JPS60121404A - Optical demultiplexer - Google Patents

Optical demultiplexer

Info

Publication number
JPS60121404A
JPS60121404A JP22971283A JP22971283A JPS60121404A JP S60121404 A JPS60121404 A JP S60121404A JP 22971283 A JP22971283 A JP 22971283A JP 22971283 A JP22971283 A JP 22971283A JP S60121404 A JPS60121404 A JP S60121404A
Authority
JP
Japan
Prior art keywords
optical waveguide
grating
light
wavelength
waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22971283A
Other languages
Japanese (ja)
Other versions
JPH0477881B2 (en
Inventor
Nobuyuki Imoto
信之 井元
Hidefumi Mori
森 英史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP22971283A priority Critical patent/JPS60121404A/en
Publication of JPS60121404A publication Critical patent/JPS60121404A/en
Publication of JPH0477881B2 publication Critical patent/JPH0477881B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29331Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by evanescent wave coupling
    • G02B6/29332Wavelength selective couplers, i.e. based on evanescent coupling between light guides, e.g. fused fibre couplers with transverse coupling between fibres having different propagation constant wavelength dependency
    • G02B6/29334Grating-assisted evanescent light guide couplers, i.e. comprising grating at or functionally associated with the coupling region between the light guides, e.g. with a grating positioned where light fields overlap in the coupler
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/2938Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device for multiplexing or demultiplexing, i.e. combining or separating wavelengths, e.g. 1xN, NxM

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To improve the demultiplexing efficiency with a simple constitution and to reduce influences upon the other wavelength components by prescribing widths of single mode optical wavegudes of both channels coupled to each other in the position where they are parallel with and close to each other and providing a grating only one optical waveguide. CONSTITUTION:When single mode optical waveguides 1 and 2 of the first and the second channels which have core widths a1 and a2 different from each other are coupoed in a coupling part 3 where they are parallel with and close to each other, the light having a prescribed wavelength which is made incident on the waveguide 1 is branched through the coupling part 3 and goes backward on the waveguide 2 and exits. The efficiency of taking-out of the branched light is maximized if widths a1 and a2 are set to satisfy 1.2a2<=a1<=3a2, and harmful coupling is suppressed to eliminate crosstalk if a grating 6 having a prescribed frequency in the light propagation direction is provided only in one waveguide 2, and thus, the demultiplexing efficiency is improved with a simple constitution, and the light is demultiplexed with less influences upon the other wavelength components.

Description

【発明の詳細な説明】 この発明は例えば光通信に用いられ、1本の光導波路か
ら特定波長の光を選択して他の光導波路へ導く光分波器
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical demultiplexer that is used, for example, in optical communications, and selects light of a specific wavelength from one optical waveguide and guides it to another optical waveguide.

〈従来技術〉 光分波器は波長多重通信には不可欠な部品である。波長
多重通信においては、波長多重の密度は光分波器による
分波可能な光波長の間隔によシ決まるので、分解能が高
くかつ挿入損失の低い光分波器の実現か望まれている。
<Prior art> Optical demultiplexers are essential components for wavelength division multiplexing communications. In wavelength division multiplexing communications, the density of wavelength multiplexing is determined by the interval of optical wavelengths that can be separated by an optical demultiplexer, so it is desired to realize an optical demultiplexer with high resolution and low insertion loss.

現在プリズムや回折格子、誘電体多層膜の波長分散性を
原理とした光分波器が開発されている。これらは多モー
ド光ファイバ伝送方式用に開発された低分解能の光分波
器である。
Currently, optical demultiplexers based on the wavelength dispersion properties of prisms, diffraction gratings, and dielectric multilayer films are being developed. These are low-resolution optical demultiplexers developed for multimode optical fiber transmission systems.

単一モード光ファイバ伝送方式では伝搬定数βが1つし
かないので、グレーティングを設けた光導波路の反射特
性が、強いβ選択性を有することを利用した狭帯域光分
波器が有望である。このような光分波器として先に発明
者は選択した波長λ0の光を入射光導波路とは別の出射
光導波路からとり出す光分波器を提案した(特願昭55
−148200)。ところがこの光分波器においては光
学的性質を周期的に変化させること即ちグレーティング
を、コアの幅を一定に保った捷まコア自身の位置を周期
的に変動させることにより与えている。これはコアの両
側で逆位相のグレーティングをつけることに相当し、こ
の場合両方のクレーティングの効果が弱め合うため分波
光取シ出し効率が小さい。
Since there is only one propagation constant β in a single mode optical fiber transmission system, a narrowband optical demultiplexer that takes advantage of the strong β selectivity of the reflection characteristics of an optical waveguide provided with a grating is promising. As such an optical demultiplexer, the inventor previously proposed an optical demultiplexer that extracts light with a selected wavelength λ0 from an output optical waveguide that is different from the input optical waveguide (Patent Application No. 55).
-148200). However, in this optical demultiplexer, the optical properties are changed periodically, that is, the grating is provided by periodically changing the position of the twisted core itself while keeping the width of the core constant. This corresponds to attaching gratings with opposite phases on both sides of the core, and in this case, the effects of both gratings weaken each other, resulting in a low extraction efficiency of demultiplexed light.

