JPS6012556B2 - Hot water production equipment - Google Patents

Hot water production equipment

Info

Publication number
JPS6012556B2
JPS6012556B2 JP56069697A JP6969781A JPS6012556B2 JP S6012556 B2 JPS6012556 B2 JP S6012556B2 JP 56069697 A JP56069697 A JP 56069697A JP 6969781 A JP6969781 A JP 6969781A JP S6012556 B2 JPS6012556 B2 JP S6012556B2
Authority
JP
Japan
Prior art keywords
hot water
water
heater
control valve
geothermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56069697A
Other languages
Japanese (ja)
Other versions
JPS57184888A (en
Inventor
昌洋 黒河
有孝 山田
英樹 古林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP56069697A priority Critical patent/JPS6012556B2/en
Publication of JPS57184888A publication Critical patent/JPS57184888A/en
Publication of JPS6012556B2 publication Critical patent/JPS6012556B2/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/20Geothermal collectors using underground water as working fluid; using working fluid injected directly into the ground, e.g. using injection wells and recovery wells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Description

【発明の詳細な説明】 本発明は熱水造成設備に関する。[Detailed description of the invention] The present invention relates to hot water production equipment.

近年、地熱水は発電等に利用されており、この地熱水は
熱供給源として利用できればよいが、しかしながらこの
地熱水中には、硯素、カルシウム、シリカ等が多量に含
まれているので直接供給することができない。
In recent years, geothermal water has been used for power generation, etc., and it is sufficient to use this geothermal water as a heat supply source.However, this geothermal water contains large amounts of borons, calcium, silica, etc. cannot be supplied directly.

そこで、この地熱水を利用して河川水、井戸水等の淡水
を熱水に熱交換することが考えられている。ところで、
従来の熱水造成設備の熱交換装置は、第1図及び第2図
に示すように、一個の横層円筒容器1内にその鞠心方向
の且つ上部閉口の仕切板2が立設されて、加熱流体aの
蒸発室3と被加熱流体bの加熱室4とがそれぞれ連通自
在に形成され、更に該円筒容器1は軸0方向で複数個の
横陥壁5により区切られて多段式に且つ直接接触式にさ
れている。上記熱交換装置を地熱水と河川水との熱交換
に適用する場合、それぞれ金属に対する腐食の機構が異
なるため、容器材料選定及び地熱水に含まれる有害成分
除去等に問題がある。
Therefore, it is being considered to use this geothermal water to exchange heat from freshwater such as river water or well water into hot water. by the way,
As shown in FIGS. 1 and 2, a conventional heat exchange device for hot water production equipment has a partition plate 2 erected in a horizontal cylindrical container 1 in the direction of its center and closed at the top. , an evaporation chamber 3 for the heating fluid a and a heating chamber 4 for the heated fluid b are formed in communication with each other, and the cylindrical container 1 is divided by a plurality of horizontal recessed walls 5 in the axis 0 direction to form a multistage structure. Moreover, it is a direct contact type. When the above heat exchange device is applied to heat exchange between geothermal water and river water, there are problems in selecting container materials, removing harmful components contained in geothermal water, etc. because the corrosion mechanisms for metals are different.

本発明は上記問題を解消し得る熱水造成設備を提供する
ものである。
The present invention provides hot water production equipment that can solve the above problems.

以下、本発明の一実施例を図面に基づき説明する。Hereinafter, one embodiment of the present invention will be described based on the drawings.

