipating structure described above, and has a smaller cross-section of the levee body than before, which is effective against long-period waves. By making it possible to dissipate waves by reducing the force, it was possible to create economical columns.

次に図面を用いて本発明の詳細な説明する。Next, the present invention will be explained in detail using the drawings.

本発明の要旨とするところは次の点にある。即ち従来の
直立消波構造においては、第2図に示したように遊水空
間(4)内への波の導入による、エネルギ損失により反
射を低減して、反射と港内側への越流を軽減しようとす
る姿勢から設計されている。このため波の周期が長くな
るのに対応して、遊水空間(4)を大きくして水の充満
を防ぐ必要がある。これに対し本発明では第3図に示す
断面図のように、ケーソン本体(1)の外海側の曲面に
設けた、制波斜面(5)への波の衝突によりケーソンの
滑動を引き起す波力を下向に転化しながら、外海側への
反射とケーソン本体(1)上の越流を許す。そして越流
を制波斜面(5)の後部のケーソン本体(1) 、−1
−に設けた滞水池(6)により受けたのち、波の後退時
排水孔(7)により外海側に排水することにより港内側
への越流を防止して、従来の直立消波構造におけるよう
な、波の長周期時における遊水空間の大形化を阻止する
と同時に、ケーソンに与えられる滑動。
The gist of the present invention is as follows. In other words, in the conventional upright wave-dissipating structure, as shown in Figure 2, waves are introduced into the retarding space (4), which reduces reflection due to energy loss and reduces reflection and overflow into the harbor. It is designed with an attitude of trying. For this reason, it is necessary to increase the size of the water retarding space (4) to prevent it from being filled with water in response to the longer wave period. On the other hand, in the present invention, as shown in the sectional view shown in FIG. While converting the force downward, it allows reflection towards the open sea side and overflow on the caisson body (1). And the caisson body (1) at the rear of the slope (5) that controls overflow, -1
- After the water is received by the water retention pond (6) provided in At the same time, it prevents the floating water space from increasing in size during long periods of waves, and at the same time provides sliding motion to the caisson.

転倒力の軽減を図るようにしたものである。This is designed to reduce the force of falling.

第4図は実用的な本発明の消波構造物の一例を示す鳥轍
図であって、その特徴とするところは次の点にある。即
ちその第1はケーソン本体(1)の外海側の前面に、ケ
ーソン本体(1)側に向って立」−がる制波斜面(5)
を設けると同時に、その前面と上面を複数本の縦方向ス
リッ) (8a)を備えた前面スリット壁体(8)と、
前部から後部方向に伸びる複数本の横方向ス’) y 
ト(9a)を備えだ上面スリット壁体(9)により覆っ
た、消波室Aを形成する。そして縦方向スリ、1(8a
) 、 fiill波斜面(5)とにより、次々とエネ
ルギの損失を生じさせて波力の督減を図る。
FIG. 4 is a bird track diagram showing an example of a practical wave-dissipating structure of the present invention, and its features are as follows. That is, the first is a wave control slope (5) that stands on the front surface of the caisson body (1) on the open sea side, facing toward the caisson body (1).
a front slit wall body (8) having a plurality of vertical slits (8a) on its front and upper surfaces;
Multiple horizontal lines extending from the front to the rear
A wave-dissipating chamber A is formed, which is covered with a top slit wall (9). and vertical pickpocket, 1 (8a
) and fill wave slope (5), the wave force is gradually reduced by causing energy loss one after another.