即ちこの構造では十分な分波特性を得ることができない
。また、このようなグレーティングの形成は作製が困難
である。更にグレーティングの周期Aを決める表式が、
入射光導波路の伝搬定数β1及び出射光導波路の伝搬定
数β2を用いて、A=2π/(β1+β2 ) (1) となっている。この表式は入射光導波路と出射光導波路
が独立の場合の伝搬定数を用いている。実際には両者は
結合状態と呼ばれる干渉し合う状態にあって独立の時の
β1.β2では表わせないため、(1)式は不正確な周
期Δを与える近似に過ぎず、中心波長が所望の波長から
ずれる等の欠点を有していた。
That is, with this structure, sufficient demultiplexing characteristics cannot be obtained. Furthermore, formation of such a grating is difficult to manufacture. Furthermore, the formula for determining the period A of the grating is
Using the propagation constant β1 of the input optical waveguide and the propagation constant β2 of the output optical waveguide, A=2π/(β1+β2) (1). This expression uses the propagation constant when the input optical waveguide and the output optical waveguide are independent. In reality, both are in a state where they interfere with each other, which is called a coupled state, and when they are independent, β1. Since it cannot be expressed as β2, equation (1) is only an approximation that gives an inaccurate period Δ, and has the disadvantage that the center wavelength deviates from the desired wavelength.

また従来においては波長λ0の光分波についてのみ注目
され、この分波特性を得る構成によると、他の波長成分
が悪影響するようになることについては論じられていな
かった。
Furthermore, in the past, attention has been paid only to the optical demultiplexing of the wavelength λ0, and it has not been discussed that in a configuration that obtains this demultiplexing characteristic, other wavelength components may have an adverse effect.

〈発明の概要〉 この発明の目的は簡単な構造で分波効率か高く、しかも
他の波長成分への影響が小さい光分波器を提供すること
にある。
<Summary of the Invention> An object of the present invention is to provide an optical demultiplexer with a simple structure, high demultiplexing efficiency, and less influence on other wavelength components.

この発明によれば、チャネル型単一モードの第1、第2
光導波路の一部が互に平行接近されて結合されるが、そ
の第1.第2光導波路のコアの幅が異ならされ、特にコ
アの幅をal、a2とすると、これら間は1.2a1≦
a2≦3a1.又は1.2a2≦a1≦3a2の関係に
選定され、更に結合部に設けるグレーティングを出射光
導波路に対してのみ設ける。
According to this invention, the first and second channel type single mode
Parts of the optical waveguides are brought close to each other in parallel and coupled. The widths of the cores of the second optical waveguide are different, and in particular, if the core widths are a1 and a2, the distance between them is 1.2a1≦
a2≦3a1. Alternatively, the relationship of 1.2a2≦a1≦3a2 is selected, and furthermore, a grating provided at the coupling portion is provided only for the output optical waveguide.

更にそのクレーティングとしてはコアの上面又は下面に
光の伝搬方向に周期Aの凹凸とすることが好ましい。ま
たその周期Aは2π/(βθ十β0)に選定すると良い
。たソしβe、β0はそれぞれ結合部で生じる伝搬モー
ドである偶モード、奇モードの分波波長λ0における伝
搬定数である。
Furthermore, it is preferable that the crating has irregularities with a period A in the light propagation direction on the upper or lower surface of the core. Further, the period A is preferably selected to be 2π/(βθ+β0). The coefficients βe and β0 are propagation constants at the demultiplexed wavelength λ0 of even mode and odd mode, which are propagation modes generated in the coupling portion, respectively.

〈実施例〉 第1図はこの発明の実施例の平面図であり、主光導波路
1及び出射光導波路2は何れもチャネル型単一モード光
導波路であシ、その一部は互に平行近接して結合部3と
されている。また主光導波路1、出射光導波路2はそれ
ぞれコア幅がal。
<Embodiment> FIG. 1 is a plan view of an embodiment of the present invention, in which the main optical waveguide 1 and the output optical waveguide 2 are both channel type single mode optical waveguides, and some of them are parallel to each other and close to each other. The connecting portion 3 is defined as the connecting portion 3. Further, the main optical waveguide 1 and the output optical waveguide 2 each have a core width of al.

