JPS60121659A - Particle analyzer - Google Patents

Particle analyzer

Info

Publication number
JPS60121659A
JPS60121659A JP58227871A JP22787183A JPS60121659A JP S60121659 A JPS60121659 A JP S60121659A JP 58227871 A JP58227871 A JP 58227871A JP 22787183 A JP22787183 A JP 22787183A JP S60121659 A JPS60121659 A JP S60121659A
Authority
JP
Japan
Prior art keywords
particle
field
mass
magnetic
deflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58227871A
Other languages
Japanese (ja)
Other versions
JPH0534772B2 (en
Inventor
Kazuo Hayashi
和夫 林
浩 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58227871A priority Critical patent/JPS60121659A/en
Publication of JPS60121659A publication Critical patent/JPS60121659A/en
Publication of JPH0534772B2 publication Critical patent/JPH0534772B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/06Electron- or ion-optical arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/04Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components

Abstract

PURPOSE:To check influence of a fringe field on a deflection field by a method, in which when analyzing mass or the like of each particle while deflecting changed particles by an electric field and a magnetic field, the passage of a particle beam to be analyzed to the deflection field is provided with a schielding member. CONSTITUTION:A charged particle beam 2 is incident from an incident port 3 of a vacuum container 1 for being shaped by the collimators 4 and 5 held inside a tublar body 15 made of soft iron or the like provided so as to surround its passage while further being introduced into a magnetic field composed of magnetic poles 6a and 6b for deflecting each particle by 180 deg. following a circular orbit. Next, while being put into an electric field composed of electrodes 7a and 7b for being deflected and incident to a two-dinsional position in the particle detectors 8 to be fixed by mass and energy of each particle. Accordingly, by shielding with the tublar body 15 the orbit can be prevented from being bent due to a fringe field to be generated on the peripheral parts of the respective electrodes 6 and 7 thus improving reliability of measurement.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本光明は、荷電粒子または中性粒子を電場、磁場等の偏
向場で偏向させることによって前記各粒子のIIまたは
エネルギを分析するようにした粒子分析器に関する。
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to a particle system in which the II or energy of each particle is analyzed by deflecting charged particles or neutral particles with a deflection field such as an electric field or a magnetic field. Regarding analyzers.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来より、荷電粒子や中性粒子の質量またはエネルギを
分析する粒子分析器として、粒子ビームを電場または磁
場等の偏向場中に入射させ、各粒子の偏向量を検出する
ことによって、上記の物理量の分析を行なうようにした
ものが知られている。
Conventionally, particle analyzers that analyze the mass or energy of charged particles and neutral particles have been used to analyze the above physical quantities by injecting a particle beam into a deflection field such as an electric field or a magnetic field and detecting the amount of deflection of each particle. There are known methods that perform analysis.

このような粒子分析器、例えば−例としてH+、D+の
ような荷電粒子の質量とエネルギとを分析する荷電粒子
質量エネルギ分析器は、通常、第1図および第2図に示
す如く構成されている。゛すなわち、同図において1は
真空容器であり、この真空容器1の側壁には荷電粒子ビ
ーム2の入射口である入射ポート3が設けられている。
Such particle analyzers, for example - charged particle mass energy analyzers for analyzing the mass and energy of charged particles such as H+, D+, are typically constructed as shown in FIGS. 1 and 2. There is. That is, in the figure, reference numeral 1 denotes a vacuum vessel, and the side wall of the vacuum vessel 1 is provided with an input port 3 that is an input port for the charged particle beam 2.

真空容器1の内部には、上記荷電粒子の軌道上にコリメ
ータ4,5、磁極6a、6b、電極7a、7b。
Inside the vacuum container 1, collimators 4 and 5, magnetic poles 6a and 6b, and electrodes 7a and 7b are arranged on the trajectory of the charged particles.

粒子検出器8がそれぞれ収容されている。コリメータ4
.5は前記荷電粒子ビーム2を所定の太さにした後、平
行ビームに整形するものである。前記磁極5a、5bは
、第1図中上下方向を長手方向とする長方形の磁極面9
a、9bを有し、これら磁極面9a、9bは所定間隙を
介して対向配置されている。これら磁極5a、 6bは
各々に巻装されたコイル10a、10bへの通電によっ
て、第1図中紙面に直交する方向の磁場を生成する。
A particle detector 8 is housed in each case. Collimator 4
.. 5, the charged particle beam 2 is made into a predetermined thickness and then shaped into a parallel beam. The magnetic poles 5a and 5b have rectangular magnetic pole faces 9 whose longitudinal direction is the vertical direction in FIG.
a and 9b, and these magnetic pole faces 9a and 9b are arranged to face each other with a predetermined gap in between. These magnetic poles 5a and 6b generate a magnetic field in a direction perpendicular to the plane of the paper in FIG. 1 by energizing coils 10a and 10b wound around them, respectively.