先ず、第3図のフローシートにより熱水造成設備の概略
を説明すると、加熱流体である地熱水Aは一旦地熱水貯
傷槽11に入った後、熱交換装置12に送られる。一方
被加熱流体である河川水Bはその貯水槽13からポンプ
14により上記熱交換装置12に送られる。そして、上
記熱交換装置12内で、蒸気による直接接触式熱交換が
行なわれ、熱が奪われた地熱水は貯傷槽15及びポンプ
16を介して地中Cに戻され、また熱せられた河川水は
熱水Dとなり一旦熱水貯湯槽17に送られた後消費地に
供給される。次に、各機器を図面に基づき詳細に説明す
る。
First, the outline of the hot water production equipment will be explained with reference to the flow sheet of FIG. 3. Geothermal water A, which is a heating fluid, once enters the geothermal water storage tank 11 and then is sent to the heat exchange device 12. On the other hand, river water B, which is a fluid to be heated, is sent from the water storage tank 13 to the heat exchange device 12 by a pump 14. Direct contact heat exchange using steam is performed in the heat exchange device 12, and the geothermal water from which heat has been removed is returned to the underground C via the storage tank 15 and the pump 16, where it is heated again. The river water turned into hot water D is once sent to the hot water storage tank 17 and then supplied to the consumption area. Next, each device will be explained in detail based on the drawings.

熱交換装置12は、第4図〜第6図に示すように、地熱
りKの蒸発器18と、河川水の加熱器19とから構成さ
れている。上記蒸発器18は、第7図及び第8図に示す
ように、一個の横暦円筒容器20内に4個の仕切板21
により5個の蒸発室22が形成されて多段フラッシュ式
にされている。即ち「地熱水の入口23側から出口24
側に向って、各蒸発室22は順次減圧されている。上記
仕切板21の下部には隣接する蒸発室22,22を互い
に蓮通可能にすると共に上手側の蒸発室22内に突出す
る蓮通管25が設けられている。該蓮通管25にはその
蒸発室22内の地熱水液面を制御する液面目動制御弁2
6が内蔵されている。なお、該液面目動制御弁26は、
第7図に示すように、最終段蒸発室22eを除き、同じ
室内に設けられた液面指示計(第11図に示す)27か
らの信号により作動させられて、流出側制御が成されて
いる。更に、上記連通管25を介して、地熱りkが次段
の蒸発室22内に吸引移送された際に生じる液面の動揺
を防止するために、蓮通管開口26a前面に邪魔板28
が立設されると共に、その上方には仕切板21から傾斜
板29が突設されている。そして、最終段蒸発室22e
内の地熱りKはその水頭により自然排水可能なようにさ
れている。即ち、地熱水の出口24には地熱水排出管(
第11図参照)30の上端が酸緩され、またその下端は
十分な垂直距離を有して設けられた貯水槽15内に閉口
されている。31は各蒸発室22の上部に設けられた蒸
気取出口で、後述する放熱器19に接続されている。
As shown in FIGS. 4 to 6, the heat exchange device 12 includes a geothermal evaporator 18 and a river water heater 19. As shown in FIG. 7 and FIG.
Thus, five evaporation chambers 22 are formed, making it a multi-stage flash type. In other words, "From the geothermal water inlet 23 side to the outlet 24 side
Toward the sides, each evaporation chamber 22 is sequentially depressurized. At the lower part of the partition plate 21, there is provided a passage pipe 25 which allows the adjacent evaporation chambers 22, 22 to communicate with each other and projects into the upper evaporation chamber 22. The lotus pipe 25 is equipped with a liquid level control valve 2 for controlling the geothermal water level in the evaporation chamber 22.
6 is built-in. In addition, the liquid level movement control valve 26 is
As shown in FIG. 7, all but the final stage evaporation chamber 22e are activated by a signal from a liquid level indicator 27 (shown in FIG. 11) provided in the same chamber, and outflow side control is achieved. There is. Furthermore, in order to prevent the liquid level from fluctuating when the geothermal heat k is suctioned and transferred into the next stage evaporation chamber 22 through the communication pipe 25, a baffle plate 28 is installed in front of the lotus pipe opening 26a.
is erected, and an inclined plate 29 is provided above the partition plate 21 to protrude from the partition plate 21. And the final stage evaporation chamber 22e
The internal geothermal heat source K is designed to allow natural drainage due to its water head. That is, the geothermal water outlet 24 has a geothermal water discharge pipe (
(See FIG. 11) The upper end of the 30 is soaked with acid, and the lower end thereof is closed in a water storage tank 15 provided at a sufficient vertical distance. Reference numeral 31 denotes a steam outlet provided at the top of each evaporation chamber 22, and is connected to a radiator 19, which will be described later.

