JPS6012443B2 - hygroscopic acrylic fiber - Google Patents

hygroscopic acrylic fiber

Info

Publication number
JPS6012443B2
JPS6012443B2 JP4893581A JP4893581A JPS6012443B2 JP S6012443 B2 JPS6012443 B2 JP S6012443B2 JP 4893581 A JP4893581 A JP 4893581A JP 4893581 A JP4893581 A JP 4893581A JP S6012443 B2 JPS6012443 B2 JP S6012443B2
Authority
JP
Japan
Prior art keywords
water
hydrophilic polymer
organic solvent
microhydrogel
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4893581A
Other languages
Japanese (ja)
Other versions
JPS56154514A (en
Inventor
正一 竹内
孝二 田中
直行 河島
幸雄 児島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Exlan Co Ltd
Original Assignee
Japan Exlan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Exlan Co Ltd filed Critical Japan Exlan Co Ltd
Priority to JP4893581A priority Critical patent/JPS6012443B2/en
Publication of JPS56154514A publication Critical patent/JPS56154514A/en
Publication of JPS6012443B2 publication Critical patent/JPS6012443B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)

Description

【発明の詳細な説明】 本発明は新規なミクロヒドロゲルを含有してなる吸水・
吸湿性に優れたアクリル織終に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides water absorption and
This relates to an acrylic woven finish with excellent moisture absorption.

近年、水溶性または親水性重合体に架橋構造を付与せし
めて得られる実質的に水不溶’性かつ、水膨酒性の物質
(ヒドロゲル)が、親水性、水分保持性、瞬間多量吸水
性、吸湿性、あるいは人体組織に対する親和性等の特徴
的な機能を有する点で注目を集め、該物質を種々の用途
に利用する検討が活発化しつつある。
In recent years, substantially water-insoluble and water-swellable substances (hydrogel) obtained by imparting a crosslinked structure to water-soluble or hydrophilic polymers have been developed to have hydrophilic properties, water retention properties, instantaneous large water absorption properties, It has attracted attention because it has characteristic functions such as hygroscopicity and affinity for human tissue, and studies are becoming more active in using this substance for various uses.

中でも合成繊維製品あるいは種々のプラスチック成型品
の素材たる合成高分子材料において一般に認められる吸
湿性、吸水性、難燃性等の性能の不足を、上記ヒドロゲ
ルのかかる合成高分子材料への混入により複合材を形成
せしめて解消せんとする試みは、その成果が期待される
重要な技術の一つであり、最近かかる複合化技術に関す
る幾つかの研究成果が報告されている。
Among these, the lack of performance such as hygroscopicity, water absorption, and flame retardancy, which is generally observed in synthetic polymer materials that are the raw materials for synthetic fiber products and various plastic molded products, can be overcome by mixing the above hydrogel into such synthetic polymer materials. Attempts to solve the problem by forming materials are one of the important technologies that are expected to yield results, and several research results regarding such composite technology have been reported recently.

例えば、工業技術院繊維高分子材料研究所、研究報告、
No.107、第23〜29頁(1975)においては
、ポリエチレン、ポリプロピレン等のプラスチック中に
、ポリビニルアルコールを放射線照射により架橋せしめ
てなるヒドロゲルを、含水膨酒せしめて混入したのち成
型することにより難燃性の改善せられた複合材料を得る
方法が記載されている。
For example, research reports from the Institute of Textile and Polymer Materials, Agency of Industrial Science and Technology,
No. 107, pp. 23-29 (1975), flame retardancy is achieved by mixing a hydrogel made of polyvinyl alcohol cross-linked by radiation irradiation into a plastic such as polyethylene or polypropylene, which is swollen with water, and then molded. A method for obtaining improved composite materials is described.

しかるに、かかる研究結果の示すところによれば、ヒド
ロゲルを合成高分子材料に混入することにより、該合成
高分子材料の基本性能として欠くことのできない強度、
弾性率等の力学的特性値が一般的に低下する事実が認め
られ、このことがヒドロゲルを合成高分子材料中に混入
して複合化する技術の完成に際して最大の障害となって
いた。しかしながら、かくの如き障害に対しては、ヒド
ロゲルを微粒隆化することにより力学的特性値の低下を
最小ならしめることが可能である点もまた上記の報告等
から示唆されるところであり、従ってヒドロゲルを微粒
律化するための具体的かつ、工業的手段を見出すことが
、かかる複合材料の製造において極めて重要な意義を有
し、その開発の進展が強く要望されていた。従来、ヒド
ロゲルを微粒蚤化する方法としては、乾燥したヒドロゲ
ル粉末をボールミル等の粉砕装置を用いて粉砕する方法
、またはヒドロゲルを水中に分散して膨潤状態となし、
ミキサー等の奥断装置を使用して微細化したのち乾燥す
る方法、あるいは前記の報文に記載されているように、
親水性重合体水溶液をトルヱンの如き水不溶性溶媒中に
、ミキサー等の雛断装置を使用して微細な液瓶として分
散せしめ〜 しかるのち放射線照射等の手段により該親
水性重合体に架橋構造を形成せしめ、次いで炉週、洗浄
〜乾燥する方法等が提案されていた。
However, the results of such research indicate that by mixing hydrogel into a synthetic polymer material, strength, which is essential as a basic performance of the synthetic polymer material, can be improved.
It has been recognized that mechanical properties such as elastic modulus generally decrease, and this has been the biggest obstacle in completing the technology to mix hydrogels into synthetic polymer materials to form composites. However, the above reports also suggest that it is possible to minimize the decrease in mechanical properties by making the hydrogel into fine particles to deal with such problems. Finding a concrete and industrial means for making the particles into fine particles has extremely important significance in the production of such composite materials, and progress in its development has been strongly desired. Conventionally, methods for atomizing hydrogel include pulverizing dry hydrogel powder using a pulverizer such as a ball mill, or dispersing hydrogel in water to form a swollen state.
A method of micronizing the material using a deep cutting device such as a mixer and then drying it, or as described in the above report,
An aqueous solution of a hydrophilic polymer is dispersed in a water-insoluble solvent such as toluene as fine liquid vials using a cutting device such as a mixer.Then, a crosslinked structure is formed in the hydrophilic polymer by means such as radiation irradiation. A method has been proposed in which the material is formed, then heated in an oven, and washed and dried.