また、電極7a、7bは、第1図中上方から下方へその
幅が拡大する台形状の板体からなり、前記磁極面9a、
9b間の所定間隔よりも広い間隔を介して上記磁極面9
a、9bと平行に対向配置され、前記磁場と同一方向の
電場を生成する。なお、図中11は、真空容器1内のガ
スPを排気する図示しないポンプに通じる排気口である
Further, the electrodes 7a and 7b are made of trapezoidal plates whose width increases from the top to the bottom in FIG.
The magnetic pole surface 9
a and 9b and are arranged to face each other in parallel, and generate an electric field in the same direction as the magnetic field. In addition, numeral 11 in the figure is an exhaust port leading to a pump (not shown) that exhausts the gas P in the vacuum container 1.

しかして、このように構成された荷電粒子質量エネルギ
分析器において、入射ボート3から真空容器1内に導入
された荷電粒子ビーム2は、コリメータ4,5によって
平行ビームに整形され、磁?M6a、6bで生成された
磁場中に導入される。
In the charged particle mass energy analyzer configured in this manner, the charged particle beam 2 introduced into the vacuum vessel 1 from the input boat 3 is shaped into a parallel beam by the collimators 4 and 5, and is shaped into a parallel beam by the collimators 4 and 5. It is introduced into the magnetic field generated by M6a and M6b.

磁場中に導入された荷電粒子ビーム2の各粒子は、粒子
の運動方向および磁場方向と直交する方向の力を受け、
円形軌道を辿って180°偏向される。
Each particle of the charged particle beam 2 introduced into the magnetic field receives a force in a direction perpendicular to the direction of movement of the particle and the direction of the magnetic field,
It is deflected 180° following a circular trajectory.

このとき各粒子の運動半径は、各粒子の運動エネルギに
よって決定される。したがって、1806鍋向された各
粒子は、磁場の端部において、運動エネルギに応じた位
置に直線上に分布する。
At this time, the radius of motion of each particle is determined by the kinetic energy of each particle. Therefore, each particle oriented in the 1806 pan is distributed on a straight line at a position corresponding to the kinetic energy at the end of the magnetic field.

磁場を通過した各荷電粒子は、電極7a、7bで生成さ
れる電場中に導入されることによって、さらに電場の方
向に偏向される。このときの各粒子の偏向量は、各粒子
の質量によって決定される。
Each charged particle that has passed through the magnetic field is further deflected in the direction of the electric field by being introduced into the electric field generated by the electrodes 7a, 7b. The amount of deflection of each particle at this time is determined by the mass of each particle.

かくして、各粒子は、粒子検出器8における各粒子の質
量とエネルギとによって決まる二次元的位置にそれぞれ
入射され、ここに各粒子の質量およびエネルギが検出さ
れる。
Thus, each particle is incident on the particle detector 8 at a two-dimensional position determined by the mass and energy of each particle, and the mass and energy of each particle are detected here.

ところで、このような荷電粒子質量エネルギ分析器では
、磁極6a、6b間、または電極7a。
By the way, in such a charged particle mass energy analyzer, between the magnetic poles 6a and 6b or between the electrode 7a.

7b間に生成される磁束、電束が、全て同一方向である
ことが理想的であるが、実際には、各種の周縁部分には
、磁束または電束が外側へ湾曲した、いわゆるフリンジ
場が存在している。このため、コリメータ4,5を通過
した粒子のうちエネルギの小さいものは、磁場に導入さ
れる前に上記フリンジ場の影響を受けて、図中Qで示づ
如く、その軌道を僅か曲げられてしまう。このような軌
道のずれは、粒子検出器8の近傍では無視できない程度
に増幅されてしまうので、従来のこの種の粒子分析器で
は、上記フリンジ場の影響を考慮して、粒子ビームの軌
道を修正する必要があった。ところが、このようなフリ
ンジ場が荷電粒子に及ぼす影響は、種々の複雑な要因が
絡む問題であるだけに、容易に予惣し得るものではなく
、結局、従来は個々の装置について調整を必要どづる等
の不具合があった。
Ideally, the magnetic flux and electric flux generated between 7b are all in the same direction, but in reality, there is a so-called fringe field in which the magnetic flux or electric flux curves outward at each peripheral edge. Existing. Therefore, particles with low energy that have passed through the collimators 4 and 5 are influenced by the fringe field before being introduced into the magnetic field, and their trajectory is slightly bent as shown by Q in the figure. Put it away. Such a deviation in the trajectory is amplified to a non-negligible extent in the vicinity of the particle detector 8, so in conventional particle analyzers of this type, the trajectory of the particle beam is determined by taking into account the influence of the fringe field. It needed to be fixed. However, since the influence of such fringe fields on charged particles is a problem involving various complex factors, it cannot be easily predicted. There were problems such as slippage.