a2、深さ方向の厚さ一6’= bであり、コア間の間
隔がdである。主光導波路l及び出射光導波路2の電界
分布をそれぞれEl、E2とし、進行波及び逆行波をそ
れぞれ十及び−の添字で表わすことにすれば、入射光4
はE;で表わされる。一方、結合部3においては光導波
路1,2の二つのコアを一つの導波路と見なせば、基本
モード及び−次モードに対応する偶モードEe及び奇モ
ードEoの電界効布が存在する。従って入射光4の電界
分布E+はZ=00地点(結合部30入射点)において
進行波病モードE+と奇モードE+に分けられる。今、
e O 光導波路2を1より太くしておくと、Eoの電界分布は
は’fExの電界分布に等しくなるので、大部分はE+
に変換され、一部がわずかに、E;とじて伝わる。これ
ら電界分布は規格化された状態を示している。E+及び
E吉はそれぞれの伝搬定数βe及び2πC β0で特徴づけられる位相exp[i(2→−βez)
]2πC 及びe X p(j (−「を−βoz)、)で伝搬す
る。たソし、こ\でCは真空中光速、λは波長、tは時
間、2は光の伝搬方向の位置座標である。今時間依存性
は共通なので省くとそれぞれexp(−iβez)及び
exp(−iβoz )となる。ところがこ\に周期A
のグレーティングがあるため、その波数部を介して、進
行波と逆行波の間で結合が起る。今、AをA−4π/(
βe十βo ) (21 2π で与えるとすれば、βe=(−βo ) +J−1かつ
、βo = (−β”)十;であるから、βe即ち偶モ
づ進行波は−β0即ち奇モード逆行波へ、かつβO即ち
奇モード進行波は−βe即ち偶モード逆行波へそれぞれ
変換される。それぞれの逆行波はz = Qの地点まで
戻り、こ\で同位相で重ね合せられた後、E””の成分
とE−との成分に分けられる。Elは出射12 光導波路2からとり出される分波光5であり、最初に入
射した光4の強度を基準としてその強度は1であるべき
ものである。ETは入射光導波路1に戻る反射光で、0
であることが望まれる。以上をまとめると、分波光の波
長λ0における入射光から出射光までの変遷は第2図に
示すようになる。
a2, the thickness in the depth direction -6'=b, and the distance between the cores is d. If we let the electric field distributions of the main optical waveguide l and the output optical waveguide 2 be El and E2, respectively, and let the forward waves and retrograde waves be expressed by suffixes of 10 and -, respectively, then the incident light 4
is represented by E; On the other hand, in the coupling part 3, if the two cores of the optical waveguides 1 and 2 are considered as one waveguide, there exists a field effect cloth of an even mode Ee and an odd mode Eo corresponding to the fundamental mode and the -order mode. Therefore, the electric field distribution E+ of the incident light 4 is divided into a traveling wave mode E+ and an odd mode E+ at the Z=00 point (the point of incidence of the coupling portion 30). now,
e O If the optical waveguide 2 is made thicker than 1, the electric field distribution of Eo will be equal to the electric field distribution of 'fEx, so most of it will be E+
, and a portion of it is transmitted slightly as E;. These electric field distributions show a normalized state. E+ and Eki are the phases exp[i(2→−βez) characterized by respective propagation constants βe and 2πC β0
]2πC and e These are the coordinates.The time dependence is common, so if omitted, it becomes exp(-iβez) and exp(-iβoz), respectively.However, here the period A
Since there is a grating, coupling occurs between the forward wave and the retrograde wave through the wave number part. Now, let A be A-4π/(
βe + βo ) (21 If given as 2π, then βe = (-βo ) +J-1 and βo = (-β'') 1; Therefore, βe, which is an even mod traveling wave, is -β0, which is an odd mode. βO, or odd mode traveling wave, is converted into -βe, or even mode retrograde wave. Each retrograde wave returns to the point z = Q, where they are superimposed in the same phase, and then It is divided into the E'' component and the E- component. El is the demultiplexed light 5 taken out from the output optical waveguide 2, and its intensity should be 1 based on the intensity of the first incident light 4. ET is the reflected light returning to the incident optical waveguide 1, and 0
It is desired that To summarize the above, the transition from the incident light to the output light at the wavelength λ0 of the demultiplexed light is shown in FIG.

従って第2図の各矢印で示された道すじをたどることに
より入射光から分波光への変換効率や反射光への変換効
率を次のようにめることができる。
Therefore, by following the paths indicated by the arrows in FIG. 2, the efficiency of conversion from incident light to demultiplexed light and the efficiency of conversion to reflected light can be determined as follows.

η=(elo e06 eez+ et6 eeQ e
oz) (31R== (elo eoe eel +
 ele eeo eot) (4またソし、 η:入射光4から分波光5への強度変換効率、R:入射
光4から反射光への強度変換効率、elo : Elか
らE;への振幅変換効率、”oe*E // E。
η=(elo e06 eez+ et6 eeQ e
oz) (31R== (elo eoe eel +
ele eeo eot) (4 again, η: intensity conversion efficiency from incident light 4 to demultiplexed light 5, R: intensity conversion efficiency from incident light 4 to reflected light, elo: amplitude conversion efficiency from El to E; ,”oe*E // E.

〃 eoz:E−からE;への振幅変換効率、〃 − ”te、 @ E1// E。〃 eoz: Amplitude conversion efficiency from E- to E;, - "te, @E1//E.

eeo二E+〃E−〃 e O e 62 : E// E ; /1 eel : E−tt E。eeo2E+〃E-〃 e O e 62 : E// E ; /1 eel: E-tt E.

〃 eol ”、 E // E−、/1 である。こ\でeio + eoz + ele + 
Co2 + eel 。
〃 eol ”, E // E-, /1.Here, eio + eoz + ele +
Co2 + eel.