32は蒸発器18の前後に設けられた通気口、33はマ
ンホール、34はハンドホール、35はのぞき窓、36
は液面指示計27取付口である。
32 is a vent provided before and after the evaporator 18, 33 is a manhole, 34 is a handhole, 35 is a peephole, 36
is the mounting port for the liquid level indicator 27.

次に、加熱器19は、第9図及び第10図に示すように
、一個の横層円筒容器37内に4個の仕切板38により
5個の加熱室39a〜39eが形成され、上記蒸発器1
8の各蒸発室39に対応する多段式にされている。即ち
、各蒸発室39の上部には蒸気取入口40が設けられ、
蒸気管41を介してそれぞれ蒸発室22と、これに対応
する加熱室39とが連通されている。そして、各加熱室
39の上部には、散水ノズル42を有する散水管43が
設けられて、河川水を散水するようにされている。従っ
て、蒸発室22で地熱水の一部が蒸発して蒸気となり、
この蒸気は蒸気管41を介して加熱室39に入り、散水
させられた河川水と接触して河川水を熱する。なお、4
4は散水板、45は通気口、46はマンホ−ル、47は
のぞき窓、48は液面計49の取付口である。ここで、
加熱器19内の河川水の流れを第11図に基づき説明す
ると、上記蒸発器18内の地熱立kAは右方同cに流れ
るが、河川水Bは逆方向則ち左方向dに流されるように
されている。即ち、河川水Bは、先ずポンプ14を介し
て供給管50より、その入口51から一段目加熱室39
aに供給散水されて、最終段の蒸発室22eから蒸気に
より熱せられ、次に下部出口52より移送用供給管53
を介して2段目加熱室39bに移送散水されて、4段目
蒸発室22dからの蒸気により熱せられる。このように
、順次、各加熱室39で地熱水Aの蒸気Eにより加熱さ
れた河川水は熱水となり、後述する熱水貯湯槽17に移
送される。54は河川水の供V給管53及び熱りk敬出
管55途中に設けられたポンプである。
Next, as shown in FIGS. 9 and 10, in the heater 19, five heating chambers 39a to 39e are formed by four partition plates 38 in one horizontal layer cylindrical container 37, and the above-mentioned evaporation Vessel 1
The evaporation chamber 39 has a multi-stage structure corresponding to each of the 8 evaporation chambers 39. That is, a steam intake port 40 is provided in the upper part of each evaporation chamber 39,
The evaporation chambers 22 and the corresponding heating chambers 39 are communicated via steam pipes 41, respectively. A water sprinkling pipe 43 having a water sprinkling nozzle 42 is provided above each heating chamber 39 to spray river water. Therefore, a part of the geothermal water evaporates into steam in the evaporation chamber 22,
This steam enters the heating chamber 39 via the steam pipe 41, contacts the sprinkled river water, and heats the river water. In addition, 4
4 is a water spray plate, 45 is a vent, 46 is a manhole, 47 is a peephole, and 48 is a mounting port for a liquid level gauge 49. here,
Explaining the flow of river water in the heater 19 based on FIG. 11, the geothermal water kA in the evaporator 18 flows to the right (c), but the river water B flows in the opposite direction, that is, to the left (d). It is like that. That is, the river water B is first supplied from the supply pipe 50 via the pump 14 to the first stage heating chamber 39 from its inlet 51.
Water is supplied to the evaporation chamber 22e, heated by steam from the final stage evaporation chamber 22e, and then transferred from the lower outlet 52 to the transfer supply pipe 53.
The water is transferred to the second-stage heating chamber 39b through the evaporation chamber 39b, and is heated by steam from the fourth-stage evaporation chamber 22d. In this way, the river water heated by the steam E of the geothermal water A in each heating chamber 39 becomes hot water and is transferred to the hot water storage tank 17, which will be described later. 54 is a pump provided midway between the river water supply pipe 53 and the heat discharge pipe 55.