しかるに、か)る公知のいずれの方法を採用するにして
も、得られるヒドロゲルの粒子径は最小のものでも数1
0r、通常は数100仏に留まり、上記の如き複合材料
の力学的特性値を実用上満足すべき水準に維持するため
に必要な極めて微細な粒子径のヒドロゲルを形成せしめ
ることは事実上不可能であった。
However, no matter which of the above known methods is adopted, the particle size of the obtained hydrogel is only a few 1 at the smallest particle size.
0r, which is usually only a few hundred particles, making it virtually impossible to form a hydrogel with the extremely fine particle size necessary to maintain the mechanical properties of the composite material at a practically satisfactory level. Met.

就中、数10r程度の微細な直径を有する繊維材中に含
有させるための、10仏以下の粒子径を有するヒドロゲ
ルについては、その製法に関して基本的な着想すら見出
されていないのが現状であった。こ)において本発明者
等は努守喬反応性基を含有する親水性重合体の水溶液を
、水混和性有機系溶媒と混和して該親水性重合体を微細
粒子として析出せしめ、得られた親水性重合体微細粒子
および該有機系溶媒の水性混合溶媒よりなる懸濁液から
該混合溶媒を水分率の上昇を防止しつつ蒸発せしめ、か
くして得られた親水性重合体の乾燥粉末生成物を乾燥処
理して該親水性重合体に架橋構造を形成せしめることに
より、従来達成し得なかったヒドロゲルの微粒蓬化作用
を達成し、絶乾状態で10仏以下の微細な粒子径を有す
るミクロヒドロゲルを形成し得、か)るミクロヒドロゲ
ルを含有させることにより吸水・吸湿性に優れたアクリ
ル繊維が得られる事実を見出し本発明に到達した。
In particular, with regard to hydrogels with particle diameters of 10 mm or less, which are to be incorporated into fibrous materials with diameters of about 10 mm, even a basic idea regarding the manufacturing method has not yet been found. there were. In this), the present inventors mixed an aqueous solution of a hydrophilic polymer containing a reactive group with a water-miscible organic solvent to precipitate the hydrophilic polymer as fine particles. The mixed solvent is evaporated from a suspension consisting of fine hydrophilic polymer particles and an aqueous mixed solvent of the organic solvent while preventing an increase in moisture content, and the thus obtained dry powder product of the hydrophilic polymer is obtained. By drying the hydrophilic polymer to form a cross-linked structure, we can achieve a microhydrogelization effect that could not be achieved in the past, and we have created a microhydrogel that has a fine particle size of 10 mm or less in an absolutely dry state. The present invention was achieved by discovering the fact that acrylic fibers with excellent water and hygroscopic properties can be obtained by containing such microhydrogel.

すなわち、本発明の主要なる目的は、10山以下の極め
て微細な粒子径を有する新規なミクロヒドロゲルを含有
してなる吸水・吸湿性に優れたアクリル繊維を提供する
ことにある。本発明のさらに異なれる他の目的は、以下
の明細書の記載により明らかとなるであろう。かくの如
き本発明の上記目的は、架橋反応性基を含有する親水性
重合体の水溶液を水と共鰍混合物を形成する水混和性有
機系溶媒と共孫混合物の水/有機系溶媒重量組成比以下
の割合で混和するか又は水と共沸混合物を形成しない水
より沸点の高い水混和性有機系溶媒と混和して該親水性
重合体を微細粒子として析出せしめ、得られた親水性重
合体微細粒子および該有機系溶媒の水性混合溶媒よりな
る懸濁液から該混合溶媒を水分率の上昇を防止しつつ蒸
発せしめ「かくして得られた親水性重合体の乾燥粉末生
成物を乾熱処理して該親水性重合体に架封蕎構造を形成
せしめt給乾状態で10〆以下の粒子径となしたミクロ
ヒドロゲルをアクリル繊維中に含有せしめることにより
達成される。
That is, the main object of the present invention is to provide an acrylic fiber with excellent water absorption and hygroscopicity, which contains a novel microhydrogel having an extremely fine particle size of 10 pores or less. Other objects of the present invention will become apparent from the following description. The above-mentioned object of the present invention is to prepare an aqueous solution of a hydrophilic polymer containing a cross-linking reactive group with a water-miscible organic solvent to form a co-mixture with water and a water/organic solvent weight composition of the co-producer mixture. The hydrophilic polymer is precipitated as fine particles by mixing with a water-miscible organic solvent having a boiling point higher than that of water, or which does not form an azeotrope with water. The mixed solvent is evaporated from a suspension consisting of the aqueous mixed solvent of the combined fine particles and the organic solvent while preventing an increase in the moisture content, and the dry powder product of the hydrophilic polymer thus obtained is subjected to a dry heat treatment. This is achieved by forming a cross-sealed structure in the hydrophilic polymer and incorporating into the acrylic fibers a microhydrogel having a particle size of 10 mm or less when left dry.