’1401はグレーティングとは無関係で、電界分布の
重ね合せ積分だけで次のように表わされる。
'1401 has nothing to do with the grating and can be expressed only by the superposition integral of the electric field distribution as follows.

eeo、 eoeについてはカップリング理論(A、Y
ar iV 1”’ Coupled −mode t
heory for guided wave opt
ics+” IEEE J、Quantum Elec
tron、、 vol、 QE−9。
Regarding eeo and eoe, the coupling theory (A, Y
ar iV 1"' Coupled -mode t
theory for guided wave opt
ics+” IEEE J, Quantum Elec
tron, vol, QE-9.

pp、919−933.1973)からグレーティング
の深さ、周期、位置等の関数として計算することができ
る。elO”” eol等を使うと(31、(41式は
、η= (eio e2e 十e1e e2o)・e 
o e (61R=(2e1oe1e)・eeQ2(7
)と書ける。(61、(71式において第一項は光導波
路1.2の構造のみに依存する項であり、第2項・はグ
レーティングに依存する項である。いずれの項も0と1
の間にある値であるから、η=1とするためには(6)
式右辺第1項及び第2項をそれぞれ1とする必要がある
。前述したように光導波路2を光導波路1より太くして
おけばElとEoの電界分布及びE2とEeの電界分布
をはソ等しくできるのでelo ”= e2e ”; 
1かつete″!re2o”i:Qとすることができる
。従って第1項をはソ1にすることができる。このとき
(7)式第1項は自動的にはyoとなる。
pp. 919-933.1973) as a function of the depth, period, position, etc. of the grating. Using eol, etc., (31, (41 formula is η = (eio e2e + e1e e2o)・e
o e (61R=(2e1oe1e)・eeQ2(7
) can be written. (61, (In Equation 71, the first term is a term that depends only on the structure of the optical waveguide 1.2, and the second term is a term that depends on the grating. Both terms are 0 and 1.
Since the value is between, in order to set η = 1, (6)
The first and second terms on the right side of the equation must each be set to 1. As mentioned above, if the optical waveguide 2 is made thicker than the optical waveguide 1, the electric field distributions of El and Eo and the electric field distributions of E2 and Ee can be made equal, so elo ``= e2e '';
1 and ete″!re2o″i:Q. Therefore, the first term can be set to so1. At this time, the first term of equation (7) automatically becomes yo.

つまりこの発明においては光導波路1,2の幅a1、a
2を互に異ならせる。
In other words, in this invention, the widths a1 and a of the optical waveguides 1 and 2 are
2 to be different from each other.

以上は波長λ0における現象であるが、他にグレーティ
ングによる有害な結合があシ、これを除去することもこ
の発明の目的の一つである。このことについて以下に詳
述する。今(2)式で与えた周期Aに対し、A−π/β
e(λ1)となる波長λ1及びA=π/βO(λ2)と
なる波長λ2が分波波長λ0の近くに存在する。例えば
後述の例ではλ1及びλ2とλ0との差は約1nmであ
る。このような波長λ1.λ2ではそのteと−βeの
結合、(al)a2の場合)又はβ0と−βOの結合(
a 1<a 2の場合)が起り、これは主光導波路1へ
戻る反射光の原因となったり、本来透過すべき光が出射
光導波路2へ漏れるクロストークの原因となる。つまシ
波長λ0を分波する場合に波長λ1.λ2が透過するこ
となく反射してしまっだシ、出射光導波路に漏れること
がある。
The above is a phenomenon at the wavelength λ0, but there is also harmful coupling due to the grating, and one of the objects of the present invention is to eliminate this. This will be explained in detail below. Now, for the period A given by equation (2), A−π/β
A wavelength λ1 where e(λ1) and a wavelength λ2 where A=π/βO(λ2) exist near the demultiplexing wavelength λ0. For example, in the example described later, the difference between λ1 and λ2 and λ0 is about 1 nm. Such a wavelength λ1. In λ2, the bond between te and -βe, (in the case of (al)a2) or the bond between β0 and -βO (in the case of (al)a2)
a 1 < a 2), which causes reflected light returning to the main optical waveguide 1 or causes crosstalk in which light that should originally be transmitted leaks to the output optical waveguide 2. When demultiplexing the wavelength λ0, the wavelength λ1. If λ2 is reflected without being transmitted, it may leak into the output optical waveguide.

波長λ0の場合と同様の考え方で入射光の変遷及び透過
率、反射率、クロストークの表穴をめた結果を、λ0の
場合も含めて第3図に示す。各表穴から次のことが解る
。η=1とするためにelO→1、ele−+Oにした
とすれば透過率T1、反射率R1、クロストークC1及
び透過率Tは自動的に目標値に近づく。一方、透過率T
2を1にするためeoo2をOとすれば、反射率R2、
クロストークC2が自動的に0となる。従ってη及びT
2が1になるように設計すれば、すべての特性が目標値
に一致し、有害な結合の影響を除去できると共に取り出
し効率7を最適化できる。カップリング理論によればe
oou、クレーティングが存在する場所における奇モー
ドI”JOの電界分布の単調増加関数である。
Figure 3 shows the results of changes in incident light, transmittance, reflectance, and crosstalk based on the same concept as in the case of wavelength λ0, including the case of λ0. The following can be understood from each hole. If elO→1 and ele−+O are set in order to set η=1, the transmittance T1, reflectance R1, crosstalk C1, and transmittance T automatically approach the target values. On the other hand, the transmittance T
If eoo2 is set to O in order to set 2 to 1, the reflectance R2,
Crosstalk C2 automatically becomes 0. Therefore η and T
By designing so that 2 becomes 1, all the characteristics match the target values, the influence of harmful coupling can be removed, and the extraction efficiency 7 can be optimized. According to coupling theory, e
oou is a monotonically increasing function of the electric field distribution of the odd mode I''JO at the location where the crating is present.

