JPS60120293A - Earthquake-resistant support structure of apparatus installed in nuclear reactor - Google Patents

Earthquake-resistant support structure of apparatus installed in nuclear reactor

Info

Publication number
JPS60120293A
JPS60120293A JP58228646A JP22864683A JPS60120293A JP S60120293 A JPS60120293 A JP S60120293A JP 58228646 A JP58228646 A JP 58228646A JP 22864683 A JP22864683 A JP 22864683A JP S60120293 A JPS60120293 A JP S60120293A
Authority
JP
Japan
Prior art keywords
support structure
heat exchanger
earthquake
reactor
intermediate heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58228646A
Other languages
Japanese (ja)
Inventor
中垣 正悟
勇 前川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Kawasaki Motors Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd, Kawasaki Jukogyo KK filed Critical Kawasaki Heavy Industries Ltd
Priority to JP58228646A priority Critical patent/JPS60120293A/en
Publication of JPS60120293A publication Critical patent/JPS60120293A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、原子炉内設置機器の耐震支持構造に関する。[Detailed description of the invention] The present invention relates to an earthquake-resistant support structure for equipment installed in a nuclear reactor.

原子炉内に設置される機器、例えばタンク型高速増殖炉
の中間熱交換器のように原子炉容器上部エリ吊下けられ
る機器は、下部にも地震に対する耐震支持が必要となる
場合がある。
Equipment installed in a nuclear reactor, such as an intermediate heat exchanger in a tank-type fast breeder reactor, that is suspended from the upper part of the reactor vessel may require seismic support for the lower part as well.

しかし、このような機器は、据付時から定格運転に至る
温度上昇による熱膨張で、機器と原子炉容器側の構造物
の間に相対的な変位が生じ、通常の支持方法では、機器
と支持構造物との間の距離が変化し、地震時にその機能
が発揮されなかったり、機器側に無理な荷重をかけるこ
とになる。
However, in such equipment, relative displacement occurs between the equipment and the structure on the reactor vessel side due to thermal expansion due to temperature rise from installation to rated operation. The distance between the equipment and the structure changes, resulting in the equipment not functioning properly in the event of an earthquake, or placing an unreasonable load on the equipment.

従って、このような機器の耐震支持は、熱膨張によ、る
相対変位を吸収し、且つ地震時に必要な制震力を持つ構
造としなければならない。しかも、原子炉内に長期間設
置されるものであるから、原子炉内の冷却材、温度、放
射線に耐え、万一の場合は容易に取出せる構造でなけれ
ばならない。
Therefore, seismic support for such equipment must have a structure that absorbs relative displacement due to thermal expansion and has the necessary damping force in the event of an earthquake. Furthermore, since it will be installed in a nuclear reactor for a long period of time, it must have a structure that can withstand the coolant, temperature, and radiation inside the reactor, and that can be easily removed in the event of an emergency.

本発明は斯かる要求に対し、原子炉冷却材を動作流体と
するダッシュポット形式の防振器を、原子炉内に設置さ
れる機器に取付けることに工って解決せんとするもので
ある。
The present invention attempts to solve such a need by attaching a dashpot-type vibration isolator using reactor coolant as a working fluid to equipment installed in a nuclear reactor.