〔発明の目的〕[Purpose of the invention]

本発明はこのような事情を考慮してなされたもので、そ
の目的とするところは、荷電粒子のフリンジ場による影
響を抑制でき、もって粒子ビームの軌道修正のための調
整を省略しくl、使い易さに優れ、かつ信頼性の高い粒
子分析器を提供することにある。
The present invention has been made in consideration of these circumstances, and its purpose is to suppress the influence of fringe fields of charged particles, thereby eliminating the need for adjustments to correct the trajectory of particle beams and making it easier to use. The object of the present invention is to provide a particle analyzer that is easy to use and highly reliable.

〔発明の概要〕[Summary of the invention]

本発明は、電場、磁場等の偏向場に至る被粒子ビームの
通路に近接させて、上記偏向場の影響を阻止するシール
1一部材を設けたことを特徴としている。
The present invention is characterized in that a member of the seal 1 for blocking the influence of the deflection field is provided in close proximity to the path of the particle beam that reaches the deflection field such as an electric field or a magnetic field.

〔発明の効果〕〔Effect of the invention〕

このような構成であると、隔向場に至る粒子ビームの経
路は、磁気的または静電的に遮蔽されることになるので
、フリンジ場の影響を受け難くなる。このため、上記経
路における被分析粒子ビームの軌道を、磁気的にまたは
静電的に安定させることができ、この結果、測定の信頼
性を向上させることができるとともに、従来必要であっ
た調整作業を省略できる等の効果を奏する。
With such a configuration, the path of the particle beam to the diagonal field is magnetically or electrostatically shielded, making it less susceptible to the effects of the fringe field. Therefore, the trajectory of the particle beam to be analyzed along the above path can be stabilized magnetically or electrostatically, and as a result, the reliability of measurements can be improved and adjustment work that was previously required. This has the advantage that it can be omitted.

(発明の実施例〕 以下、本発明の詳細を図示の実施例に基づき説明する。(Example of the invention) Hereinafter, details of the present invention will be explained based on illustrated embodiments.

第3図は、本発明を荷電粒子質量エネルギ分析器に適用
した一実施例を示すもので、第1図と同一部分は同一符
号で示しである。したがって重複する部分の説明は省く
ことにする。
FIG. 3 shows an embodiment in which the present invention is applied to a charged particle mass energy analyzer, and the same parts as in FIG. 1 are designated by the same reference numerals. Therefore, we will omit the explanation of the redundant parts.

この実施例が、従来の分析器と異なる点は、真空容器1
内の入射ポート3から、磁極6a、6bの入射端の直前
に至る荷電粒子ビーム2の通路を囲むように筒状体15
を設けたことにある。この筒状体15は、例えば軟鉄等
からなり、筒状体15内部の磁気シール1〜効果と、静
電シールド効果とを光揮するものである。筒状体15の
内部には、荷電粒子ビーム2の進行方向に所定間隔をお
いてコリメータ4.5が配置されている。なお、第3図
中16.17は、上記筒状体15、入射ポー1−3およ
びコリメータ4で囲まれた空間内部のガスと、上記筒状
体15、コリメータ4およびコリメータ5で囲まれた空
間の内部のガスとを、それぞれ真空容器1を介して容器
1外部へ排気するための孔である。
This embodiment differs from conventional analyzers in that the vacuum vessel 1
A cylindrical body 15 surrounds the path of the charged particle beam 2 from the entrance port 3 in the interior to just before the entrance ends of the magnetic poles 6a and 6b.
This is because we have established This cylindrical body 15 is made of, for example, soft iron, and exhibits the magnetic sealing effect 1~ inside the cylindrical body 15 and the electrostatic shielding effect. Collimators 4.5 are arranged inside the cylindrical body 15 at predetermined intervals in the traveling direction of the charged particle beam 2. In addition, 16.17 in FIG. 3 indicates the gas inside the space surrounded by the cylindrical body 15, the input port 1-3, and the collimator 4, and the gas inside the space surrounded by the cylindrical body 15, the collimator 4, and the collimator 5. These holes are for exhausting the gas inside the space to the outside of the container 1 through the vacuum container 1, respectively.