寸だこれによっても消波し切れずに残った波を制波斜面
(5)により、上面スリ、ト壁体(9)の桟方向スリッ
1−(9a)を介して外部背後((放流さ仕て更にエネ
ルギの喪失を図り、こtlに加えて従来の直立消波構造
におけるような遊水空間(4)の上部平面への波の衝突
による、ケーソン本体(1)に加わる上方への転倒力の
軽減を図るようにした点にある。また第2には上面スリ
、ト壁体(9)の後部のケーソン本体(1)上に前部(
6a)を厚く重くして転倒力に対抗できるようにした、
越流波を滞水させうる容量をもつ、上部コンクリート構
造物による滞水池(6)を設けると同時に、滞水池(6
)と外海側とを結ぶ排水孔(7)、即ち一端が波後退時
の水位以上の点に開口し、かつ次の波が打寄せるまでの
間に、滞水池(6)の滞水の排水を完了させうる、太さ
と本数の排水孔(7)を設ける。そして上面スリット壁
体(9)の横方向スリット(9a)を通って越流された
、放流水を滞水池(6)により受けるようにして、港内
側への越流を阻止したものである。
Even with this, the remaining waves that were not completely dissipated are removed by the wave control slope (5) through the upper surface slit and the slit 1-(9a) of the wall body (9) to the outside rear ((discharge). In addition to this, the upward toppling force exerted on the caisson body (1) due to the impact of waves on the upper plane of the retarding space (4) as in conventional upright wave-dissipating structures is aimed at further energy loss. The second reason is that there is a top surface slit, and the front part (
6a) is made thicker and heavier to resist the force of falling.
At the same time, a water retention pond (6) is installed with an upper concrete structure that has the capacity to retain overflow waves.
) and the open sea side, one end of which opens at a point above the water level when the waves recede, and until the next wave hits, drains the stagnant water in the reservoir (6). Provide drainage holes (7) of a thickness and number that can complete the process. The discharge water that has overflowed through the horizontal slit (9a) of the upper slit wall (9) is received by the water reservoir (6) to prevent overflow into the inner side of the port.

即ち第2図を用いて前記した1に立消波構造では、スリ
ッl−(3)を通過する際の乱れによる、エネルギーの
損失を図りなから遊水空間(4)内に入った波を先づそ
の直立面に衝突させ、これにより生じた上昇流を上部平
面に再び衝突させることにJ:す、下降流を作って、遊
水空間(4)内を遊水循環させる。
In other words, in the standing wave structure described in 1 above with reference to FIG. 2, the wave entering the retarding space (4) is not designed to reduce energy loss due to turbulence when passing through the slit (3). By colliding with the upright surface of the basin and causing the resulting upward flow to collide with the upper plane again, a downward flow is created and the water is circulated in the retarding space (4).

そして次々と起る衝突によりエネルギ損失を生じさせて
波力の軽減を行ったのち、波の後退により遊水空間(4
)内の水を排水して次の消波に備えるものである。この
だめ遊水空間(4)は波の1周期、即ち波の打寄せから
後退までの間に入る水を循環させて排水できる大きさを
もっことが必要であって、これが満足されない場合即ち
波の周期が長くなって、波の打寄せから後退までの間の
波長が、遊水空間(4)の大きさに比して大きくなった
場合には、遊水空間(4)内には水が充満するので、循
環にょる消波作用を期待できなくなる。従ってこれを避
けるためには、波の周期が長い場合これに応じて遊水空
間(4)を大形にする必要がある。また遊水循環による
消波作用が行われている状態においても、従来の消波構
造物では遊水空間(4)の上面への波の衝突により、遊
水空間(4)の上面に強大な上向の揚圧力が作用する。
After the wave force is reduced by causing energy loss due to successive collisions, the receding waves cause the floating water space (4
) to prepare for the next wave dissipation. This reservoir water storage space (4) needs to be large enough to circulate and drain the water that enters during one cycle of the wave, from the wave's arrival to the wave's retreat. When the period becomes longer and the wavelength between the waves hitting and receding becomes larger than the size of the water retarding space (4), the water retarding space (4) is filled with water. Therefore, we cannot expect a wave-dissipating effect due to circulation. Therefore, in order to avoid this, if the wave period is long, it is necessary to increase the size of the water retarding space (4) accordingly. In addition, even when the wave-dissipating effect is being performed by the retarding water circulation, in the conventional wave-dissipating structure, a strong upward movement occurs on the upper surface of the retarding space (4) due to the collision of waves with the upper surface of the retarding space (4). Uplift force acts.