以下、本発明をさらに詳細に説明する。The present invention will be explained in more detail below.

本発明において架橋反応性基を含有する親水性重合体と
しては、カルボキシル基、スルホン酸基、リン酸基、第
4級アンモニウム塩基、アミ/基、ィミノ基、ピリジニ
ウム塩基、ヒドロキシル基、エーテル基、鎖状または環
状アミド基、ニトリル基等のイオン化性親水性基、その
塩、ノニオン性親水性基から選ばれた1種又は2種以上
の親水性基を含有し、残部に分子間橋かけ反応を生起し
得る官能基を含有する実質的に水に可溶の親水性重合体
が使用できる。
In the present invention, hydrophilic polymers containing crosslinking reactive groups include carboxyl groups, sulfonic acid groups, phosphoric acid groups, quaternary ammonium bases, ami/groups, imino groups, pyridinium bases, hydroxyl groups, ether groups, Contains one or more hydrophilic groups selected from ionizable hydrophilic groups such as chain or cyclic amide groups and nitrile groups, salts thereof, and nonionic hydrophilic groups, and the remainder undergoes intermolecular cross-linking reaction. Substantially water-soluble hydrophilic polymers containing functional groups capable of generating .

またかかる官能基としては、乾熱処理により重合体に英
萩喬構造を形成し得る官能基を適宜選択することができ
「中でもN−メチロール基を、か)る架橋形成官能基と
して含有する重合体は、本発明の実施に好適である。尚
、本発明に係る親水性重合体における親水性基および架
橋反応性基の含有量あるいは該親水性重合体の分子量等
は、ヒドロゲルの各種の用途において要求される性能に
応じて種々異なり一義的に限定することは不可能であり
、所望の水膨潤度等、最終製品の特性に応じて適宜決定
することができる。また、本発明の親水性重合体を得る
ためには乳化重合法、溶液重合法、水系重合法等の従来
公知の方法により、親水性単量体あるいは該親水性単量
体と他の単量体とを共重合せしめるか、または酸、アル
カリ、酸化剤、還元剤等の薬剤処理等により、容易に親
水性重合体となすことのできる前駆体重合物質を使用す
ることができる。
In addition, as such a functional group, a functional group that can form an Eikyakyo structure in the polymer by dry heat treatment can be appropriately selected. is suitable for carrying out the present invention.The content of hydrophilic groups and crosslinking reactive groups in the hydrophilic polymer according to the present invention, the molecular weight of the hydrophilic polymer, etc. are determined depending on the various uses of the hydrogel. The performance varies depending on the required performance, and it is impossible to limit it unambiguously.It can be determined as appropriate depending on the characteristics of the final product, such as the desired degree of water swelling. In order to obtain the combination, the hydrophilic monomer or the hydrophilic monomer and another monomer are copolymerized by conventionally known methods such as emulsion polymerization, solution polymerization, and aqueous polymerization, or Alternatively, it is possible to use a precursor polymeric substance that can be easily made into a hydrophilic polymer by treatment with a chemical such as an acid, an alkali, an oxidizing agent, or a reducing agent.

本発明においては、先ず上記の如き親水性重合体を水に
溶解して親水性重合体水溶液を調製する。
In the present invention, first, a hydrophilic polymer as described above is dissolved in water to prepare a hydrophilic polymer aqueous solution.

か)る親水性重合体水溶液の調製方法としては、一般に
は従来公知の溶解方法を採用して、該親水性重合体を実
質的に水に溶解する方法を採用することができるが、か
)る公知の溶解方法に限定されることなく、例えば酸、
アルカリ、酸化剤、還元剤等を作用せしめることにより
容易に親水性重合体を生成しうる前駆体重合物質を水に
懸濁せしめ、次いで酸、アルカリ等を作用させて親水性
重合体となし溶解させる方法、あるいは上記の親水性単
量体等を水系で重合せしめて重合と同時に親水性重合体
水溶液となす方法等も、当然、本発明の好適な実施態様
として採用することができる。尚、か)る親水性重合体
は実質的に水に溶解し得るものであれば格別の制約を設
けることなく使用することが可能であり、多少の曇り、
不透明等が認められても、得られたヒドロゲルの粒子径
を増大せしめる原因とならない程度であれば何ら差し支
えない。
As a method for preparing an aqueous solution of a hydrophilic polymer, generally known dissolution methods can be employed to substantially dissolve the hydrophilic polymer in water. For example, acids,
A precursor polymer substance that can easily produce a hydrophilic polymer by the action of an alkali, an oxidizing agent, a reducing agent, etc. is suspended in water, and then a hydrophilic polymer is formed by the action of an acid, an alkali, etc. and dissolved. Naturally, a method of polymerizing the above-mentioned hydrophilic monomers in an aqueous system to form an aqueous hydrophilic polymer solution at the same time as the polymerization can also be adopted as a preferred embodiment of the present invention. Note that such hydrophilic polymers can be used without any particular restrictions as long as they are substantially soluble in water;
Even if opacity or the like is observed, there is no problem as long as it does not cause an increase in the particle size of the obtained hydrogel.