従ってe。0を小さくするためには奇モードEoの小さ
い場所にグレーティングを設ければ良い。従ってこの発
明では奇モードEOが小さい出射光導波路2のみグレー
ティング6を設ける。なおこのときe。eも同時に小さ
くなっては意味がない。従来のもの(特願昭55−14
8200 )においては光導波路のコア幅を変えずにコ
ア自身の位置を周期的に変動させていた。これは光導波
路の相対する側面で逆位相のグレーティングをつけるこ
とに相当するので、両方の効果が打ち消し合う方向に働
くためeveが著しく小さいものになってしまう。この
発明ではコアの側面ではなく上面又は下面のどちらかに
クレーティングをつけることが好捷しい。
Therefore e. In order to reduce 0, a grating may be provided at a location where the odd mode Eo is small. Therefore, in this invention, the grating 6 is provided only in the output optical waveguide 2 in which the odd mode EO is small. At this time, e. It would be meaningless if e also became smaller at the same time. Conventional one (patent application 1986-14)
8200), the position of the core itself was periodically varied without changing the core width of the optical waveguide. This corresponds to attaching gratings with opposite phases on opposite sides of the optical waveguide, so both effects work in a direction that cancels each other out, resulting in a significantly small value of eve. In the present invention, it is preferable to provide the crating on either the upper or lower surface of the core rather than the side surfaces.

またこのようにすれは電界の強も所にクレーティングを
付けるため、その効果が一層大となる。クレーティング
としては形状変化による場合に限らす、屈折率変化でも
J、い。
In addition, this kind of grazing creates a crating in places where the electric field is strong, making the effect even greater. As a crating, it is limited to a change in shape and may also be a change in refractive index.

以下、光導波路2のみに深さ1μmのグレーティングを
設けた場合の数値的設計例について述べる。光導波路1
,2としては埋めこみ形石英単−モード導波路を用いる
。これはコアの寸法が約3〜10μmの矩形で、クラッ
ドの屈折率は石英の1、4−5 、コアの屈折率はクラ
ッドより01〜1.0係高い値をとる。まず、(6)式
第1項を最大にするため、主光導波路1のコア幅a1の
関数としてめたグラフを第4図に示す。こ\で出射光導
波路2のコア幅a2は5μm1コアとクラッドの比屈折
率差は0.5%、波長は1.55μmとした。コアの間
隔dはパラメータとして3μm〜7μmの場合を示した
。後で述べるがd=6μm以上が好ましく、この点を考
屡すると第4図から1.2a1≦a2≦3ax(a1=
1.6〜4μm)の場合に最大値があることが分る。塘
た、dは大きい程良いという結果を示しているが、これ
は今グレーティング6の効果は考えていないからであり
、グレーティングの長さを有限とすれば、dにも最適値
が出て来る。・これを見るためグレーティングの効果も
含めたηをdの関数として第5図に示す。第5図ではグ
レーティング6の長さしが30圏以上であれば、d”?
6μmのときη≧90q6であることが分る。
A numerical design example in which a grating with a depth of 1 μm is provided only in the optical waveguide 2 will be described below. Optical waveguide 1
, 2 is a buried quartz single-mode waveguide. This has a rectangular core with dimensions of about 3 to 10 μm, and the refractive index of the cladding is 1.4-5 that of quartz, and the refractive index of the core is 01 to 1.0 times higher than that of the cladding. First, in order to maximize the first term of equation (6), FIG. 4 shows a graph obtained as a function of the core width a1 of the main optical waveguide 1. Here, the core width a2 of the output optical waveguide 2 was 5 μm, the relative refractive index difference between the core and the cladding was 0.5%, and the wavelength was 1.55 μm. The case where the core spacing d is 3 μm to 7 μm as a parameter is shown. As will be described later, it is preferable that d=6 μm or more, and considering this point, from FIG. 4, 1.2a1≦a2≦3ax (a1=
It can be seen that there is a maximum value in the case of 1.6 to 4 μm). The results show that the larger d is, the better, but this is because the effect of grating 6 is not considered at this time, and if the length of the grating is finite, an optimal value for d will come out. . - To see this, Figure 5 shows η including the effect of the grating as a function of d. In Fig. 5, if the length of grating 6 is 30 circles or more, d''?
It can be seen that η≧90q6 when the thickness is 6 μm.

先に第3図について述べたようにηとT2とが1になる
ようにすればよいから、次にこのように作製された光分
波器の透過率T2も吟味する必要がある。令弟5図と同
じくdを横軸にと、?LをパラメータとしてT2を計算
すると第6図のようになる。
As described above with reference to FIG. 3, it is sufficient to set η and T2 to 1, so next it is necessary to carefully examine the transmittance T2 of the optical demultiplexer manufactured in this way. If we take d on the horizontal axis as in the younger brother 5 diagram,? When T2 is calculated using L as a parameter, the result is as shown in FIG.

第6図からL=30mm、d = 6 tt mのとき
T2=90%となることが分る。従ってη及びT2の両
方を90q6以上にすることができる。
It can be seen from FIG. 6 that when L=30 mm and d=6 tt m, T2=90%. Therefore, both η and T2 can be set to 90q6 or more.