しかし本発明のように上面に横方向スリ、ト(9a)を
設けて、水を逃がすようにすれば、波の周期が長くなっ
ても消波室Aの内部空間00が水によって満されること
がないため、消波機能を喪失することがない。その結果
周期が長くなっても、従来のように遊水空間を大きくす
る必要がないので経済的となる。しかも本発明では水を
外部に放流することから、従方向スリッ)(8a)通過
時の水流の乱れによるエネルギの喪失がよく行われる。
However, if a horizontal slot (9a) is provided on the top surface to allow water to escape as in the present invention, the internal space 00 of the wave-dissipating chamber A can be filled with water even if the wave period becomes longer. Therefore, there is no loss of wave-dissipating function. As a result, even if the cycle becomes longer, there is no need to enlarge the water retentive space as in the past, making it economical. Moreover, in the present invention, since water is discharged to the outside, energy is often lost due to turbulence in the water flow when passing through the secondary slit (8a).

またこれに加えてスリッ) (8a)を出て制波斜面(
5)に衝突した波力(Pr)は、第4図中に示すように
2方向(PH、Pv )に転化されて、下向きの方向へ
の転化によりケーソン本体(1)に滑動および転倒力を
与えること少なく横方向スリ7 ) (9a)を通過し
、このとき生ずる水流の乱によるエネルギの喪失を更に
受けて放流される。従って波力の軽減による消波がよく
行われる。これに加え壬上記によりエネルギを大きく弱
められた放流水の一部は、上面スリ、ト壁体(9)上を
流れて外海側に流れ出し、残った越流水が滞水池側に流
れる。このためその水量は少なく、しかもこの水は滞水
池(6)に滞水されて波の後退により排水孔(7)によ
り排水される。従って滞水池(6)の容量を選定すれば
、港内側に越流して港内泊池の静隠を乱すことがない。
In addition to this, exit the wave control slope (8a) (8a)
The wave force (Pr) colliding with the caisson body (1) is converted into two directions (PH, Pv) as shown in Fig. 4, and the downward conversion causes sliding and overturning force on the caisson body (1). The water passes through the horizontal pickpocket 7) (9a) with little energy and is discharged after further loss of energy due to the turbulence of the water flow that occurs at this time. Therefore, wave dissipation by reducing wave force is often performed. In addition to this, a part of the discharged water whose energy has been greatly weakened by the above-mentioned water flows over the top wall (9) and flows out to the open sea side, and the remaining overflow water flows to the reservoir side. Therefore, the amount of water is small, and this water is retained in the reservoir (6) and drained through the drain hole (7) as the waves recede. Therefore, if the capacity of the water retention pond (6) is selected, water will not overflow into the inner side of the port and disturb the tranquility of the anchorage pond in the port.

次に模型実験によって本発明の消波効果と、従来の直立
消波構造のそれとを対比して説明する。
Next, the wave-dissipating effect of the present invention will be compared with that of a conventional upright wave-dissipating structure through model experiments.

第5図は第4図に示すように捨て石マウンl−01)上
の水深りを20 cm 、波高Hを10z一定とし、ま
た波の作用時におけるケーソンの滑動限界時の水中重量
と、ケーソン本体と捨石マウントとの摩擦係数を053
として、規則波断面実験により水・F波力(ト)を、波
高Hと波長りとの比を横軸としてめたものである。1だ
第6図は水深りの波長しに対する比、即ち相対水深を横
軸としてヒー’) −(Hea)いの方法によりめた反
射率KrO値であって、この場合水深りと波高Hを一定
としているので波の周 7− 期のみ変えている。
Figure 5 shows the underwater weight at the sliding limit of the caisson under wave action, and the weight of the caisson itself when the water depth above the stone mound l-01) is 20 cm and the wave height H is constant at 10z as shown in Figure 4. The coefficient of friction between the and rubble mount is 053.
The water/F wave force (g) was determined by a regular wave cross-section experiment, with the horizontal axis representing the ratio of the wave height H to the wavelength. 1. Figure 6 shows the ratio of water depth to wavelength, that is, the reflectance KrO value determined by the following method with relative water depth as the horizontal axis; in this case, water depth and wave height H are Since it is constant, only the period of the wave is changed.