また該親水性重合体水溶液中の親水性重合体の含有量は
、ヒドロゲルに付与すべき粒子径に応じて適宜選択する
ことが可能であるが、通常は5%以下とすることが望ま
しく、それ以上の重合体含有量においては微粒蓬化操作
が困難となるため好ましくない。上記の如くして調製し
た親水性重合体水溶液を、次に水混和性有機系溶媒と混
和して、該親水性重合体を微細粒子として析出せしめる
Further, the content of the hydrophilic polymer in the hydrophilic polymer aqueous solution can be appropriately selected depending on the particle size to be imparted to the hydrogel, but it is usually desirable to set it to 5% or less; A polymer content in the above range is not preferable because it becomes difficult to perform the operation of forming fine grains. The hydrophilic polymer aqueous solution prepared as described above is then mixed with a water-miscible organic solvent to precipitate the hydrophilic polymer as fine particles.

こ)において使用される水混和性有機系溶媒の第一の群
としては、水と同程度か、もしくは水より低い沸点を有
しかつ、水と共鞠混合物を形成し得る低沸点有機系溶媒
から選ばれた鉄親水性重合体の非溶剤が挙げられる。こ
れに対し、水と共鞠混合物を形成し得ない低繊点有機系
溶媒を使用する場合は、後述する如く、該有機系溶媒の
水性混合溶媒を蒸発せしめる工程において、有機系溶媒
が水に優先して蒸発するため、該混合溶媒中の水分率が
増大し、このため混合溶媒中に懸濁した親水性重合体微
細粒子が再溶解するか、または粒子間相互に結合もしく
は融着が起り、本発明に係るミクロヒドロゲルを生成す
ることができない。満、か)る有機系溶媒における水温
和性については、該有機系溶媒に対して、1の重量%以
上の水と混和し得る能力を有することが望ましいが、上
記の親水性重合体水溶液と混和して、該親水性重合体を
微細粒子として析出せしめる本発明の要旨を満足し得る
範囲内であれば、1の重量%以下の混和性であっても差
し支えない。かくの如き水温和性有機系溶媒を具体的に
例示すれば、isoープロピルアルコール、nーブロピ
ルアルコール、teれーブチルアルコ−ル、アセトニト
リル、アクリロニトリル、メチルエチルケトン、ジオキ
サン、トリヱチルアミン等が挙げられる。而してかくの
如き有機系溶媒を水温和性有機系溶媒として使用する場
合には、親水性重合体水溶液を水温和性有機系溶媒中に
混和する比率を調節することが必要である。
The first group of water-miscible organic solvents used in this step include low-boiling organic solvents that have a boiling point comparable to or lower than water and that can form a covalent mixture with water. Non-solvents for iron hydrophilic polymers selected from: On the other hand, when using a low-fine-point organic solvent that cannot form a co-marriage mixture with water, the organic solvent is mixed with water in the process of evaporating the aqueous mixed solvent of the organic solvent, as described below. As it evaporates preferentially, the water content in the mixed solvent increases, and as a result, the hydrophilic polymer fine particles suspended in the mixed solvent are redissolved, or particles are bonded or fused to each other. , it is not possible to produce the microhydrogel according to the present invention. Regarding water miscibility in such an organic solvent, it is desirable that the organic solvent has the ability to be miscible with water in an amount of 1% by weight or more. The miscibility may be less than 1% by weight as long as the gist of the present invention, which is to precipitate the hydrophilic polymer as fine particles by mixing, can be satisfied. Specific examples of such water-friendly organic solvents include iso-propyl alcohol, n-propyl alcohol, ter-butyl alcohol, acetonitrile, acrylonitrile, methyl ethyl ketone, dioxane, and triethylamine. When such an organic solvent is used as a water-miscible organic solvent, it is necessary to adjust the ratio at which the aqueous hydrophilic polymer solution is mixed into the water-miscible organic solvent.

すなわち、親水性重合体水溶液中に含有される水分量と
水混和性有機系溶媒量との重量比率の上限が、水および
該有機系溶媒からなる2成分混合溶液における最低共沸
混合物(単独成分より低い沸点を有する共沸混合物)の
重量組成比(水量/有機系溶媒)を越えないように混和
比率を決定することが必要である。
That is, the upper limit of the weight ratio between the water content and the water-miscible organic solvent contained in the hydrophilic polymer aqueous solution is the lowest azeotrope (single component) in the two-component mixed solution consisting of water and the organic solvent. It is necessary to determine the mixing ratio so as not to exceed the weight composition ratio (amount of water/organic solvent) of the azeotrope having a lower boiling point.