第7図にこの実施例で用いた構造パラメータ及び緒特性
をまとめた。特に波長λ0での分波光取り出し効率ηと
反射率Ro1波長λ1及びλ2における透過率Tl、T
I2、反射率Rt、R2、クロストークCI、C2及び
それ以外の波長の透過率Tについては目標値を合せて記
した。これ°によりこの実施例では各特性の値はそれぞ
れ目標値に近くなっていることが分る。また、この発明
がいかに良い特性が得られるかを示すため、第7図にこ
の発明の構成から外れた光分波器の構造及び特性を二例
示した。最初の例はこの発明の第1の条件である結合部
の非対称性(a]\a2)を無視し、主光導波路及び出
射光導波路の幅a1.a2を等しく4μmとした場合で
ある。第7図に示すようにその結果分波光取り出し効率
ηは0で反射率Roは099であり、λ0でははソ全部
の光が主光導波路1に戻ってしまうことが分る。他の透
過率、反射率、クロストークも目標値から離れている。
FIG. 7 summarizes the structural parameters and structural characteristics used in this example. In particular, the demultiplexed light extraction efficiency η and reflectance Ro1 at wavelength λ0, transmittance Tl, T at wavelengths λ1 and λ2
Target values are also written for I2, reflectance Rt, R2, crosstalk CI, C2, and transmittance T for other wavelengths. From this, it can be seen that in this example, the values of each characteristic are close to the target values. Furthermore, in order to show how good characteristics can be obtained with this invention, two examples of the structure and characteristics of an optical demultiplexer that differs from the configuration of this invention are shown in FIG. The first example ignores the asymmetry (a]\a2) of the coupling portion, which is the first condition of this invention, and the width a1. This is the case where a2 is equally set to 4 μm. As shown in FIG. 7, as a result, the demultiplexed light extraction efficiency η is 0, the reflectance Ro is 099, and it can be seen that at λ0, all the light returns to the main optical waveguide 1. Other transmittance, reflectance, and crosstalk are also far from the target values.

第2の例はこの発明の第2の条件である出射光導波路の
みにグレーティングを設けるという要請を無視し、両方
の光導波路1,2にグレーティングを設けた場合である
。後述するようにグレーティングは干渉露光で作製する
のが一般的であるが、その場合両方の光導波路に一度に
クレーティングを作製する方が容易である。第7図に示
すように分岐光取り出し効率ηは055である。波長λ
2における透過率とクロスト−りがそれぞれT2〜0、
C2〜1であり、目標値と逆転している。これは波長λ
2における有害な結合が強く起きていることによる。
The second example is a case where gratings are provided on both optical waveguides 1 and 2, ignoring the second condition of the present invention, which is the requirement to provide a grating only on the output optical waveguide. As will be described later, gratings are generally produced by interference exposure, but in this case it is easier to produce gratings on both optical waveguides at once. As shown in FIG. 7, the branched light extraction efficiency η is 055. wavelength λ
2, the transmittance and crosstort are T2~0, respectively.
C2-1, which is the opposite of the target value. This is the wavelength λ
This is due to the strong harmful binding in 2.

以上の二1夕IJから解るように、この発明の二つの条
件、即ちal\a2ど出射光導波路にのみグレーティン
グを設けることとを満たしてはじめて、分波光取り出し
効率、透過率、反射率、クロス) −りを理想の値に近
づけられることが判る。
As can be seen from the above IJ on the 21st, only when the two conditions of the present invention, that is, the grating is provided only in the al\a2 output optical waveguide, can the demultiplexed light extraction efficiency, transmittance, reflectance, cross ) It can be seen that - can be brought closer to the ideal value.

以上を捷とめると、前記実施例では二つのコア幅の関係
を1.2al≦a2≦3atとすることによりηを最適
化し、グレーティングを光導波路2のみに設けることに
よりηの最適値を保ちつつ有害な結合を除去してT2を
も最適化した。また、グレーティングの周期Aの表穴と
して、偶モード及び奇モードの伝搬定数を用いた(2)
式を採用し、この(2)式で決る周期Aをグレーティン
グの周期とする場合は正しい状態を表わし、所望の中心
分波波長λ0のものが得られる。
Considering the above, in the above embodiment, η is optimized by setting the relationship between the two core widths as 1.2al≦a2≦3at, and by providing the grating only in the optical waveguide 2, while maintaining the optimum value of η. T2 was also optimized by removing deleterious binding. In addition, the propagation constants of even mode and odd mode were used as a table for the period A of the grating (2)
When formula (2) is adopted and the period A determined by formula (2) is the period of the grating, a correct state is represented, and a desired central wavelength λ0 can be obtained.

なお二つのコア幅の関係を入れかえ、]、、2a2≦a
1≦3a2のようにC2をalよ・シ太くした構造でも
η及びT2を最適化することが可能である。このalと
C2との関係は石英とは異質の半導体材料により光分波
器を構成した場合も、dを適当に選定することにより、
前記二つの関係と同様の結果になることを実験で確認し
た。
Note that the relationship between the two core widths is swapped, ], 2a2≦a
It is also possible to optimize η and T2 in a structure in which C2 is thicker than al, such as 1≦3a2. Even when the optical demultiplexer is constructed of a semiconductor material different from quartz, the relationship between al and C2 can be maintained by appropriately selecting d.
It was confirmed through experiments that the same results as the above two relationships were obtained.