このような構成であると、コリメータ5から磁ti6a
、6bで形成された磁場中に至る荷電粒子の進行経路は
、電磁的、静電的に遮蔽されることになるので、エネル
ギの小さい荷電粒子でも、その軌道は安定したものとな
る。したがって、本実施例によれば、測定の信頼性が向
上するとともに、荷電粒子がフリンジ場によって受ける
影響を考慮して、予め分析器の調整を行なう等の手間が
省ける等の効果を奏づることができる。しかも、この場
合、真空容器1内の特定場所にシールド部材からなる筒
状体15を設けるだ(プという、至って簡単な構成であ
るので、分析器全体の複雑化を招くようなこともない。
With such a configuration, the magnetic ti6a from the collimator 5
, 6b will be electromagnetically and electrostatically shielded, so that even charged particles with low energy will have stable trajectories. Therefore, according to this embodiment, the reliability of measurement is improved, and the effort of adjusting the analyzer in advance in consideration of the influence of the fringe field on charged particles can be saved. I can do it. Moreover, in this case, the cylindrical body 15 made of a shielding member is provided at a specific location within the vacuum container 1. Since the structure is extremely simple, the analyzer as a whole does not become complicated.

なお、本発明は上記実施例に限定されるものではなく、
例えば、第4図に示す如く、コリメータ5と磁極5a、
5bとの間の荷電粒子ビーム2の経路と、電極7a、7
bとの間に、例えばアルミニウムなどの静電シールド材
からなる板体20を設けるようにしても良い。このよう
な簡単な構成であっても、荷電粒子ビーム2の上記経路
は、電極7a、7bで発生するフリンジ場を静電的に遮
断するので、荷電粒子の運動軌道の安定化に供すること
ができる。また、上記経路を磁気的にのみシールドする
ようにしてもよい。
Note that the present invention is not limited to the above embodiments,
For example, as shown in FIG. 4, the collimator 5 and the magnetic pole 5a,
5b and the path of the charged particle beam 2 between the electrodes 7a, 7
A plate member 20 made of an electrostatic shielding material such as aluminum may be provided between the member and the member b. Even with such a simple configuration, the path of the charged particle beam 2 electrostatically blocks the fringe field generated at the electrodes 7a and 7b, so it is possible to stabilize the motion trajectory of the charged particles. can. Further, the above path may be shielded only magnetically.

なお、以上の例は荷電粒子質量エネルギ分析器に本発明
を適用した例であるが、例えばコリメータ4.5の設置
された場所に荷電交換セルを設けた中性粒子分析器にも
本発明は適用可能である。
Although the above example is an example in which the present invention is applied to a charged particle mass energy analyzer, the present invention can also be applied to a neutral particle analyzer in which a charge exchange cell is installed at the location where the collimator 4.5 is installed. Applicable.

また、粒子質量エネルギ分析器のみに限らず、真空容器
内に磁場のみを形成した粒子エネルギ分析器や、真空容
器内に電場のみを形成した粒子質量分析器に本発明を適
用し得ることは言うまでもない。
It goes without saying that the present invention is applicable not only to particle mass energy analyzers, but also to particle energy analyzers in which only a magnetic field is formed in a vacuum container, and particle mass analyzers in which only an electric field is formed in a vacuum container. stomach.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の何重粒子質量エネルギ分析器を示す概略
的な断面図、第2図は上記荷電粒子質量エネルギ分析器
を第1図におけるA−A線に沿って切断し矢印方向に見
た図、第3図は本発明の一実施例に係る荷電粒子買置エ
ネルギ分析器を示す概略的な断面図、第4図は本発明の
他の実施例に係る荷電粒子質量エネルギ分析器を示す概
略的な断面図である。 1・・・真空容器、2・・・荷重粒子ビーム、3・・・
入射ボート、4,5・・・コリメータ、6a、6b・・
・磁極、7 a 、 7 b −71極、8・・・粒子
検出器、9a、9b・・・磁面面、10a、10b・・
・コイル、11・・・排気口、15・・・間4j(体、
16.17・・・孔、20・・・板体。 出願人代理人 弁理士 鈴江武彦
Figure 1 is a schematic cross-sectional view showing a conventional multiparticle mass energy analyzer, and Figure 2 is a cross-sectional view of the charged particle mass energy analyzer taken along line A-A in Figure 1 and viewed in the direction of the arrow. 3 is a schematic sectional view showing a charged particle mass energy analyzer according to an embodiment of the present invention, and FIG. 4 is a schematic cross-sectional view showing a charged particle mass energy analyzer according to another embodiment of the present invention. FIG. 1... Vacuum vessel, 2... Loaded particle beam, 3...
Input boat, 4, 5...Collimator, 6a, 6b...
・Magnetic pole, 7 a, 7 b -71 pole, 8...Particle detector, 9a, 9b...Magnetic surface, 10a, 10b...
・Coil, 11...Exhaust port, 15...Between 4j (body,
16.17...hole, 20...plate. Applicant's agent Patent attorney Takehiko Suzue

