JPS60123251A - Interactive type numerically controlled machine - Google Patents

Interactive type numerically controlled machine

Info

Publication number
JPS60123251A
JPS60123251A JP23201883A JP23201883A JPS60123251A JP S60123251 A JPS60123251 A JP S60123251A JP 23201883 A JP23201883 A JP 23201883A JP 23201883 A JP23201883 A JP 23201883A JP S60123251 A JPS60123251 A JP S60123251A
Authority
JP
Japan
Prior art keywords
cut
axis
movement
amount
sign
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23201883A
Other languages
Japanese (ja)
Inventor
Takahiko Tanji
能彦 丹治
Koichiro Masai
正井 耕一郎
Hirobumi Nishigaki
西垣 寛文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP23201883A priority Critical patent/JPS60123251A/en
Publication of JPS60123251A publication Critical patent/JPS60123251A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • B23Q15/007Automatic control or regulation of feed movement, cutting velocity or position of tool or work while the tool acts upon the workpiece
    • B23Q15/013Control or regulation of feed movement

Abstract

PURPOSE:To smoothly cut upward a workpiece, by providing such an arrangement that an output instruction is delivered to a servro-pump in accordance with the deviation between an instructed moving amount from a CPU and a feed-back moving amount, and therefore, the workpiece is cut upward at the time when the sign of moving amount counter varies. CONSTITUTION:When judgement is made such that the sign of a moving amount counter 12 varies after a target on the Z-axis is over, and when the sign of a remaining distance PR varies, pulse distribution is stopped, and therefore, a constant speed section may be obtained from a Z-axis cut-up starting point 23 to a completing point 24 by prose-cuting a deceleration instruction, and therefore, a workpiece is cut upward while a screw pitch is maintained constant. Further, the cut-up is started along the X-axis when the target on the Z-axis is over. However, judgment on the cut-up is known by observing a change in the sign of the a moving amount counter 12. Accordingly, smooth cut-up is automatically carried out without the causes of feed-back, etc. in a machine being considered.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、対話型数値制御装置に関し、特にねじ切り加
工時の切り上げを自動的に行々うための数値制御装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an interactive numerical control device, and more particularly to a numerical control device for automatically rounding up threads during thread cutting.

従来例の構成とその問題虞 従来の数値制御装置によるねじ加工では、例えば第1図
に示すように、チャック(41で保持したワーク(1)
に有効長(21のねじ加工をする場合、アドレスコード
G32の指令によってねし加工をするのであるが、その
場合、必要なねじ長(2)のほかに惰走する量(3)全
見込んであらかじめ溝入れ牙行っておかなければならな
い。この惰走距離(δ)は通常、δ=TXτ・・叫・・
・・・明・・・・・叫旧・・・・叩・・・ (1)ここ
でT=機械系の時定数 嘗=送り速度 の式で算出される量を使用者が計算し、若しくはmJL
モノグラフ等によって算出し、それをもとにNC言語で
プログラムを行ない、溝加工の後にねじ加工を行なって
いる。
Configuration of conventional example and its potential problems In thread machining using a conventional numerical control device, for example, as shown in Fig. 1, a workpiece (1) held by a chuck (41) is
When machining a thread with an effective length (21), the thread is machined according to the command of address code G32. Grooving must be done in advance.This coasting distance (δ) is usually calculated as δ=TXτ...
(1) Here, the amount calculated by the formula where T = time constant of the mechanical system = feed rate is calculated by the user, or mJL
It is calculated using monographs, etc., and then a program is executed in NC language based on the calculation, and thread machining is performed after groove machining.

又、アドレスコードG92の固定サイクルを有する従来
の数値制御装置では、切り土げ角は45度で固定され、
切り上げ量はねじのピッチをαとする゛と、・切ジ上げ
量をIL 2Qというように使用者はパラメータ全設足
してねじの切り上はケ行なっている。
In addition, in a conventional numerical control device having a fixed cycle with address code G92, the cutting angle is fixed at 45 degrees,
The amount of rounding up is determined by setting the pitch of the thread as α, and the amount of upturning of the thread as IL2Q.