この発明の光分波器の作製には公知の方法(例えば井元
他、特願昭57−109795号参照)で行うことがで
きる。即ち、例えば石英基板に光導波路パターンのT1
マスクを蒸着及びフォトリソグラフィ技術により伺け、
リアクティブスパッタエツチングにより深さ8μm程度
の溝を堀る。次にバイアススパッタリングによりコアと
なる石英材料を堆積させ、干渉露光法及びリアクティブ
スパッタエツチングによりグレーティング部を付ける。
The optical demultiplexer of the present invention can be manufactured by a known method (for example, see Imoto et al., Japanese Patent Application No. 109795/1982). That is, for example, T1 of an optical waveguide pattern is formed on a quartz substrate.
Masks can be created using vapor deposition and photolithography techniques,
A trench with a depth of about 8 μm is dug by reactive sputter etching. Next, a quartz material serving as a core is deposited by bias sputtering, and a grating portion is attached by interference exposure and reactive sputter etching.

最後にクラッドとなる石英材料のスパッタリングをして
埋めこみ型とする。
Finally, a quartz material that will become the cladding is sputtered to form a buried mold.

く効 果〉 以上説明したようにとの発明による光分波器は結合部の
二本のコア幅を非対称(a1\a2)にすることにより
分波光取り出し効率を最大化し、グレーティングを出射
光導波路のみに設けることによシ有害な結合を押えて反
射及びクロストークを除去し、しかも作製も従来の方法
で行うことができ、コンパクトで高性能な導波路型光分
波器を容易に作製することができる等の利点を有する。
Effect> As explained above, the optical demultiplexer according to the invention maximizes the demultiplexed light extraction efficiency by making the widths of the two cores of the coupling part asymmetrical (a1\a2), and connects the grating to the output optical waveguide. By providing the optical demultiplexer only in the center, harmful coupling can be suppressed and reflections and crosstalk can be eliminated.Furthermore, it can be fabricated using conventional methods, making it easy to fabricate a compact and high-performance waveguide type optical demultiplexer. It has advantages such as being able to

結合部における伝搬定数の正確な値(2)式を用いてグ
レーティングの周期を決める場合ははソ理想的な分波特
性を得ることができる。またグレーティングを出射光導
波路の上面又は下面に設ける場合はクレーティングの効
果が強く、eoeを大きなものとすることができ、つま
り効率ηを大とすることができる。
If the period of the grating is determined using equation (2), which is an accurate value of the propagation constant in the coupling part, ideal demultiplexing characteristics can be obtained. Further, when the grating is provided on the upper surface or lower surface of the output optical waveguide, the effect of the grating is strong, and the eoe can be increased, that is, the efficiency η can be increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す平面図、第2図は入
射光より出射光までの変遷の状態を示す図、第3図は入
射光の変遷及び各特性を示す図、第4図はこの実施例の
結合部の光導波路構造を最適化するだめの分波光取り出
し効率ηの光導波路幅a1依存性を示す図、第5図はグ
レーティングの効果を最適化するためのηのグレーティ
ング長り及びコア間隔dへの依存性を示す図、第6図は
有害な結合を押えた効果を表わす透過率T2のL及びd
依存性を示す図、第7図はこの実施例、比較例の構造パ
ラメータ及び特性を示す図である。 ■:主光導波路、2:出射光導波路、3:結合部、4:
入射光、5:分波光、6:グレーティング。 特許出願人 日本電信電話公社 代理人 草野 卓
FIG. 1 is a plan view showing an embodiment of the present invention, FIG. 2 is a diagram showing the state of transition from incident light to output light, FIG. 3 is a diagram showing the transition of incident light and each characteristic, and FIG. The figure shows the dependence of the demultiplexed light extraction efficiency η on the optical waveguide width a1 to optimize the optical waveguide structure of the coupling part in this example. Figure 6 shows the dependence on length and core spacing d.
FIG. 7, which is a diagram showing the dependence, is a diagram showing the structural parameters and characteristics of this example and a comparative example. ■: Main optical waveguide, 2: Output optical waveguide, 3: Coupling section, 4:
Incident light, 5: demultiplexed light, 6: grating. Patent applicant: Takashi Kusano, agent of Nippon Telegraph and Telephone Public Corporation

Claims (1)