そして、熱水の出口温度を一定に保つために、地熱水と
熱水(河川水)との流量が制御されている。即ち、地熱
水供給管56には流量比自動制御弁57が介菱されて、
流量比較器58により、熱水流量に応じた地熱okが蒸
発器18内に供孫給されるようにしている。また、59
は熱水の流量を監視すると共にその流量を制御する流量
自動制御弁である。なお、60,61は上記自動制御弁
57,59の制御部である。そして、更に各加熱室39
の熱水(河川水)出口温度を一定に保つために、次段加
熱室39をバイパスするバイパス管62が設けられてい
る。即ち、該バイパス管62は一端が上手河川水供給管
50,53に接続されると共に、池端が温度自動制御弁
63を介して一つ下手の河川水供給管〔最終段では熱水
取出管55〕53に接続されている。上記溢度自動制御
弁63は各加熱室39出口の熱水温度により制御されて
いる。また、上記加熱室39内の熱弧の液面を一定に保
っために、各河川水供給管50,53途中には、上記加
熱室39内に設けられた液面計49からの信号により制
御される液面目動制御弁64が介装されている。なお、
65,66,67は上記各自動制御弁26,63,64
の信号発信部である。次に、地熱水貯傷槽1 1及び熱
りK貯湯槽17は、第12図及び第13図に示すように
、一個の積層円筒容器68の上部に一個の縦型小円筒フ
ラッシュ室69を設けたものである。そして、地熱水及
び熱水はフラッシュ室69から横層円筒容器68内にそ
の入口70から供給されるが、上記フラッシュ室69内
では地熱水及び熱水に含まれる日ぶ分が蒸発気化され、
その通気口71から取出されるようにしている。なお、
72は出口、73はマンホールである。次に、その流れ
艮0ち熱水造成工程を第3図に基づき説明する。
The flow rates of geothermal water and hot water (river water) are controlled in order to keep the outlet temperature of the hot water constant. That is, an automatic flow rate ratio control valve 57 is installed in the geothermal water supply pipe 56.
The flow rate comparator 58 allows geothermal heat to be supplied into the evaporator 18 in accordance with the hot water flow rate. Also, 59
is an automatic flow rate control valve that monitors and controls the flow rate of hot water. Note that 60 and 61 are control units for the automatic control valves 57 and 59. Furthermore, each heating chamber 39
In order to keep the hot water (river water) outlet temperature constant, a bypass pipe 62 is provided to bypass the next-stage heating chamber 39. That is, one end of the bypass pipe 62 is connected to the upper river water supply pipes 50 and 53, and the pond end is connected to the river water supply pipe one downstream via the automatic temperature control valve 63 [the final stage is the hot water extraction pipe 55]. ] 53. The automatic overflow control valve 63 is controlled by the temperature of the hot water at the outlet of each heating chamber 39. Further, in order to keep the liquid level of the thermal arc in the heating chamber 39 constant, a control signal from a liquid level gauge 49 provided in the heating chamber 39 is provided in the middle of each river water supply pipe 50, 53. A liquid level control valve 64 is installed. In addition,
65, 66, 67 are each of the above automatic control valves 26, 63, 64
This is the signal transmitting part. Next, as shown in FIGS. 12 and 13, the geothermal water storage tank 11 and hot K hot water storage tank 17 are arranged in one vertical small cylindrical flash chamber 69 in the upper part of one laminated cylindrical container 68. It has been established. The geothermal water and hot water are supplied from the flash chamber 69 into the horizontal cylindrical container 68 through its inlet 70, and in the flash chamber 69, the geothermal water and the hot water contained in the hot water are evaporated and vaporized. is,
It is designed to be taken out through the vent hole 71. In addition,
72 is an exit, and 73 is a manhole. Next, the flow of the hydrothermal water creation process will be explained based on FIG.