いずれの場合にも、機械系を含めたゲインを考慮して設
足値をめなければならない欠点があり、実際の運用に当
っては使用者は機械メーカ又は数値制御装置の′メーカ
が付した簡易換算表等によって惰走量や切り上げ量ケ求
めてプログラムを行なう必要がある。
In either case, there is a drawback that the set value must be calculated taking into account the gain including the mechanical system, and in actual operation, the user must contact the machine manufacturer or numerical control equipment manufacturer. It is necessary to calculate the coasting amount and round-up amount using a simple conversion table, etc. and run the program.

発明の目的 本発明は、従来の数値制御装置における上述のような欠
点を除去し、機械系のゲインや機械に固有のパラメータ
等を考慮するこさなく、円滑にねじの切り上げが行なわ
れる数値制御装置を提供することを目的とするものであ
る。
Purpose of the Invention The present invention eliminates the above-mentioned drawbacks of conventional numerical control devices, and provides a numerical control device that can smoothly round up screws without considering mechanical system gains or machine-specific parameters. The purpose is to provide the following.

発明の構成 本発明は、ディスクリートで構成され又はメモリ内にお
かねた中央処理装置よりの移動指令量と機械可動部より
フィードバックされる移動量の偏差全偏差レジスタに取
り出し、この偏差レジスタによりサーボアンプへ出力指
令金与えると共に、同じ中央処理装置より与ヌらねる目
標値と実際の機械可動部の移動量との差を検出する移動
量カウンタを設け、この移動量カウンタの符号が変化す
る時点で切り上げを行なうもので、複数の軸の切V上げ
全必要とする場合には、各軸ごとに上述の構成をとるも
のである。
Composition of the Invention The present invention retrieves the deviation between the amount of movement command from a central processing unit, which is configured as a discrete device or stored in memory, and the amount of movement fed back from a mechanical movable part into a total deviation register, and uses this deviation register to control a servo amplifier. A movement amount counter is provided to detect the difference between the target value given by the same central processing unit and the actual movement amount of the moving parts of the machine, and when the sign of this movement amount counter changes, When rounding up is performed and it is necessary to round up all of a plurality of axes, the above-mentioned configuration is adopted for each axis.

実施例の説明 第2図は本発明の一実施例の構成を示すブロック図であ
る。図において、GOは中央処理装置(CP−U)、 
QW、(u’)は偏差レジスタ、■は移動量カウンタ、
Q3.(13’)は? −ホ7 ンプ、(141,(1
4’)はサーボモータ嘔α亀(15)はエンコーダ全示
し、αD〜α9は、第1図の2軸方向に機械可動部を移
動するためのもの、 (11)、 (13)〜(15’
)は2軸方向に移動するためのものである。移動量カウ
ンタ叫は、切り上げを必要とするz軸にのみ設けられ、
Z軸には設けられていない。
DESCRIPTION OF THE EMBODIMENT FIG. 2 is a block diagram showing the configuration of an embodiment of the present invention. In the figure, GO is a central processing unit (CP-U),
QW, (u') is the deviation register, ■ is the movement amount counter,
Q3. What about (13')? -H7 mp, (141, (1
4') is the servo motor, (15) is the entire encoder, αD to α9 are for moving the mechanical movable parts in the two axes directions shown in Fig. 1, (11), (13) to (15) '
) is for movement in two axial directions. The movement amount counter is provided only for the z-axis that requires rounding up.
It is not provided on the Z axis.

偏差レジスタallは中央処理装置α0内にディスクリ
ートで構成され又はメモリ内に記憶された内容から与え
られた移動指令量さ、機械可動部からエンコーダ叫全通
して与えられる位置フィードバック量との差金出力して
サーボアンプ03に加え、サーボモータα4)全駆動す
るもので、その出力は次式で制御される。
The deviation register ALL is configured discretely in the central processing unit α0 or outputs the difference between the movement command amount given from the contents stored in the memory and the position feedback amount given from the mechanical movable part through the encoder output. In addition to the servo amplifier 03, the servo motor α4) is fully driven, and its output is controlled by the following equation.

