JPS60123751A - Liquid cell for detecting optoacoustic signal - Google Patents
Liquid cell for detecting optoacoustic signalInfo
- Publication number
- JPS60123751A JPS60123751A JP58230886A JP23088683A JPS60123751A JP S60123751 A JPS60123751 A JP S60123751A JP 58230886 A JP58230886 A JP 58230886A JP 23088683 A JP23088683 A JP 23088683A JP S60123751 A JPS60123751 A JP S60123751A
- Authority
- JP
- Japan
- Prior art keywords
- cell
- vinylidene fluoride
- liquid
- trifluoroethylene copolymer
- copolymer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/1702—Systems in which incident light is modified in accordance with the properties of the material investigated with opto-acoustic detection, e.g. for gases or analysing solids
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は高分子圧電材料で作製した高感度な光音響信号
検出用セルに関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a highly sensitive photoacoustic signal detection cell made of a polymeric piezoelectric material.
従来、溶媒中に溶解した溶質の濃度、あるいは懸濁した
試料の濃度は、赤外線、可視光線、または紫外線の吸収
、透過、散乱などを利用して測定できる。そして、この
ことを応用した検出器が、液体クロマトグラフィー(L
C)、ハイドロダイナミッククロマトグラフィー(HD
C)等に利用されている。しかし、これらの従来の検出
器においては、吸収、透過、散乱量が必ずしも濃度に比
例しない場合があり、また極微量測定が困難であった。Conventionally, the concentration of a solute dissolved in a solvent or the concentration of a suspended sample can be measured using absorption, transmission, scattering, etc. of infrared light, visible light, or ultraviolet light. A detector that applies this fact is liquid chromatography (L
C), hydrodynamic chromatography (HD
C) etc. However, in these conventional detectors, the amounts of absorption, transmission, and scattering are not necessarily proportional to the concentration, and it is difficult to measure trace amounts.
この欠点を解消すべく光音響信号(PAS)検出法が開
発された。この検出法は、試料に断続的に光を照射する
と、吸収された光のエネルギーの一部が無輻射過程によ
シ熱エネルギーに変換され、試料温度が上昇し、媒質の
熱膨張振動から疎密波を生じる現象を利用している。そ
して、この疎密波をマイクロホンまたは圧電素子によっ
て検出し、試料の濃度を検出している。A photoacoustic signal (PAS) detection method was developed to overcome this drawback. In this detection method, when a sample is intermittently irradiated with light, part of the absorbed light energy is converted into thermal energy by a non-radiative process, the sample temperature rises, and the thermal expansion vibration of the medium It takes advantage of the phenomenon that generates waves. Then, this compression wave is detected by a microphone or a piezoelectric element to detect the concentration of the sample.
現在、液体用セルのPAS検出器には、圧力検出素子と
してPZTなどの圧電セラミック、ポリフッ化ビニリデ
ン(以下、PVDFと略す)が用いられているが、前者
は成形が困難であり、後者は圧電率が低いなどの欠点が
ある。Currently, PAS detectors for liquid cells use piezoelectric ceramics such as PZT and polyvinylidene fluoride (hereinafter abbreviated as PVDF) as pressure detection elements, but the former is difficult to mold, and the latter is piezoelectric. There are disadvantages such as low rate.
本発明は、圧力検出素子として新規な高分子圧電材料を
用いることによって、上記欠点を解消しようとするもの
で、その要旨は、液状の音波伝播物質をその内部に包含
または連続的に流すことのできるものであって、フッ化
ビニリデン/トリフルオロエチレン共重合体を、その検
出用振動子に使用してなる光音響信号検出用液体セルに
ある。The present invention attempts to eliminate the above-mentioned drawbacks by using a novel polymeric piezoelectric material as a pressure sensing element. The present invention is a liquid cell for photoacoustic signal detection using a vinylidene fluoride/trifluoroethylene copolymer as a detection vibrator.
本発明の光音響信号測定用セルは、LCあるいはHDC
用の検出器等として用いられるが、高分子圧電材料とし
て、フッ化ビニリデン/トリフルオロエチレン共重合体
を用いたので、次のような利点がある。The photoacoustic signal measurement cell of the present invention is an LC or HDC cell.
Since vinylidene fluoride/trifluoroethylene copolymer was used as the polymeric piezoelectric material, it has the following advantages.
■ 圧電セラミックを用いる場合に比べて感度が高い。■Higher sensitivity than when using piezoelectric ceramics.
■ 液体とのインピーダンスマツチングが圧電セラミッ
クよシも良い。■ Piezoelectric ceramics have better impedance matching with liquids.