先ず、地熱水Aは地熱水貯傷槽11に送られて、比S分
がある程度除去されると共に通気口71から放出Fされ
る。
First, the geothermal water A is sent to the geothermal water storage tank 11, where the specific S content is removed to some extent, and the geothermal water A is discharged from the vent 71.

そして、地熱水貯湯槽11を出た地熱水は蒸発器18に
供給され、各蒸発室22で順次蒸発されて、最終段蒸発
室22eから地熱水排出管30を介して貯水槽15に自
然排出される。一方、河川水Bは河川水貯水槽13から
河川水供V給管50を介してポンプ14により、加熱器
19内に供V給される。そして、該加熱器19の加熱室
39内において、蒸発器18から移動して来た地熱水の
蒸気Eにより河川水は熟せうれ、順次ポンプ54により
各加熱室39内を移動して、熱水取出管55からポンプ
54を介して熱水貯湯槽17に送られる。また、上記各
加熱器19の通気口45からは蒸気に含まれる日2S分
が大気に放出Gされ、加熱器19内が負圧になる場合に
は、そのペント管路74途中に設けられた真空ポンプ7
5により放出される。なお、上記したように、各蒸発室
22及び各加熱室39内の液面は流出側制御がされ、ま
た各加熱室39の出口52における熱水温度も制御され
ている。更に、熱水の消費量に応じて地熱水の供給量を
変化させて、常に熱水取出管55における温度を一定に
保つようにされている。そして、上記熱水貯傷槽17に
送られた熱水は、さらにその内に含まれる仏S分が通気
口71より放出日されて、清浄な熱りKDとなり、消費
地に送られる。従って、上記実施例のものによると下記
の利点を有する。
The geothermal water that has left the geothermal water storage tank 11 is supplied to the evaporator 18, is evaporated in each evaporation chamber 22 in sequence, and is sent from the final stage evaporation chamber 22e to the water storage tank 15 via the geothermal water discharge pipe 30. is naturally excreted. On the other hand, river water B is supplied from the river water storage tank 13 into the heater 19 by the pump 14 via the river water supply pipe 50. Then, in the heating chamber 39 of the heater 19, the river water is ripened by the steam E of the geothermal water that has moved from the evaporator 18, and is sequentially moved inside each heating chamber 39 by the pump 54 to heat up. The hot water is sent from the water outlet pipe 55 to the hot water storage tank 17 via the pump 54. In addition, from the vents 45 of each of the heaters 19, 2S of the steam contained in the steam is released into the atmosphere, and when the inside of the heater 19 becomes negative pressure, a vent pipe 74 is provided in the middle of the pent pipe 74. vacuum pump 7
released by 5. As described above, the liquid level in each evaporation chamber 22 and each heating chamber 39 is controlled on the outflow side, and the hot water temperature at the outlet 52 of each heating chamber 39 is also controlled. Furthermore, the supply amount of geothermal water is changed according to the amount of hot water consumed, so that the temperature in the hot water outlet pipe 55 is always kept constant. In the hot water sent to the hot water storage tank 17, the S content contained therein is further discharged from the vent 71 to become clean hot water KD and sent to the consumption area. Therefore, the above embodiments have the following advantages.

■ 地熱水の蒸発器と河川水の加熱器とを別個にしたの
で、それぞれの腐食機構に対処し得る。
■ Since the geothermal water evaporator and river water heater are separate, the corrosion mechanisms of each can be addressed.