Varrp= (Pi −Po) Kv・・・・・・・
・・・・・・・・・・・・・・・・(21但し、Vam
p=偏差レジスタ011の出力Pi = 移動指令量 Po= フィードバック量 Kv = ループゲイン 又、移動量カウンタa2は、目標値を監視するためのも
ので、次式のように使用する。
Varrp= (Pi −Po) Kv・・・・・・
・・・・・・・・・・・・・・・・・・(21 However, Vam
p=output Pi of deviation register 011=movement command amount Po=feedback amount Kv=loop gain Further, the movement amount counter a2 is for monitoring the target value and is used as shown in the following equation.

PR=(P、−P。)・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・(3)但し、P
R= 残り距離 P、−目標値 Po−フィードバック量 本発明の詳細な説明する前に、第2図の移動量カウンタ
叫がない場合のねじの切り上は動作を第5図を参照して
説明する。第う図はこの場合の機械可動部であるスライ
ドの動きを図示したものである。スライドの原位置■か
ら切込み点シυへ移動し、切込みの深さくイ)からねじ
の有効長分の長さだけ所足のピッチ全保って切り上げ開
始点c!3に到達すると、切り上げ開始点@から2軸方
向はそのま捷の速度?保ちながらX軸方向に一定速度で
切り上げを行う。この時、切込み点シυと同じX座標を
目標点とすると、スライドの動きは2軸方向とX軸方向
の合成速度で切り上げが行なわれる。しかしX軸方向は
、切り込み点と同じ位置に至る前に偏差レジスタαPへ
の移動量指令が完了し、パルス分配が(イ)の点で完了
してしまう。パルス分配が完了すると、Z、Z両軸とも
にパルス分配を停止し、それぞねの軸の偏差レジスタの
残り分が0になる点(イ)に到着する。ここで問題は、
パルス分配が(ハ)の点で完了することにより、x軸、
Z軸共に減速が始f!’、z軸方向のねじピッチを保つ
ことができず、円滑方切り上げができないことである。
PR=(P, -P.)・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・(3) However, P
R= Remaining distance P, - Target value Po - Feedback amount Before explaining the details of the present invention, the operation of thread cutting when the movement amount counter in Fig. 2 does not respond will be explained with reference to Fig. 5. do. Figure 3 illustrates the movement of the slide, which is the mechanical movable part, in this case. Move the slide from the original position ■ to the cutting point υ, maintain the full pitch by the effective length of the screw from the depth of cut (a), and cut up to the starting point c! When reaching 3, is the speed of the 2-axis direction from the round-up starting point @ the same speed? round up at a constant speed in the X-axis direction. At this time, if the same X coordinate as the cutting point υ is set as the target point, the movement of the slide is rounded up at the composite speed of the two axis directions and the X axis direction. However, in the X-axis direction, the movement amount command to the deviation register αP is completed before reaching the same position as the cutting point, and the pulse distribution is completed at point (a). When the pulse distribution is completed, pulse distribution is stopped for both the Z and Z axes, and the point (A) is reached where the remaining value of the deviation register for each axis becomes 0. The problem here is
By completing the pulse distribution at point (c), the x-axis,
Both Z-axes start decelerating f! ', it is not possible to maintain the thread pitch in the z-axis direction, and it is not possible to round up smoothly.

こね梅、移動指令とスライドの実際の動きとの間に遅わ
があるためで、終了を判定するX軸について言えば、 ε=六・・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・・
・・・・(41但し、ε= 偏差カウンタの残り量 τ= 送り速度 Kv = ゲイン で表される量を残して終了する。
This is because there is a delay between the movement command and the actual movement of the slide. Regarding the X axis that determines the end, ε = 6...・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・
(41) However, ε = Remaining amount of deviation counter τ = Feed speed Kv = Ends with the amount expressed by gain remaining.