■ 圧電セラミックは硬く、また脆いので、種々の形状
に成形することが困難であるが、本発明では材料を任意
の形に成形できる。(2) Since piezoelectric ceramics are hard and brittle, it is difficult to mold them into various shapes, but in the present invention, the material can be molded into arbitrary shapes.
■ PVDFは充分な圧電性を発現するためには延伸操
作が必要であるので、任意の形に成形することが困難で
あるが、本発明では材料を延伸せずに圧電気を発生させ
ることができるので、任意の形状に成形可能であシ、ま
た圧電率もPVDF以上である。したがって、超微量測
定ができる。■ PVDF requires a stretching operation in order to exhibit sufficient piezoelectricity, making it difficult to form it into any desired shape. However, with the present invention, piezoelectricity can be generated without stretching the material. Therefore, it can be molded into any shape, and its piezoelectric constant is higher than that of PVDF. Therefore, ultra-trace measurements can be made.
本発明に用いる音波伝播物質としては、水。The sound wave propagating substance used in the present invention is water.
水溶液、クロロホルム、ジクロルエタン等のハロゲン化
炭化水素、ベンゼン、トルエン、キシレン等の芳香族炭
化水素、メタノール、エタノール等のアルコール類、ヘ
キサン、ヘプタン等の脂肪族炭化水素等が挙げられる。Examples include aqueous solutions, halogenated hydrocarbons such as chloroform and dichloroethane, aromatic hydrocarbons such as benzene, toluene and xylene, alcohols such as methanol and ethanol, and aliphatic hydrocarbons such as hexane and heptane.
本発明に用いるフッ化ビニリデン/トリフルオロ工チレ
ン共重合体は、通常のラジカル触媒の存在下、溶液重合
、乳化重合、@濁重合、または塊状重合法によシ得るこ
とができる。一般的には、フッ化ビニリデンとトリフル
オロエチレン、ラジカル触媒、水あるいは溶媒、および
乳化剤等の添加物を耐圧オートクレーブ中に仕込み、一
定温度で一定時間、共重合を行うことKj、り、フッ化
ビニリデン/トリフルオロエチレン共重合体が粉末とし
て得られる。The vinylidene fluoride/trifluoro-engineered tyrene copolymer used in the present invention can be obtained by solution polymerization, emulsion polymerization, @turbidity polymerization, or bulk polymerization in the presence of a conventional radical catalyst. Generally, vinylidene fluoride, trifluoroethylene, a radical catalyst, water or a solvent, and additives such as an emulsifier are placed in a pressure-resistant autoclave and copolymerized at a constant temperature for a certain period of time. A vinylidene/trifluoroethylene copolymer is obtained as a powder.
本発明の検出用振動子に用いる材料は圧電率が大きいこ
とが必要である。この条件を満たすフッ化ビニリデン/
トリフルオロエチレン共重合体の組成比は、94/6〜
25/75 (モルチ)、好ましくは90/10〜40
/6(1(モルチ)である。トリフルオロエチレン量が
6モルチ未満および75モルチ以上の組成の上記共重合
体の圧電率は低い。なお本発明において、検出用振動子
以外のセルの構造材料として、フッ化ビニリデン/トリ
フルオロエチレン共重合体を使用してもよい。The material used for the detection vibrator of the present invention needs to have a high piezoelectric constant. Vinylidene fluoride/
The composition ratio of the trifluoroethylene copolymer is 94/6 ~
25/75 (molch), preferably 90/10-40
/6 (1 (molty)).The piezoelectric constant of the above copolymer having a composition in which the amount of trifluoroethylene is less than 6 molti and 75 molti or more is low.In the present invention, the structural material of the cell other than the detection vibrator is A vinylidene fluoride/trifluoroethylene copolymer may also be used as the solvent.
上記共重合体を材料としてセルを製作するにあたっては
、どのような方法で製作してもよく、特に限定されない
。例えば、第1図および第2図に示すような成形品が得
られるように金型を作り、この金型を用いて上記共重合
体を射出成形してもよい。また、溶融成形、キャスティ
ングなどの方法で必要な厚みのシー)するいはフィルム
を作成し、これらを用いて、第1図および第2図に示す
ような成形品を組立てることもできる。When manufacturing a cell using the above-mentioned copolymer as a material, any method may be used and there are no particular limitations. For example, a mold may be made to obtain a molded article as shown in FIGS. 1 and 2, and the copolymer may be injection molded using this mold. It is also possible to create sheets or films of the required thickness by melt molding, casting, or other methods, and use them to assemble molded products as shown in FIGS. 1 and 2.