Claims (1)

【特許請求の範囲】[Claims] 被分析粒子ビームを電場、磁場等の偏向場で偏向させ、
その偏向量を検出することによって前記ビームを構成す
る各粒子の質量またはエネルギを分析するようにした粒
子分析器において、前記偏向場に至る前記被分析粒子ビ
ームの通路に近接させて前記偏向場のフリンジ場の影響
を阻止するシールド部材を設けたことを特徴とする粒子
分析器。
Deflect the particle beam to be analyzed using a deflection field such as an electric field or a magnetic field,
In a particle analyzer that analyzes the mass or energy of each particle constituting the beam by detecting the amount of deflection, the particle analyzer is configured to analyze the mass or energy of each particle constituting the beam by detecting the amount of deflection. A particle analyzer characterized by being provided with a shield member that blocks the influence of fringe fields.
JP58227871A 1983-12-02 1983-12-02 Particle analyzer Granted JPS60121659A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58227871A JPS60121659A (en) 1983-12-02 1983-12-02 Particle analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58227871A JPS60121659A (en) 1983-12-02 1983-12-02 Particle analyzer

Publications (2)

Publication Number Publication Date
JPS60121659A true JPS60121659A (en) 1985-06-29
JPH0534772B2 JPH0534772B2 (en) 1993-05-24

Family

ID=16867653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58227871A Granted JPS60121659A (en) 1983-12-02 1983-12-02 Particle analyzer

Country Status (1)

Country Link
JP (1) JPS60121659A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999066535A3 (en) * 1998-06-19 2000-04-27 Superion Ltd Apparatus and method relating to charged particles

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999066535A3 (en) * 1998-06-19 2000-04-27 Superion Ltd Apparatus and method relating to charged particles

Also Published As

Publication number Publication date
JPH0534772B2 (en) 1993-05-24

Similar Documents

Publication Publication Date Title
US7550740B2 (en) Focused ION beam apparatus
US8680479B2 (en) Charged particle analyzer
Kojima et al. Compact Thomson parabola spectrometer with variability of energy range and measurability of angular distribution for low-energy laser-driven accelerated ions
JPS60121659A (en) Particle analyzer
Eisen et al. Oscillation frequencies of protons in planar channels of silicon
Hayashi et al. Charge exchange neutral particle mass and energy analyzer for the JT‐60 tokamak
US20120061563A1 (en) Ion mobility spectrometer
CN107607984B (en) A kind of construction method of the magnetic spectrograph of measurement ions energy spectrum abatement bore error
US3681599A (en) Sector-type charged particle energy analyzer
JPS60121660A (en) Particle analyzer
JPH0358139B2 (en)
JPH0534774B2 (en)
JP3133155B2 (en) Electron beam accelerator and bending magnet used for the accelerator
US20240014026A1 (en) Magnetic sector with a shunt for a mass spectrometer
Demers et al. Initial measurements of plasma potential in the core of the MST reversed field pinch with a heavy ion beam probe
JPH03130694A (en) Apparatus for analyzing mass and energy of neutral particle
JPH06131999A (en) Emittance measuring device for ion beam
Coupland The calculation of the field integral or bending power of magnet coils
Bartlett et al. An Undergraduate Laboratory Apparatus for Measuring e/m as a Function of Velocity. I
JPH0230050A (en) Mass spectrograph
SU378137A1 (en)
Amboss The effect of tolerances in conical flow Pierce guns II—The perturbed flow in the magnetic field
Jones Studies of Elastic and Inelastic Scattering of 50 MeV Protons by Zirconium Isotopes
JPS58220346A (en) Mass and energy analyzer of charged particle
JPH0351051B2 (en)