更にこのパルス分配完了点に)は、ねじの深さ及びねじ
のピッチと主軸の回転数によって決定され、仮に切り込
み点よシバ、ルス分配完了点が上Kfj<ことを推量し
てパルス分配完了点にオフセット量を加えるように、使
用者にそれを任せることは、従来例について説明したの
と同様の結果となシネ便さを免れない。
Furthermore, this pulse distribution completion point) is determined by the depth of the thread, the pitch of the thread, and the rotation speed of the main shaft.If we assume that the cutting point, the shiba, and the russ distribution completion point are above Kfj<, the pulse distribution completion point is determined. Leaving it up to the user to add an offset amount to , would inevitably result in the same result as described for the conventional example, which would be cumbersome.

第4図は偏差レジスタabと移動量カウンタC12を併
用したときの本発明の切り上げ動作の説明図である。第
4図の原位置■から切ジ上−げ開始点c23までのスラ
イド、即ち機械可動部の移動動作は第5図について説明
したのと同一である。切り上げ開始点■から−は、X軸
方向の速度即ちねじのピッチをその!f″1保ち々から
2軸方回へ一定速度で切り上げる。この時、X軸方向の
移動完了の判定は偏差レジスタa1)では行なわず、第
2図の移動量カウンタ■で行なうものである。その場合
の動作は±述の(3)式に従って行なわわる。ここで例
えば第4図の切り込み点Q1と同じ量を目標値とすれば
、式(3)でPRがO若しくは0を越えてその符号が反
転したことによってスライドが実際に目標値(ハ)の位
置におってねじの切り上げが完了した点が判定される。
FIG. 4 is an explanatory diagram of the round-up operation of the present invention when the deviation register ab and the movement amount counter C12 are used together. The sliding operation from the original position (2) to the cutting edge lifting start point c23 in FIG. 4, that is, the moving operation of the mechanical movable part, is the same as that described with reference to FIG. 5. From the rounding up starting point ■ - is the speed in the X-axis direction, that is, the pitch of the screw. f''1 is rounded up at a constant speed in the direction of the two axes. At this time, the determination of the completion of movement in the X-axis direction is not made by the deviation register a1), but by the movement amount counter (2) in FIG. In that case, the operation is performed according to the above-mentioned equation (3).For example, if the target value is the same amount as the cutting point Q1 in Fig. When the sign is reversed, it is determined that the slide is actually at the target value (c) and the thread has been completely cut up.

ここで2.2両軸のパルス分配を止めると、実際にはパ
ルス分配は(2)のA″!fでの分が行なわれているが
、 Z、Z軸の偏差レジスタ内の残り量がOKカったA
(4)でスライドは停止する。上記点(2)から(イ)
までは減速動作であるがすでに−切り上げは完了してい
るので問題は生じない。更に必要であれば、パルス分配
を終了した時点で残v量を減じて減速を早めることも可
能である。
If we stop the pulse distribution on both axes in 2.2, the pulse distribution is actually done by A''!f in (2), but the remaining amount in the deviation register of the Z and Z axes is OK, A
The slide stops at (4). From the above points (2) to (a)
Although it is a deceleration operation up to, no problem occurs because the rounding up has already been completed. Furthermore, if necessary, it is also possible to reduce the remaining v amount at the time when pulse distribution is completed to accelerate deceleration.

第5図と第4図に示したねじの切り上げ動作に対応した
ねじの切り上げの流れ図をそれぞわ第5図と第6図に示
す、第う図の切り上げ開始点−に相当するのが第5図の
(31)の2軸目標オーバであり、z#Iの所定の目標
を越えるき、Z軸の切、!1ll−トげが開始され、 
(32)で切り上げ分だけの移動量分のパルス分配が行
なわれたかを判定し、所定の移動量だけ分配さカると(
3刃で停止し、このあと第う図の(ホ)から翰へ偏差レ
ジスタの残量で移動する。この結果、切り上げ部分は等
速會保てず、ねじのピッチは保てなくなる。
Figures 5 and 6 show flowcharts of the thread cutting operation corresponding to the thread cutting operation shown in Figures 5 and 4, respectively. When the 2-axis target (31) in Figure 5 is exceeded and the predetermined target of z#I is exceeded, the Z-axis is turned off! 1ll-thorn is started,
In (32), it is determined whether pulse distribution has been performed for the amount of movement equal to the rounded-up amount, and when the pulse has been distributed by the predetermined amount of movement, (
It stops at the third blade, and then moves from (E) to the blade in Figure 3 using the remaining amount of the deviation register. As a result, the cut-up portion cannot maintain a constant velocity and the thread pitch cannot be maintained.