か)る混和比率の採用により、後述する如き該有機系溶
媒の水性混合溶媒を蒸発させる工程において、混合溶媒
中の水分率を上昇せしめることなく該混合溶媒の蒸発を
進行させることが可能であり、従って親水性重合体を微
粒子状態に維持しつつ乾燥することを可能ならしめる。
これに反して最低共沸混合物組成より水分率が高くなる
ような混和比率に従って親水性重合体水溶液を混和した
場合は、該有機系溶媒が水に優先して蒸発するため、該
混合溶媒中の水分率が上昇し、このため混合溶媒中に懸
濁した親水性重合体微細粒子間に結合または融着作用が
生起し、遂には高水分率となって該微細粒子を再溶解し
、団塊状の蒸発乾園物が生成するに留まり、本発明の目
的とするミクロヒドロゲルを形成せしめることができな
い。本発明に係る水混和性有機系溶媒の第二の群として
は、水より沸点の高い〜該親水性重合体の非溶剤である
有機系溶媒を使用することができる。
By adopting such a mixing ratio, in the step of evaporating the aqueous mixed solvent of the organic solvent as described below, it is possible to proceed with the evaporation of the mixed solvent without increasing the moisture content in the mixed solvent. Therefore, it is possible to dry the hydrophilic polymer while maintaining it in a fine particle state.
On the other hand, when a hydrophilic polymer aqueous solution is mixed according to a mixing ratio such that the water content is higher than the lowest azeotrope composition, the organic solvent evaporates in preference to water, so that As the moisture content increases, bonding or fusing action occurs between the fine particles of the hydrophilic polymer suspended in the mixed solvent, and eventually the moisture content becomes high and the fine particles are redissolved, forming a lump-like structure. However, only an evaporated dry matter of 20% is produced, and the microhydrogel which is the object of the present invention cannot be formed. As the second group of water-miscible organic solvents according to the present invention, organic solvents that have a boiling point higher than that of water and are non-solvents for the hydrophilic polymer can be used.

こ)においてか)る有機系溶媒の水混和性については、
該有機系溶媒に対して軍の重量%以上の水と混和し得る
能力を有することが望ましいが、上記の親水性重合体水
溶液と混和して〜該親水性重合体を微細粒子として析出
せしめる本発明の要旨を満足し得る範囲内であればし1
の重量%以下の混和性であっても差し支えない。また「
か)る高沸点有機系溶媒においてはも水と共灘混合物を
形成し得る溶媒h形成し得ない溶媒のいずれをも使用で
きる。
Regarding the water miscibility of organic solvents in this),
It is desirable that the organic solvent has the ability to be miscible with water in an amount equal to or more than a weight percent of the organic solvent. As long as it is within the scope that satisfies the gist of the invention 1
The miscibility may be less than or equal to % by weight. Also"
Among the high boiling point organic solvents mentioned above, any solvent that can form a conjugate with water or a solvent that cannot form a conjugate with water can be used.

水と共孫混合物を形成し得る有機系溶媒を使用する場合
は、親水性重合体水溶液と該有機系溶媒との混和比率を
、先の低沸点有機系溶媒の使用例に見られたものと同一
の制限条件下に決定すればよい。一方、共沸混合物を形
成し得ない高沸点有機系溶媒を使用する場合はL親水性
重合体水溶液と有機系溶媒との混和比率に関して格別の
制約は認められず「 ヒドロゲルに付与すべき粒子径等
に応じて適宜選択することができる。かくの如き高沸点
有機系溶媒としては、ブチルアルコール、メチルセロソ
ルブ、メチルセロソルブアセテート、プロピオン酸、酪
酸「ジアセトンアルコール〜ピベリジン等が挙げられる
。尚t上記の如き水混和性有機系溶媒の第一の群および
第二の群から選ばれた2種以上の有機系溶媒を混合使用
することも、か)る溶媒の水性溶媒を水分率を上昇させ
ることなく蒸発脱溶媒せしめる本発明の工程条件に適合
するならば、当然t本発明の好適な実施態様として採用
することができる。
When using an organic solvent that can form a co-progeny mixture with water, the mixing ratio of the hydrophilic polymer aqueous solution and the organic solvent should be adjusted as shown in the above example of using a low-boiling point organic solvent. The decision can be made under the same restrictive conditions. On the other hand, when using a high boiling point organic solvent that cannot form an azeotrope, there are no particular restrictions on the mixing ratio of the L hydrophilic polymer aqueous solution and the organic solvent, and the particle size to be imparted to the hydrogel is determined. Such high boiling point organic solvents include butyl alcohol, methyl cellosolve, methyl cellosolve acetate, propionic acid, butyric acid, diacetone alcohol, piveridine, etc. It is also possible to use a mixture of two or more organic solvents selected from the first group and the second group of water-miscible organic solvents such as (a) and (b) to increase the moisture content of the aqueous solvent of the above solvent. If it is compatible with the process conditions of the present invention that allow evaporation and desolvation without evaporation, it can of course be adopted as a preferred embodiment of the present invention.

かくして親水性重合体水溶液を水温和性有機系溶媒と混
和せしめて得られた、親水性重合体微細粒子を含有する
該有機系溶媒の水性懸濁液は、次いで蒸発により脱溶媒
して親水性重合体の乾燥粉末を生成せしめたのち、乾燥
処理を施して該親水性重合体に架橋構造を付与し、さら
に必要に応じて乾燥条件下にボールミル等の粉砕装置に
より粉砕してミクロヒドロゲルに形成せしめる。
The aqueous suspension of the organic solvent containing the hydrophilic polymer fine particles obtained by mixing the hydrophilic polymer aqueous solution with the water-miscible organic solvent is then desolvated by evaporation to make the hydrophilic After producing a dry powder of the polymer, a drying treatment is performed to impart a crosslinked structure to the hydrophilic polymer, and if necessary, the hydrophilic polymer is ground by a grinding device such as a ball mill under dry conditions to form a microhydrogel. urge