■ 蒸発器内の各蒸発室間同士の地熱水移送用達通管を
内部に設けたので、例えば外部に配管した場合に生じる
欠点、即ち制御弁後流では地熱水が蒸発するので配管径
が大きくなるという欠点を除去し得る。■ 蒸発器から
の地熱水取出しを、その最終段蒸発室における地熱水の
水頭により自然排出するようにしたので、例えばポンプ
等により排出する場合に生じる匁点則ち地熱立K出ロ温
度がスケールの発生し易い60o位になるため、バルブ
、ポンプ等にスケールが発生する欠点を除去し得る。
■ A communication pipe for transferring geothermal water between each evaporation chamber in the evaporator is installed inside the evaporator, so there is no problem with piping that would occur if the piping was installed externally. This eliminates the disadvantage of increased diameter. ■ Since the geothermal water taken out from the evaporator is naturally discharged by the head of the geothermal water in the final stage evaporation chamber, the momme point, or geothermal K output temperature, that occurs when discharging with a pump, etc., for example, is reduced. Since the temperature is around 60o where scale is likely to occur, it is possible to eliminate the drawback of scale forming on valves, pumps, etc.

■ 加熱器の各段加熱屋内に河川水若しくは熱りkを順
次供給する餅聯合管をバイパス管を介して順次接続する
と共に該バイパス管に一つ下手の加熱室内熱水温度によ
り制御される温度自動制御弁並びに熱水取出管流量に応
じて地熱水供給管流量を制御する流量比自動制御弁を設
けたので、熱水消費量が変動しても常に一定温度の熱水
を消費地に供給することができる。
■ Mochi joint pipes that sequentially supply river water or hot water into the heating room of each stage of the heater are connected sequentially via bypass pipes, and the temperature is controlled by the hot water temperature in the heating room one level below the bypass pipes. We have installed an automatic control valve and a flow rate ratio automatic control valve that controls the flow rate of the geothermal water supply pipe according to the flow rate of the hot water extraction pipe, so even if the hot water consumption fluctuates, hot water at a constant temperature can always be delivered to the consumption area. can be supplied.

■ 地熱水供給管及び熱水取出管途中にフラッシュ室を
有する貯湯槽をそれぞれ設けたので、地熱水及び蒸気を
介して熱水に溶け込んだ日2S分を大気に放出すること
ができ、従って極めて清浄な熱水を消費地に供給するこ
とができる。
■ A hot water storage tank with a flash chamber is installed in the middle of the geothermal water supply pipe and the hot water outlet pipe, so the 2S per day dissolved in the hot water can be released into the atmosphere via the geothermal water and steam. Therefore, extremely clean hot water can be supplied to consumption areas.