第6図は第4図に対応するもので%、(31)の2軸目
標オーバの次に移動量カウンタ■の符号変化の判定(3
6)があることが特徴である。これは式(3)K従うの
で、この残り距離へが符号変化した時点でパルス分配を
止めC3)、減速指令(37) ′fr行うことに・よ
り、第4図の(ハ)から(ハ)までの等速部分が得られ
、ねじピッチ全保ったまま切り上げを行うことができる
Fig. 6 corresponds to Fig. 4, and after the 2-axis target exceeded in % and (31), the sign change of the movement counter ■ is judged (3
6). Since this follows equation (3)K, when the sign of the remaining distance changes, the pulse distribution is stopped (C3) and the deceleration command (37) 'fr is executed. ) can be obtained, and rounding can be performed while maintaining the entire thread pitch.

斐K z軸目標オーバ(31)でZ軸の切り上げを開始
するが、切−り上げの判定は、2軸パルス分配完了02
)ではな(、Z軸の移動量カウンタの符号変化を(36
)で監視することによって行うことにより、機械のフィ
ードバックケイン等の要因を考慮することなく自動的に
円滑な切り土げを行うこさができる。
Z-axis starts rounding up when the Z-axis target is exceeded (31), but the rounding-up is determined when the two-axis pulse distribution is completed 02
) then (, the sign change of the Z-axis movement amount counter is (36
), it is possible to automatically cut and heave smoothly without considering factors such as the machine's feedback cane.

発明の効果 以上のように本発明は、スライドの実際の移動量と目標
値との差を移動量カウンタによって検知し、この移動量
カウンタの符号が変化する時点でねじの切り上げ完了を
判定し、その詩情でパルス分配を停止するものであるの
で、ねじの切り上は完了の時点捷でねじのピッチを保つ
ことができるもので、従来のように使用者がフィードバ
ックゲイン等の機械固有の要因に元づくパラメータ全考
慮することなく、自動的に円滑に切り上げ動作を行うこ
とができる。
Effects of the Invention As described above, the present invention detects the difference between the actual amount of movement of the slide and the target value using the amount of movement counter, and determines that the screw has been cut up when the sign of the amount of movement counter changes. Since the pulse distribution is stopped at this point, the pitch of the thread can be maintained at the end of the thread cut, and unlike conventional methods, the user has to adjust the thread pitch based on machine-specific factors such as feedback gain. Rounding up can be performed automatically and smoothly without considering all the original parameters.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の数値制御装置によるねじ加工の説明図、
第2図は本発明の対話型数値制仰装置の一実施例の構成
を示すブロック図、第5図は第2図における移動量カウ
ンタ■のない場合の切り上げ動作の説明図、第4図は第
2図における偏差レジスタと移動量カウンタの併用によ
る切り上げ動作の説明図、第5図は第5図の切り上げ動
作説明の流れ図、第6図は第4図の切り上げ動作説明の
流れ図である。 (1)・−・ワーク、 (21・−・ねじの有効長、 
(3)・・・惰走中、(4)・−・チャック、 αl・
−・中央処理装置、 αD。 (11’)・−・偏差レジスタ、 じ・・・移動量カウ
ンタ、、a3゜(13’)・−・サーボアンプ、 (1
41,(1’+’)・−・サーボモータ、 朝。 (15’)・−・エンコーダ、 ■υ・・・切り込み点
、 (4)・・・切り込み深さ、 (イ)・−・2軸切
、り上げ開始点、 (ハ)・一切ジ上げ完了点、 (ハ
)用パルス分配完了点、到達位置。 代理人の氏名 弁理士 吉崎悦治 第2図 1 − − − − 、J 第5図 M6図
Figure 1 is an explanatory diagram of thread machining using a conventional numerical control device.
FIG. 2 is a block diagram showing the configuration of an embodiment of the interactive numerical control device of the present invention, FIG. 5 is an explanatory diagram of the round-up operation in the case where the movement amount counter ■ in FIG. 2 is not provided, and FIG. FIG. 2 is an explanatory diagram of the rounding-up operation using the deviation register and the movement amount counter in combination, FIG. 5 is a flowchart explaining the rounding-up operation of FIG. 5, and FIG. 6 is a flowchart of explaining the rounding-up operation of FIG. 4. (1) -- Workpiece, (21 -- Effective length of screw,
(3)...Coasting, (4)...Chuck, αl.
-・Central processing unit, αD. (11') --- Deviation register, j... Movement amount counter, a3゜ (13') --- Servo amplifier, (1
41, (1'+') - Servo motor, morning. (15') - Encoder, ■υ... Cutting point, (4)... Cutting depth, (A) - 2-axis cutting, lifting start point, (C) - All cutting completed point, pulse distribution completion point for (c), reached position. Name of agent Patent attorney Etsuji Yoshizaki Figure 2 1 - - - - , J Figure 5 M6