か)る蒸発脱溶媒方法、あるいは架橋構造を形成するた
めの乾熱処理方法および処理条件等については、特に制
約は認められず、ヒドロゲルに付与すべき粒子径、水膨
?函度等に応じて適宜選択することができる。上述の本
発明方法の実施により、従来達成し得なかったヒドロゲ
ルの微粒蓬化作用が達成され、10仏以下の粒子蓬を有
する極めて微細なミクロヒドロゲルの製造が可能となっ
た。
There are no particular restrictions on the evaporative desolvation method used in the hydrogel, or the dry heat treatment method and treatment conditions to form a crosslinked structure, and there are no restrictions on the particle size, water swelling, etc. that should be imparted to the hydrogel. It can be selected as appropriate depending on the degree of boxiness, etc. By carrying out the above-described method of the present invention, an effect of turning the hydrogel into fine particles, which could not be achieved conventionally, has been achieved, and it has become possible to produce extremely fine microhydrogel having particles of 10 French or less.

また、かくして得られたミクロヒドロゲルは驚くべき吸
水速度、吸湿速度等の従来のヒドロゲルにおいては到底
望み得なかった特性を具備することから、その工業的利
用可能分野を大幅に拡大せしめた。さらに本発明方法に
より製せられたミクロヒドロゲルをアクリル織総等の合
成高分子材料中に混入するときは、か)る高分子材料の
力学的特性値(引張強度「弾性率等)を実用的に充分満
足し得る水準に維持するとともに最終製品の吸湿性、吸
水性等の性能をも顕著に改善することができる。
In addition, the microhydrogel thus obtained has properties that could not be expected in conventional hydrogels, such as an amazing water absorption rate and moisture absorption rate, and thus has greatly expanded the range of its industrial applicability. Furthermore, when the microhydrogel produced by the method of the present invention is mixed into a synthetic polymer material such as acrylic woven material, the mechanical properties (tensile strength, elastic modulus, etc.) of the polymer material can be adjusted to a practical level. It is possible to maintain the final product at a level that is fully satisfactory, and to significantly improve the performance of the final product, such as hygroscopicity and water absorption.

なお〜か)るミクロヒドロゲルを含有してなるアクリル
繊維を形成するァクリロニトリル(AN)系重合体とし
ては「従来公知のアクリル繊維の製造に用いられるもの
であればよく、何ら限定されるものではなく、周知の如
く80重量%以上t更に好ましくは90%以上のANと
残部が他のビニルモノマーとの共重合体を使用すること
が、繊維物性、染色性等の点で望ましい。
The acrylonitrile (AN) polymer that forms the acrylic fiber containing the microhydrogel mentioned above is not limited in any way and may be any one that has been used in the production of conventionally known acrylic fibers. As is well known, it is desirable to use a copolymer of 80% by weight or more, more preferably 90% or more, of AN and the balance being other vinyl monomers in terms of fiber properties, dyeability, etc.

以下に実施例を記載しt本発明をさらに具体的に説明す
るが、本発明の要旨はこれら実施例の記載によって何ら
限定されるものではない。
EXAMPLES The present invention will be described in more detail below with reference to Examples, but the gist of the present invention is not limited in any way by the description of these Examples.

尚、実施例に示される百分率及び部は、特に断わりのな
い限り全て重量基準によるものである。実施例 1 90%のアクリロニトリルおよび10%のアクリル酸メ
チルを含有するアクリロニトリル系共重合体(ジメチル
ホルムアミド溶液中における固有粘度;1.5)17部
を10%苛性ソーダ水溶液83部に懸濁せしめ、90q
oにて43分間縄拝することにより、アクリル酸ナトリ
ウムおよびアクリルアミドを含有する重合体の水溶液を
準備した。
It should be noted that all percentages and parts shown in the examples are based on weight unless otherwise specified. Example 1 17 parts of an acrylonitrile copolymer containing 90% acrylonitrile and 10% methyl acrylate (intrinsic viscosity in dimethylformamide solution: 1.5) was suspended in 83 parts of a 10% aqueous sodium hydroxide solution, and 90q.
An aqueous solution of a polymer containing sodium acrylate and acrylamide was prepared by boiling for 43 minutes at o.