以上のように本発明の熱水造成設備によれば、蒸発器と
加熱器とを別個に設けたので、容器材料に対する腐食機
構が異なる2流体の熱交換に対処し得ることができ、ま
た加熱器の各段加熱室内に加熱流体を順次移送させる配
管路を順次バイパス管路で接続し、該バイパス管路に、
その下手の上記配管路の被加熱流体の温度に応じて制御
される温度自動制御弁を介装して、各段加熱室出口の被
加熱流体温度を一定に保つように成し、且つ上記蒸発器
への加熱流体管路に、上記加熱器からの被加熱流体取出
管路内の流量に応じて制御される流量比自動制御弁を介
袋したので、被加熱流体の流量が変動しても常に一定温
度の被加熱流体を取出すことができる。
As described above, according to the hot water production equipment of the present invention, since the evaporator and the heater are provided separately, it is possible to deal with heat exchange between two fluids with different corrosion mechanisms for container materials, and The piping lines for sequentially transferring the heated fluid into the heating chambers of each stage of the vessel are sequentially connected by a bypass pipe line, and the bypass pipe line is connected to
An automatic temperature control valve that is controlled according to the temperature of the heated fluid in the downstream piping path is installed to maintain a constant temperature of the heated fluid at the outlet of each stage heating chamber. An automatic flow ratio control valve that is controlled according to the flow rate in the heated fluid extraction line from the heater is installed in the heated fluid pipeline to the heater, so even if the heated fluid flow rate fluctuates. The fluid to be heated can always be taken out at a constant temperature.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例の概略斜視図、第2図は同横断面図、第
3図〜第13図は本発明の一実施例を示すもので、第3
図はフローシート図、第4図は熱交換装置の正面図、第
5図は第4図の1一1矢視図、第6図は第4図の0ーロ
矢視図、第7図は第5図の一部断面図、第8図は第7図
のm−m矢視断面図、第9図は第6図の一部断面図、第
10図は第9図のW−N失視断面図、第11図は要部フ
ローシート図、第12図は貯傷糟の断面図、第13図は
第12図のV−V矢視図である。 11・・・・・・地熱水貯湯槽(加熱流体貯槽)、12
・…・・熱交換装置、17・・・・・・熱水貯湯槽(被
加熱流体貯槽)、18・…・・蒸発器「 19…・・・
加熱器、21・・・・・・仕切板、22……蒸発室、2
5……蓮通管、25a・・・・・・閉口、26・・…ひ
液面目勤制御弁、30・・・・・・地熱水排出管、31
・・・・・・蒸気取出口、32・・・・・・通気口、3
8……仕切板、39…・・・加熱室、40・・・・・・
蒸気取入口、41・・・・・・蒸気管、45・・・・・
・通気口、50,53・・・・・・供給管、55・・・
・・・熱水取出管、56・・・・・・地熱水供給管、5
7・・・・・・流量比自動制御弁、59・…・・流量自
動制御弁、62・・・・・・バイパス管、63・・・・
・・温度自動制御弁、64・・・・・・液面目勤制御弁
、69…・・・フラッシュ室、71・・・・・・通気口
。 第1図 第2図 第3図 第4図 第5図 第6図 第7図 第8図 第9図 第10図 第11図 第12図 第13図
FIG. 1 is a schematic perspective view of a conventional example, FIG. 2 is a cross-sectional view of the same, and FIGS. 3 to 13 show an embodiment of the present invention.
The figure is a flow sheet diagram, Figure 4 is a front view of the heat exchange device, Figure 5 is a view from the 1-1 arrow in Figure 4, Figure 6 is a view from the 0-ro arrow in Figure 4, and Figure 7. is a partial cross-sectional view of FIG. 5, FIG. 8 is a cross-sectional view taken along the line mm in FIG. 7, FIG. 9 is a partial cross-sectional view of FIG. 6, and FIG. FIG. 11 is a sectional view of a loss of vision, FIG. 11 is a flow sheet diagram of a main part, FIG. 12 is a sectional view of a cholecystis, and FIG. 13 is a view taken along the line V-V in FIG. 12. 11... Geothermal water storage tank (heated fluid storage tank), 12
...Heat exchange device, 17...Hot water storage tank (heated fluid storage tank), 18...Evaporator 19...
Heater, 21... Partition plate, 22... Evaporation chamber, 2
5... Lotus pipe, 25a... Closing, 26... Sediment liquid level control valve, 30... Geothermal water discharge pipe, 31
...Steam outlet, 32...Vent, 3
8... Partition plate, 39... Heating chamber, 40...
Steam intake, 41...Steam pipe, 45...
・Vent, 50, 53... Supply pipe, 55...
... Hot water extraction pipe, 56 ... Geothermal water supply pipe, 5
7...Automatic flow rate control valve, 59...Automatic flow rate control valve, 62...Bypass pipe, 63...
...Temperature automatic control valve, 64...Liquid level control valve, 69...Flash chamber, 71...Vent. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13

Claims (1)