第5図から明らかなように、図中A曲線によって示す従
来の直立消波構造では、波長りが長くなるに伴い水平波
力(0は犬、即ち消波力が減退するため遊水空間を大と
する必要があるに対し、本発明では図中8曲線によって
示すように、水平波力いは従来構造の約%になす、シか
も波長りの変化にもかかわらず殆ど一定である。また第
6図から明らかなように反射率(Kr)について同様な
ことが云え、これらの実験結果から本発明が直立消波ケ
ーソン堤に対して著しい効果を有し、これから経済的な
堤体の設計を可能とすることが判る。また以上の説明か
ら本発明を護岸に適用した場合にも、同様な効果を得ら
れることが判る。
As is clear from Fig. 5, in the conventional upright wave-dissipating structure shown by curve A in the figure, as the wavelength becomes longer, the horizontal wave force (0 means 0), the wave-dissipating force decreases, so the play space becomes larger. In contrast, in the present invention, as shown by curve 8 in the figure, the horizontal wave force is approximately % of that of the conventional structure, and is almost constant despite changes in wavelength. As is clear from Fig. 6, the same can be said about the reflectance (Kr), and these experimental results show that the present invention has a remarkable effect on upright wave-dissipating caisson embankments, and will lead to the design of economical embankment bodies in the future. Furthermore, from the above explanation, it can be seen that similar effects can be obtained when the present invention is applied to a seawall.

以上本発明を説明したが、例えば第7図(第4図と同一
符号は同等部分を示す。)のように、滞水池(6)の前
部(6a)の天端を高くして越波に抵抗を与え、これに
より滞水池(6)の容量を小さくすることができる。ま
た第8図のように縦方向スリット(8a) 、横方向ス
’) 、7 ) (9a)の方向を変えてもよい。
Although the present invention has been explained above, for example, as shown in Fig. 7 (the same reference numerals as in Fig. 4 indicate the same parts), the top of the front part (6a) of the reservoir (6) is raised to prevent waves from overtopping. This provides resistance, thereby making it possible to reduce the capacity of the water reservoir (6). Further, as shown in FIG. 8, the directions of the vertical slit (8a) and the horizontal slit (9a) may be changed.

 8− 以上の説明から明らかなように、本発明によれば防波堤
や護岸の経済的設計が可能となるすぐれた効果を有する
もので、その実用的効果には著しいものがある。
8- As is clear from the above explanation, the present invention has the excellent effect of enabling economical design of breakwaters and seawalls, and its practical effects are remarkable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図はそれぞれ従来の消波構造を示す断面図
、第3図は本発明の原理説明用断面図、第4図は本発明
の一実施例断面図、第5図および第6図はその実験結果
を示す図、第7図、第8図は本発明の変形例を示す断面
図および斜視図である。 (1)・・・ケーソン、(2)・・消波ブロック、(3
)・・・スリ。 ト、(4)・・・遊水空間、(5)・・・制波斜面、(
6)・・・滞水池、(6a)・・・その前部、(7)・
・・排水孔、(8)・・・前面スリット壁体、(8a)
・・・縦方向ス’J y ト、(9)・・・上面スリッ
ト壁体、(9a)・・・横方向スリット、A・・・消波
室、OI・・・その内部空間、Q+)・・・捨て石マウ
ント。
1 and 2 are sectional views showing conventional wave-dissipating structures, respectively. FIG. 3 is a sectional view for explaining the principle of the present invention. FIG. 4 is a sectional view of an embodiment of the present invention. FIG. 6 is a diagram showing the experimental results, and FIGS. 7 and 8 are sectional views and perspective views showing modified examples of the present invention. (1)...caisson, (2)...wave dissipation block, (3
)...Pickpocket. (4)... Retarding space, (5)... Wave control slope, (
6)... Reservoir, (6a)... Its front part, (7)...
...Drain hole, (8)...Front slit wall, (8a)
...Vertical direction, (9)...Top slit wall, (9a)...Horizontal slit, A...Wave-dissipating chamber, OI...Inner space thereof, Q+) ...a stone mount.