該重合体の水溶液10碇部1こ対して6.0%ホルムア
ルデヒド水溶液6.7部を添加し、90℃にて3時間燈
拝してNーメチロールアミド基を茅新橋反応性基として
含有する親水性重合体の水溶液を得た。次いで該水溶液
3部を水10碇都中に希釈して本発明に係る親水性重合
体水溶液を得、しかるのち該親水性重合体水溶液1峠都
をiso−ブロピルアルコール(沸点:32.3℃、共
沸点:80.4oo、共灘混合物中の水の含有率;12
.2%)10碇部中に澄梓下に添加して該親水性重合体
を微細粒子として析出せしめ、かくして得られた懸濁液
を90午0にて煮沸してisoープロピルアルコールの
水性混合溶媒を蒸発せしめた。次いで得られた親水性重
合体乾燥粉末生成物を200℃にて1時間乾熱処理して
、該親水性重合体に架橋構造を形成せしめ、1一以下の
粒子径を有するミクロヒドロゲルを生成せしめた。水混
和性有機系溶媒として上記のiso−ブロピルアルコー
ルに代えて下記第1表に記載する4種類の溶媒を準備し
、上記の親水性重合体水溶液10部をこれらの溶媒各1
0碇郭中に灘梓下に添加し、以下上記と同様の操作によ
り処理し「 いずれも5山以下の粒子径を有するミクロ
ヒドロゲルに形成せしめた。
6.7 parts of a 6.0% formaldehyde aqueous solution was added to 10 parts of the aqueous solution of the polymer, and the mixture was heated at 90°C for 3 hours to contain an N-methylolamide group as a reactive group. An aqueous solution of a hydrophilic polymer was obtained. Next, 3 parts of the aqueous solution was diluted in 10 parts of water to obtain a hydrophilic polymer aqueous solution according to the present invention, and then 1 part of the hydrophilic polymer aqueous solution was diluted with iso-propyl alcohol (boiling point: 32.3 °C, azeotropic point: 80.4oo, content of water in the confederate mixture: 12
.. 2%) was added to 10 parts of a clear aqueous solution to precipitate the hydrophilic polymer as fine particles, and the suspension thus obtained was boiled at 90:00 to form an aqueous mixture of iso-propyl alcohol. The solvent was evaporated. The resulting hydrophilic polymer dry powder product was then subjected to a dry heat treatment at 200° C. for 1 hour to form a crosslinked structure in the hydrophilic polymer and produce a microhydrogel having a particle size of 11 or less. . Four types of solvents listed in Table 1 below were prepared in place of the above iso-propyl alcohol as a water-miscible organic solvent, and 10 parts of the above hydrophilic polymer aqueous solution was mixed with 1 part of each of these solvents.
It was added to Nada Azusa in Ikari Kaku, and treated in the same manner as above to form a microhydrogel having a particle size of 5 or less.

これに対し、比較例として、水と共縦混合物を実質的に
形成し得ないアセトンおよびエチルアルコールを使用し
て、上記と同様の操作に従ってミクロヒドロゲルの作製
を試みたが、いずれの場合も親水性重合体を懸濁した水
性混合溶媒の蒸発工程において「 これらの有機系溶媒
が水に濠先して蒸発し、該水性混合溶媒中の水分率が許
容限度を越えて上昇し、このため親水性重合体は再溶解
したのち蒸発乾園されることとなり、その結果団塊状の
析出物が得られるに留まり、上記実施例と同様のミクロ
ヒドロゲルを形成せしめることが不可能であった。
On the other hand, as a comparative example, acetone and ethyl alcohol, which cannot substantially form a co-mixture with water, were used to prepare a microhydrogel in the same manner as above, but in both cases the hydrogels were hydrophilic. In the evaporation process of an aqueous mixed solvent in which a hydrophilic polymer is suspended, "these organic solvents evaporate before the water, and the moisture content in the aqueous mixed solvent increases beyond the permissible limit. The polymer was redissolved and then evaporated to dryness, and as a result, only a nodule-like precipitate was obtained, making it impossible to form a microhydrogel similar to that of the above example.

一方、他の比較例としてiso−プロピルアルコール、
メチルエチルケトン、tert−ブチルアルコールを使
用し、これらの溶媒10礎部‘こ対して親水性重合体水
溶液の混和量を2悦郎‘こ調節して、水性混合溶媒中の
水分率をかかる溶媒と水との共沸混合物中の水分率より
大ならしめ〜上記と同様の処方に従ってミクロヒドロゲ
ルの作製を試みたが、いずれの場合においても親水性重
合体を懸濁せしめた水性混合溶媒の蒸発工程において、
これらの有機系溶媒が水に優先して蒸発し、団塊状の生
成物が得られるに留まり、本発明に係るミクロヒドロゲ
ルを得ることができなかった。
On the other hand, as another comparative example, iso-propyl alcohol,
Methyl ethyl ketone and tert-butyl alcohol were used, and the amount of the hydrophilic polymer aqueous solution mixed with 10 parts of these solvents was adjusted by 2 parts to adjust the water content in the aqueous mixed solvent to that of the solvent and water. The water content in the azeotrope of
These organic solvents evaporated preferentially to water, and only a lump-like product was obtained, making it impossible to obtain the microhydrogel according to the present invention.

か)る事実は、該有機系溶媒の使用に際して親水性重合
体水溶液と該有機系溶媒との混和比率が臨界的な意義を
有することを証明するものに外ならない。
This fact proves that the mixing ratio of the aqueous hydrophilic polymer solution and the organic solvent is of critical importance when using the organic solvent.

第1表 このようにして得られたミクロヒドロゲル0.5部を、
50%のロダンソーダ水溶液99.5部に分散せしめ「
得られたミクロヒドロゲル分散ロダン塩水溶液10碇部
中に、90%のアクリロニトリルおよび10%のアクリ
ル酸メチルを含有する共重合体(ジメチルホルムアミド
溶液中における固有粘度;1.5)10部を溶解せしめ
て紡糸原液を作製し、該紙糸原液を孔径0.09肋、孔
数100の薮糸ノズルを通して薮出し、紙出液を一3℃
に温度調節した10%ロダンソーダ水溶液中で凝固せし
めた。
Table 1: 0.5 part of the microhydrogel thus obtained,
Dispersed in 99.5 parts of 50% Rodan soda aqueous solution.
In 10 parts of the obtained microhydrogel-dispersed rhodan salt aqueous solution, 10 parts of a copolymer containing 90% acrylonitrile and 10% methyl acrylate (intrinsic viscosity in dimethylformamide solution: 1.5) was dissolved. A spinning dope was prepared by using the same method, and the paper yarn dope was discharged through a yarn nozzle with a hole diameter of 0.09 and a number of holes of 100, and the paper yarn was heated to -3°C.
It was coagulated in a 10% Rodan soda aqueous solution whose temperature was adjusted to .