【特許請求の範囲】[Claims] 1 多段フラツシユ型直接接触式熱水造成設備において
、加熱流体の蒸発器と被加熱流体の加熱器とを別個に設
け、上記蒸発器の蒸発室と該蒸発室に対応する上記加熱
器の加熱室との各気相部を蒸気管により連通させ、上記
加熱器の各段加熱室内に被加熱流体を順次移送させる配
管路を順次バイパス管路で接続し、該バイパス管路に、
その下手の上記配管路の被加熱流体の温度に応じて制御
される温度自動制御弁を介装して、各段加熱室出口の被
加熱流体温度を一定に保つように成し、且つ上記蒸発器
への加熱流体管路に、上記加熱器からの被加熱流体取出
管路内の流量に応じて制御される流量比自動制御弁を介
装したことを特徴とする熱水造成設備。
1. In a multi-stage flash type direct contact hot water production facility, an evaporator for heating fluid and a heater for heated fluid are provided separately, and an evaporation chamber of the evaporator and a heating chamber of the heater corresponding to the evaporation chamber are provided. The gas phase portions of the heater are connected through steam pipes, and piping lines for sequentially transferring the fluid to be heated into the heating chambers of each stage of the heater are sequentially connected by bypass pipes, and to the bypass pipes,
An automatic temperature control valve that is controlled according to the temperature of the heated fluid in the downstream piping path is installed to maintain a constant temperature of the heated fluid at the outlet of each stage heating chamber. 1. A hot water production facility characterized in that an automatic flow rate ratio control valve is interposed in a heated fluid pipe line leading to the heater, the flow rate ratio automatic control valve being controlled according to the flow rate in the heated fluid extraction line from the heater.
JP56069697A 1981-05-08 1981-05-08 Hot water production equipment Expired JPS6012556B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56069697A JPS6012556B2 (en) 1981-05-08 1981-05-08 Hot water production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56069697A JPS6012556B2 (en) 1981-05-08 1981-05-08 Hot water production equipment

Publications (2)

Publication Number Publication Date
JPS57184888A JPS57184888A (en) 1982-11-13
JPS6012556B2 true JPS6012556B2 (en) 1985-04-02

Family

ID=13410305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56069697A Expired JPS6012556B2 (en) 1981-05-08 1981-05-08 Hot water production equipment

Country Status (1)

Country Link
JP (1) JPS6012556B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0348111Y2 (en) * 1983-07-05 1991-10-15

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0348111Y2 (en) * 1983-07-05 1991-10-15

Also Published As

Publication number Publication date
JPS57184888A (en) 1982-11-13

Similar Documents

Publication Publication Date Title
US2169683A (en) Generating mixed fluid heating medium
CN2870939Y (en) Film evaporator with freely flowing outside pipe
CN104163530B (en) Water treatment device
JPS6012556B2 (en) Hot water production equipment
CN106587238A (en) Sea water desalination system and method with low temperature exhaust heat utilization function
JP3352968B2 (en) Steam supply device
CN104163461B (en) A kind of novel water treatment purifier
CN100488884C (en) Hot vapour heating, heat siphon circulation submerged pipe type multi-effect evaporation desalting apparatus
JPS6026294Y2 (en) Hot water production equipment
CN102372331A (en) Thermal waste water treatment apparatus and method employing heat pump
JPS6030429B2 (en) Hot water production equipment
CN211780991U (en) Clean steam generator
CN104163459B (en) Household water filter
CN208398690U (en) A kind of electrolytic aluminum smoke UTILIZATION OF VESIDUAL HEAT IN desulfurization disappears white device
US1582066A (en) Process of and apparatus for multiple-effect evaporative separation
JPH1163746A (en) Device for preventing condensation of cooling water in cooling tower
RU2184592C2 (en) Method of fresh water production and desalter for its embodiment
RU2342322C2 (en) Method of leaching for bauxite pulp, facility (versions) and heat-exchanger for its inmplementation
RU2280011C1 (en) Installation for desalination of the salt water and the method of desalination of the salt water with usage of the installation
WO2024135405A1 (en) Ammonia vaporizer
RU2150587C1 (en) Method for producing and using steam at oil-, gas-, or gas/oil processing plants
WO2024135407A1 (en) Ammonia vaporizer
JPS5835353Y2 (en) water generator
JPS646830B2 (en)
US2513901A (en) Double effect salt-water still