以下、本発明を図面を参照しながら具体的に説明する。Hereinafter, the present invention will be specifically explained with reference to the drawings.
第1図および第2図は、本発明の光音響信号検出用液体
セルの一実施例を示す。FIG. 1 and FIG. 2 show an embodiment of a liquid cell for photoacoustic signal detection of the present invention.
円筒状セル1(材料はフッ化ビニリデン/トリフルオロ
エチレン共重合体)の対向する壁面に1対の光学窓(材
料としては、例えば石英平板、ガラス平板等)2a、2
bを設け、この光学窓2a、2bを通って光を通過させ
る。円筒状セル1には液体流入口3a (材料はフッ化
ビニリデン/トリフルオロエチレン共重合体、該共重合
体と接着可能な高分子材料等)および液体出口3b(材
料は3aと同一)が設けられ、ここから液体、例えば液
状の音波伝播物質を流入、排出することができる。円筒
状セル1の内壁と外壁には、帯状の電極4a、 4bが
取付けられ、各電極には、リード線5a、5bが取付け
られている。A pair of optical windows (for example, a quartz flat plate, a glass flat plate, etc.) 2a, 2 are provided on opposing walls of a cylindrical cell 1 (the material is vinylidene fluoride/trifluoroethylene copolymer).
b is provided to allow light to pass through the optical windows 2a, 2b. The cylindrical cell 1 is provided with a liquid inlet 3a (made of vinylidene fluoride/trifluoroethylene copolymer, a polymeric material that can adhere to the copolymer, etc.) and a liquid outlet 3b (made of the same material as 3a). A liquid, for example a liquid sound propagation substance, can be introduced into and discharged from the space. Band-shaped electrodes 4a, 4b are attached to the inner and outer walls of the cylindrical cell 1, and lead wires 5a, 5b are attached to each electrode.
いま、測定対象とする試料を溶解または懸濁した液体を
、液体流入口3aから円筒状セル1内に導入し、光学窓
ムまたは2bから断続的に光を照射する。液体中の試料
によって吸収された光エネルギーの一部が、無輻射過程
により熱エネルギーに変換され、試料温度が上昇し、試
料の熱膨張振動から疎密波を生じる。Now, a liquid in which a sample to be measured is dissolved or suspended is introduced into the cylindrical cell 1 from the liquid inlet 3a, and light is intermittently irradiated from the optical window or 2b. A part of the optical energy absorbed by the sample in the liquid is converted into thermal energy by a non-radiative process, increasing the sample temperature and generating compression waves from thermal expansion vibration of the sample.
この疎密波による圧力変化によって、円筒状セル1を形
成している、高分子圧電材料であるフッ化ビニリデン/
トリフルオロエチレン共重合体に圧電気が生じる。この
圧電気を円筒状セル1の内面および外面に帯状に取り付
けられた電極4a、4bにより電気信号として取シ出し
、リード@5a、 5bを経て図示されていない増幅器
に送る。電気信号の出力レベルは、試料濃度に依存する
。このようにして液体中の試料の濃度を測定することが
できる。The pressure changes caused by the compression waves cause the vinylidene fluoride/polymer piezoelectric material forming the cylindrical cell 1 to
Piezoelectricity occurs in trifluoroethylene copolymers. This piezoelectricity is extracted as an electric signal by electrodes 4a, 4b attached in strips on the inner and outer surfaces of the cylindrical cell 1, and sent to an amplifier (not shown) via leads @5a, 5b. The output level of the electrical signal depends on the sample concentration. In this way, the concentration of the sample in the liquid can be measured.
本発明に用いた共重合体は、未延伸のままでも圧電気を
生じるので、第1図に示したようにセル自体を一体成形
することができ、電極の取付、ポーリングおよび窓材の
取付によシ、本発明の光音響信号検出用液体セルを作製
することができる。The copolymer used in the present invention generates piezoelectricity even when unstretched, so the cell itself can be integrally molded as shown in Figure 1, and can be used for electrode attachment, poling, and window material attachment. Therefore, the liquid cell for photoacoustic signal detection of the present invention can be manufactured.
実施例1,2および比較例1
第1図に示すセルをフッ化ビニリデン/トリフルオロエ
チレン共重合体を用いて製作した。このセルの電気感応
定数gs+と加工性を、PVDF製のセルのそれと比較
した。その結果を表−1に示す。Examples 1 and 2 and Comparative Example 1 A cell shown in FIG. 1 was manufactured using vinylidene fluoride/trifluoroethylene copolymer. The electrical response constant gs+ and processability of this cell were compared with those of a cell made of PVDF. The results are shown in Table-1.