Claims (1)

【特許請求の範囲】 1 下記のミクロヒドロゲルを含有してなる吸湿性アク
リル繊維。 こゝで上記ミクロヒドロゲルは架橋反応性基を含有す
る親水性重合体の水溶液を水と共沸混合物を形成する水
混和性有機系溶媒と共沸混合物の水/有機系溶媒重量組
成比以下の割合で混和するか又は水と共沸混合物を形成
しない水より沸点の高い水混和性有機系溶媒と混和して
該親水性重合体を微細粒子として析出せしめ、得られた
親水性重合体微細粒子および該有機系溶媒の水性混合溶
媒よりなる懸濁液から該水性混合溶媒を水分率の上昇を
防止しつつ蒸発せしめ、かくして得られた親水性重合体
の乾燥粉末生成物を乾熱処理して該親水性重合体に架橋
構造を形成せしめ、絶乾状態で10μ以下の粒子径とな
したものである。
[Claims] 1. A hygroscopic acrylic fiber containing the following microhydrogel. The above-mentioned microhydrogel is prepared by combining an aqueous solution of a hydrophilic polymer containing a crosslinking reactive group with a water-miscible organic solvent that forms an azeotrope with water and a water/organic solvent weight composition ratio of the azeotrope or less. Hydrophilic polymer fine particles obtained by precipitating the hydrophilic polymer as fine particles by mixing with a water-miscible organic solvent having a boiling point higher than that of water that is miscible with water or does not form an azeotrope with water. The aqueous mixed solvent is evaporated from a suspension consisting of an aqueous mixed solvent of the organic solvent while preventing an increase in moisture content, and the dry powder product of the hydrophilic polymer thus obtained is subjected to dry heat treatment. A crosslinked structure is formed in a hydrophilic polymer, and the particle size is 10 μm or less in an absolutely dry state.
JP4893581A 1981-03-31 1981-03-31 hygroscopic acrylic fiber Expired JPS6012443B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4893581A JPS6012443B2 (en) 1981-03-31 1981-03-31 hygroscopic acrylic fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4893581A JPS6012443B2 (en) 1981-03-31 1981-03-31 hygroscopic acrylic fiber

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP11632276A Division JPS5340038A (en) 1976-09-27 1976-09-27 Preparation of microhydrogel

Publications (2)

Publication Number Publication Date
JPS56154514A JPS56154514A (en) 1981-11-30
JPS6012443B2 true JPS6012443B2 (en) 1985-04-01

Family

ID=12817113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4893581A Expired JPS6012443B2 (en) 1981-03-31 1981-03-31 hygroscopic acrylic fiber

Country Status (1)

Country Link
JP (1) JPS6012443B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4596306A (en) * 1983-04-12 1986-06-24 Nissan Motor Co., Ltd. Exhaust silencing system
CN104562633B (en) * 2013-10-23 2016-08-17 中国石油化工股份有限公司 A kind of manufacture method of moisture absorption acrylon

Also Published As

Publication number Publication date
JPS56154514A (en) 1981-11-30

Similar Documents

Publication Publication Date Title
EP3190216B1 (en) Method for manufacturing super absorbent polymer fiber
JP2546695B2 (en) Method for producing absorbent product
US5013349A (en) Soil conditioner and method of producing the same
KR910008293B1 (en) High absorptive resin
US4272422A (en) Aqueous microhydrogel dispersions, processes for producing the same, and processes for producing microhydrogels
Zhang et al. Synthesis and characterization of super‐absorbent hydrogels based on hemicellulose
JPS6018690B2 (en) Method for improving water absorbency of water absorbent resin
JPH0414684B2 (en)
CA2063609A1 (en) Densified polyethersulfone
CN103965403A (en) Novel method for grafting chitosan onto 2-acrylamido-2-methylpropanesulfonic acid (AMPS)
WO2020104303A1 (en) Method for preparing a functional fiber
Liu et al. One‐step synthesis of corn starch urea based acrylate superabsorbents
CN105793489A (en) Polymer fine capsule comprising functional materials and manufacturing method therefor
JPS6012443B2 (en) hygroscopic acrylic fiber
US3410819A (en) Addition of insoluble additives to fibers during manufacture
US3468841A (en) Compositions of carbon black and polyacrylonitrile and method for their preparation
US5436275A (en) Porous acrylonitrile polymer fiber
JPS6328912A (en) Production of highly water absorbing fiber
US4164522A (en) Vinylidene chloride polymer microgel powders and acrylic fibers containing same
JP2019194369A (en) Extra fine short fiber and composite comprising extra short fibers dispersed in resin composition
JPS61132614A (en) Filler-containing acrylic fiber and its production
JP3799117B2 (en) Biodegradable chitosan-containing composition and method for producing the same
JPH01229899A (en) Composition for binder fiber
US2660571A (en) Fiber-spinning compositions
US3038870A (en) Process of preparing and extruding an aqueous gel of polytetrafluoroethylene