Claims (1)

【特許請求の範囲】[Claims] 中央処理装置よりの移動指令量と機械可動部分の移動量
との偏差を駆動出力として取り出丁ための偏差レジスタ
と、ねじ切り加工の切り上げが必要な軸方向の機械可動
部分・の実際の移動角−と目標値との差を検出するため
の移動量カウンタとを具え、ねじ切り加工の切り上げ完
了を前記移動量カウンタの符壮変化によって判定して行
うことを特徴とする対話型数値制御装置。
The deviation between the amount of movement commanded by the central processing unit and the amount of movement of the machine's movable parts is used as a drive output to create a deviation register for extracting the sheets, and the actual movement angle of the machine's movable parts in the axial direction that requires rounding up for thread cutting. - and a movement amount counter for detecting the difference between the movement amount counter and a target value, and the interactive numerical control device is characterized in that the completion of rounding up of thread cutting is determined by a change in the movement amount counter.
JP23201883A 1983-12-08 1983-12-08 Interactive type numerically controlled machine Pending JPS60123251A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23201883A JPS60123251A (en) 1983-12-08 1983-12-08 Interactive type numerically controlled machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23201883A JPS60123251A (en) 1983-12-08 1983-12-08 Interactive type numerically controlled machine

Publications (1)

Publication Number Publication Date
JPS60123251A true JPS60123251A (en) 1985-07-01

Family

ID=16932666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23201883A Pending JPS60123251A (en) 1983-12-08 1983-12-08 Interactive type numerically controlled machine

Country Status (1)

Country Link
JP (1) JPS60123251A (en)

Similar Documents

Publication Publication Date Title
JP2742104B2 (en) Feed rate control method for numerical controller
JPS6321922B2 (en)
US20060041325A1 (en) Numerical control unit
JPH09120310A (en) Method and system for moving axis
JPH046001B2 (en)
US4173786A (en) Method and apparatus for cutting a thread on a rotating workpiece
JPS63182707A (en) Acceleration/deceleration control device
EP0320515A1 (en) Acceleration/deceleration controller
JPH0511824A (en) Backlash acceleration control system
WO1997012717A1 (en) Laser machining apparatus and laser machining method
JP3413954B2 (en) Motion controller
JP2700819B2 (en) Tapping method
US10725456B2 (en) Numerical controller
JP2004167549A (en) Laser beam machining apparatus
JPS60123251A (en) Interactive type numerically controlled machine
JPH0752365B2 (en) Numerical control device
KR970005566B1 (en) Method of controlling backlash acceleration
JPS63155206A (en) Numerical control system
JPS61103207A (en) Numerical control system
JPH0683431A (en) Speed control method for nc controller
JP6871221B2 (en) Numerical control device
JPH03152604A (en) Feed speed control method for numerical controller
WO1989008290A1 (en) Nc statement preparation system
JPS5939260B2 (en) Cutting feed control method for machine tools
JPH04259011A (en) Feed velocity control method