Claims (1)

【特許請求の範囲】[Claims] (1)ケーソン本体の前面にケーソン本体側に立上る制
波斜面を設けると共に、ケーソン本体上には越流の滞水
池を設け、更にこれには次の波が打寄せるまでの間に滞
水の排出を完了させうる容量をもつ外海側に開口する排
水孔を設けたことを特徴とする防波堤および護岸ケーソ
ン。 (2、特許請求の範囲第1項の発明において、制波斜面
の前面と上面とをスリット壁体によって覆って消波室を
形成したことを特徴とする防波堤および護岸ケーソン。
(1) A wave control slope is provided on the front side of the caisson body, and an overflow water retention pond is provided on the caisson body. A breakwater and a seawall caisson are characterized by being provided with a drainage hole opening to the open sea side and having a capacity capable of completely discharging water. (2. A breakwater and seawall caisson according to the invention set forth in claim 1, characterized in that a wave-dissipating chamber is formed by covering the front and upper surfaces of the wave-controlling slope with a slit wall body.
JP23280183A 1983-12-12 1983-12-12 Breakwater and revetment caisson Granted JPS60126412A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23280183A JPS60126412A (en) 1983-12-12 1983-12-12 Breakwater and revetment caisson

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23280183A JPS60126412A (en) 1983-12-12 1983-12-12 Breakwater and revetment caisson

Publications (2)

Publication Number Publication Date
JPS60126412A true JPS60126412A (en) 1985-07-05
JPS633084B2 JPS633084B2 (en) 1988-01-21

Family

ID=16944970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23280183A Granted JPS60126412A (en) 1983-12-12 1983-12-12 Breakwater and revetment caisson

Country Status (1)

Country Link
JP (1) JPS60126412A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6036187A (en) * 1996-10-21 2000-03-14 Koenig & Bauer Aktiengesellschaft Sheet processing machine
JP2001159115A (en) * 1999-12-02 2001-06-12 Mitsui Eng & Shipbuild Co Ltd Sea water purifying revetment ad quay wall
KR100469903B1 (en) * 2001-02-19 2005-02-02 니시마쯔 켄세쯔 가부시키가이샤 Seashore structure
CN104120678A (en) * 2013-11-05 2014-10-29 成都科创佳思科技有限公司 Revetment composite structure

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4865738B2 (en) * 2008-01-16 2012-02-01 鹿島建設株式会社 Revetment
JP5912651B2 (en) * 2012-02-23 2016-04-27 五洋建設株式会社 Breakwater structure and breakwater reinforcement method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6036187A (en) * 1996-10-21 2000-03-14 Koenig & Bauer Aktiengesellschaft Sheet processing machine
JP2001159115A (en) * 1999-12-02 2001-06-12 Mitsui Eng & Shipbuild Co Ltd Sea water purifying revetment ad quay wall
KR100469903B1 (en) * 2001-02-19 2005-02-02 니시마쯔 켄세쯔 가부시키가이샤 Seashore structure
CN104120678A (en) * 2013-11-05 2014-10-29 成都科创佳思科技有限公司 Revetment composite structure

Also Published As

Publication number Publication date
JPS633084B2 (en) 1988-01-21

Similar Documents

Publication Publication Date Title
US4498805A (en) Breakwater module and means for protecting a shoreline therewith
JP4866308B2 (en) Transmission type sea area control structure and construction method thereof
US3538710A (en) Breakwater structure
Allsop et al. Reflections from coastal structures
JPS60126412A (en) Breakwater and revetment caisson
US4877349A (en) Wave abatement device
JP3300729B2 (en) Breakwater caisson
US4708521A (en) Beach building block
JP2010159622A (en) Legged permeable type wave dissipating structure
JP2008190259A (en) Wave breaking type caisson and parapet used in wave breaking type caisson
Ijima et al. Permeable seawall with reservoir and the use of “Warock”
JPH06272225A (en) Wave killing structure
JPH0451603B2 (en)
JPS63176511A (en) Permeation-type sea area control structure
JP3304697B2 (en) Breakwater with seawater exchange function
JPS62153406A (en) Wave-breaking type caisson for breakwater
JP3185169B2 (en) Discharge structure
JP3457755B2 (en) Transmission type wave-breaking structure
Matsuda et al. Crown Height Effects on Stability of Flat Type Concrete Armor Blocks
KR200266899Y1 (en) Upright formal water-passing breakwater using vertical wave block
JP3790639B2 (en) Wave-absorbing structure and wave-dissipating method
JP2000204529A (en) Low top-end type caisson wave-absorbing structure
JP4193324B2 (en) Seawater exchange breakwater caisson
JPH11124829A (en) Seawater exchange type breakwater having wave dissipation function
JP2003096742A (en) Sea-water crossflow breakwater caisson