【特許請求の範囲】[Claims] (1)第1チャネル型単−モード光導波路及び第2チャ
ネル型単−モード光導波路を、成る区間で平行に近接さ
せて結合部とし、その結合部に光の伝搬方向に周期Aの
グレーティングを設けることにより上記第1チャネル型
単−モード光導波路に入射した光の中で特定の波長λ0
の光を上記第2チャネル型単−モード光導波路の逆行波
に変換して取り出すように構成した光分波器において、
上記第1.第2チャネル型単−モード光導波路のコア幅
をal、a2とする時、これらコア幅a1とa2の関係
は1.2a1≦a2≦3ax又は1.2a2≦a1≦3
a2に選定され、かつ上記グレーティングが上記第2チ
ャネル型単−モード光導波路にのみ設けられていること
を特徴とした光分波器。
(1) A first channel type single-mode optical waveguide and a second channel type single-mode optical waveguide are placed close to each other in parallel in a section to form a coupling part, and a grating with a period A in the light propagation direction is installed in the coupling part. By providing a specific wavelength λ0 in the light incident on the first channel type single mode optical waveguide.
In an optical demultiplexer configured to convert the light into a retrograde wave of the second channel type single-mode optical waveguide and extract it,
Above 1. When the core widths of the second channel type single-mode optical waveguide are a1 and a2, the relationship between these core widths a1 and a2 is 1.2a1≦a2≦3ax or 1.2a2≦a1≦3
a2, and the grating is provided only in the second channel type single-mode optical waveguide.
JP22971283A 1983-12-05 1983-12-05 Optical demultiplexer Granted JPS60121404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22971283A JPS60121404A (en) 1983-12-05 1983-12-05 Optical demultiplexer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22971283A JPS60121404A (en) 1983-12-05 1983-12-05 Optical demultiplexer

Publications (2)

Publication Number Publication Date
JPS60121404A true JPS60121404A (en) 1985-06-28
JPH0477881B2 JPH0477881B2 (en) 1992-12-09

Family

ID=16896514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22971283A Granted JPS60121404A (en) 1983-12-05 1983-12-05 Optical demultiplexer

Country Status (1)

Country Link
JP (1) JPS60121404A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63231403A (en) * 1987-03-11 1988-09-27 アメリカン テレフォン アンド テレグラフ カムパニー Optical apparatus having light waveguide
FR2622706A1 (en) * 1987-11-03 1989-05-05 Thomson Csf DYNAMIC OPTICAL INTERCONNECT DEVICE FOR INTEGRATED CIRCUITS
JPH01503573A (en) * 1987-04-28 1989-11-30 ブリテツシユ・テレコミユニケイシヨンズ・パブリツク・リミテツド・カンパニー optical device
US5048909A (en) * 1990-07-27 1991-09-17 At&T Bell Laboratories Adiabatic reflection apparatus
US5093876A (en) * 1990-07-27 1992-03-03 At&T Bell Laboratories WDM systems incorporating adiabatic reflection filters
USRE35516E (en) * 1990-07-27 1997-05-20 Lucent Technologies Inc. Adiabatic reflection Y-coupler apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63231403A (en) * 1987-03-11 1988-09-27 アメリカン テレフォン アンド テレグラフ カムパニー Optical apparatus having light waveguide
JPH01503573A (en) * 1987-04-28 1989-11-30 ブリテツシユ・テレコミユニケイシヨンズ・パブリツク・リミテツド・カンパニー optical device
FR2622706A1 (en) * 1987-11-03 1989-05-05 Thomson Csf DYNAMIC OPTICAL INTERCONNECT DEVICE FOR INTEGRATED CIRCUITS
US5048909A (en) * 1990-07-27 1991-09-17 At&T Bell Laboratories Adiabatic reflection apparatus
US5093876A (en) * 1990-07-27 1992-03-03 At&T Bell Laboratories WDM systems incorporating adiabatic reflection filters
USRE35516E (en) * 1990-07-27 1997-05-20 Lucent Technologies Inc. Adiabatic reflection Y-coupler apparatus

Also Published As

Publication number Publication date
JPH0477881B2 (en) 1992-12-09

Similar Documents

Publication Publication Date Title
JP3022181B2 (en) Waveguide type optical multiplexer / demultiplexer
US6243516B1 (en) Merging optical waveguides having branch angle within a specific range
JP4500886B2 (en) Optical waveguide device, chromatic dispersion compensation device and design method thereof, optical filter and design method thereof, and optical resonator and design method thereof
JP2765545B2 (en) Optical wavelength discriminating circuit and method of manufacturing the same
EP0880036A2 (en) Method for altering the temperature dependence of optical waveguide devices
JPH0720329A (en) Optical multiplexer/demultiplexer
US6968096B2 (en) Diffraction device using photonic crystal
US6731828B2 (en) Waveguide-type optical signal processing circuit
WO2000011508A1 (en) Array waveguide diffraction grating optical multiplexer/demultiplexer
JPH08304664A (en) Wavelength demultiplexing element
JP2011203604A (en) Optical element and method for manufacturing the same
JP2000241645A (en) Optical wave guide circuit and its manufacture
WO2001013150A9 (en) Array waveguide diffraction grating
US6904204B2 (en) Array waveguide diffraction grating type optical multiplexer/demultiplexer
JPS60121404A (en) Optical demultiplexer
US5832146A (en) Multi-wavelength filter that is insensitive to polarization with means for creating asymmetry in the refractive index of waveguides and method of manufacture
JP2001221923A (en) Optical waveguide circuit
JP2003207665A (en) Optical waveguide
JP4375256B2 (en) Waveguide-type temperature-independent optical multiplexer / demultiplexer
JP2003035832A (en) Polarization-independent directional coupler and optical circuit using the same
JP2003207660A (en) Optical waveguide
JP3889697B2 (en) Optical bandpass filter
JP2009020415A (en) Planar waveguide element
JP3369029B2 (en) Array waveguide type optical multiplexer / demultiplexer
JP3306738B2 (en) Array waveguide type optical multiplexer / demultiplexer