表−1Table-1
第1図および第2図は、本発明の光音響信号検出用液体
セルの一実施例を示し、第1図はその縦断面図、第2図
は横断面図を示す。
1・・・・・・円筒状セル、2a、2b・・・・・・光
学窓、3a・・・・・・液体流入口、3b・・・・・・
液体出口、4a、 4b・・・・・・電極、 5a、5
b・・・・・・リード線。1 and 2 show an embodiment of a liquid cell for photoacoustic signal detection according to the present invention, with FIG. 1 showing a longitudinal cross-sectional view thereof, and FIG. 2 showing a cross-sectional view thereof. 1... Cylindrical cell, 2a, 2b... Optical window, 3a... Liquid inlet, 3b...
Liquid outlet, 4a, 4b... Electrode, 5a, 5
b...Lead wire.
Claims (1)
すことのできるものであって、フッ化ビニリデン/トリ
フルオロエチレン共重合体を、その検出用振動子に使用
してなる光音響信号検出用液体セル。A device for detecting photoacoustic signals that can contain or continuously flow a liquid sound wave propagation substance, and uses vinylidene fluoride/trifluoroethylene copolymer as a detection vibrator. liquid cell.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58230886A JPS60123751A (en) | 1983-12-07 | 1983-12-07 | Liquid cell for detecting optoacoustic signal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58230886A JPS60123751A (en) | 1983-12-07 | 1983-12-07 | Liquid cell for detecting optoacoustic signal |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60123751A true JPS60123751A (en) | 1985-07-02 |
Family
ID=16914843
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58230886A Pending JPS60123751A (en) | 1983-12-07 | 1983-12-07 | Liquid cell for detecting optoacoustic signal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60123751A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH022921A (en) * | 1987-11-27 | 1990-01-08 | Cogent Ltd | Apparatus for inspecting sample by ultrasonic wave |
-
1983
- 1983-12-07 JP JP58230886A patent/JPS60123751A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH022921A (en) * | 1987-11-27 | 1990-01-08 | Cogent Ltd | Apparatus for inspecting sample by ultrasonic wave |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Martin et al. | Viscosity and density sensing with ultrasonic plate waves | |
US5212988A (en) | Plate-mode ultrasonic structure including a gel | |
US8448496B2 (en) | Piezoelectric coagulation sensors | |
JP2000060965A (en) | Measuring device | |
Hodnett et al. | A strategy for the development and standardisation of measurement methods for high power/cavitating ultrasonic fields: review of high power field measurement techniques | |
Grate et al. | Frequency-independent and frequency-dependent polymer transitions observed on flexural plate wave ultrasonic sensors | |
Isayev et al. | Effect of ultrasonic waves on foam extrusion | |
JPS60123751A (en) | Liquid cell for detecting optoacoustic signal | |
US11499942B2 (en) | Methods and apparatus for interfacing sensors with fluid materials | |
CN111948423A (en) | Graphene-based flow velocity sensor optical chip and application thereof | |
WO2014173745A2 (en) | Method for controlling an acoustic cell | |
Giesler et al. | Electrostatically excited and capacitively detected flexural plate waves on thin silicon nitride membranes with chemical sensor applications | |
JP3243937B2 (en) | Biomimetic sensor | |
Fay et al. | The thermoacoustic effect and its use in ultrasonic power determination | |
Gould | Simple method for calibrating small omnidirectional hydrophones | |
Sladky et al. | Ultrasonic monitoring of suspension polymerization of vinyl chloride | |
JPH03125962A (en) | Ph sensor | |
JPH08193877A (en) | Method and device for measuring energy density of ultrasonic wave, and ultrasonic apparatus using the device | |
Takahashi et al. | Ultrasonic measurement of local concentration of cake on microfiltration membrane using polymer transducer | |
SU611146A1 (en) | Method of ultrasonic detection of impurities in monocrystals | |
Scandelari et al. | Temperature-dependent characteristics of a density sensor based on Lamb waves generated with a P (VF/sub 2/-VF/sub 3/) film | |
Barrera-Figueroa et al. | Environmental coefficients of the free-field sensitivity of measurement microphones | |
Seo et al. | Piezoelectricity in vinylidene cyanide/vinyl acetate copolymer and its application to ultrasonic transducers | |
Shiraishi et al. | Resonant frequency temperature dependence of polymer-based cantilever sensor for monitoring VOC | |
SU485375A1 (en) | Ultrasound transducer |