以下本発明による原子炉内設置機器の耐震支持構造の一
実施一例を、夕/り型商速増殖炉の中間熱交換器の場合
を例にとって説明鳴る。wJ1図において、1は原子炉
容器、2はルーフスラブ、3は中間熱交換器で、フラン
ジ4を介してルーフスラブ2に吊型支持され、原子炉容
器1中の液体ナトリウム中に浸漬されている。この中間
熱交換器3の底に電防振器5が設けられ、原子炉容器1
側に固設されている支持構造物6に支持され工いる。前
記防振器5は第2図に示す如く中間熱交換器3の底に1
@L付けたシリンダT内に両側jにロッド8を有するピ
ストン9を左右に進退可能に設け、シリンダ7の両側端
のカバー10を貫通したロッド80両端には当て板11
を固設し、ピストン9の外周面及びシリンダ7のカバー
iuのロッド貫通孔の内周面をラビリンス構造12とな
し、シリンダ7の一方の室には真空引きライン13を連
通し、真空引きライン13は中間熱交換器3に沿って原
子炉容器1外に導き、真空ポンプ(図示省略)に連通し
たものである。尚、ロッド8の一端の当て板11から他
端の当て板11までの長さは原子炉容器1叫に固設され
ている支持構造物6の内径よりも僅かに短くしである。
An example of an earthquake-resistant support structure for equipment installed in a nuclear reactor according to the present invention will be explained below, taking as an example the case of an intermediate heat exchanger for a commercial speed breeder reactor. In the wJ1 diagram, 1 is a reactor vessel, 2 is a roof slab, and 3 is an intermediate heat exchanger, which is suspended from the roof slab 2 via a flange 4 and immersed in liquid sodium in the reactor vessel 1. There is. An electric vibration isolator 5 is provided at the bottom of the intermediate heat exchanger 3, and the reactor vessel 1
It is supported by a support structure 6 fixed to the side. The vibration isolator 5 is installed at the bottom of the intermediate heat exchanger 3 as shown in FIG.
A piston 9 having a rod 8 on both sides j is provided in a cylinder T attached with @L so as to be movable left and right, and a rod 80 passing through a cover 10 at both ends of the cylinder 7 has a backing plate 11 at both ends.
A labyrinth structure 12 is formed on the outer peripheral surface of the piston 9 and the inner peripheral surface of the rod through hole of the cover iu of the cylinder 7, and a vacuum line 13 is connected to one chamber of the cylinder 7. Reference numeral 13 leads the reactor to the outside of the reactor vessel 1 along the intermediate heat exchanger 3 and communicates with a vacuum pump (not shown). The length from the backing plate 11 at one end of the rod 8 to the backing plate 11 at the other end is slightly shorter than the inner diameter of the support structure 6 fixed to the reactor vessel 1.

また、中間熱交換器3が据付けられた後、運転前[yA
子炉容器1に冷却材である液体ナトリウムが充填された
時、シリンダ1に接続された真空引きライン13t−通
して真空ポンプ(図示省略)で真空引きが行われ、シリ
ンダ7内に両端のカバー10とロッド8との間のラビリ
ンス構造12から徐々液体す) IJウムが充填され、
充填後ルーフスラブ2の上方にある真空引きライン13
の止弁14は閉じられる。
In addition, after the intermediate heat exchanger 3 is installed and before operation [yA
When the sub-furnace vessel 1 is filled with liquid sodium, which is a coolant, a vacuum pump (not shown) performs evacuation through the evacuation line 13t connected to the cylinder 1, and the cylinder 7 is evacuated with covers at both ends. The labyrinth structure 12 between the rod 8 and the labyrinth structure 10 is gradually filled with IJum,
Vacuum line 13 above the roof slab 2 after filling
The stop valve 14 is closed.

次に上記構成の耐震支持構造の作用について説明する。Next, the operation of the seismic support structure having the above configuration will be explained.

中間熱交換器3は自重や温度上昇による熱膨張によって
、原子炉容器1と原子炉容器半径方向に相対変位が生じ
る。その為、据付時から低温停止時、定格運転時に至る
温度上昇にしたがって中間熱交換器3の中心と支持構造
物6が相対的に変位する。
The intermediate heat exchanger 3 undergoes relative displacement in the radial direction of the reactor vessel 1 and the reactor vessel due to its own weight and thermal expansion due to temperature rise. Therefore, the center of the intermediate heat exchanger 3 and the support structure 6 are displaced relative to each other as the temperature rises from the time of installation to the time of low-temperature shutdown and the time of rated operation.

このように中間熱交換器3が熱膨張によって移動すると
、該中間熱交換器3の底に取付けられている防振器5の
シリンダ7が移動することになる。その結果、シリンダ
7とピストン9間を少量づつ液体ナトリウムが移動する
ことになり、抵抗力を発生させることな\、シリンダγ
がピストン9に対し相対的に移動する。地震時はシリン
ダ7が急速に移動する為、液体ナトリウムがシリンダ7
とピストン9間を移動する時に大きな抵抗力が発生し、
中間熱交換器3に対し制振力となって働く。
When the intermediate heat exchanger 3 moves due to thermal expansion in this way, the cylinder 7 of the vibration isolator 5 attached to the bottom of the intermediate heat exchanger 3 moves. As a result, liquid sodium moves between the cylinder 7 and the piston 9 little by little, without generating any resistance force.
moves relative to the piston 9. During an earthquake, cylinder 7 moves rapidly, so liquid sodium flows into cylinder 7.
A large resistance force is generated when moving between the piston 9 and the piston 9,
It acts as a damping force for the intermediate heat exchanger 3.

上記実施例の耐震支持構造に於ける防振器5は、中間熱
交換器3の底に取付けているが、中間熱交換器3の下部
側面の対称位置に取付けた場合は、第3図もしくは第4
図に示す如き構造の防振器5′となる。即ち、中間熱交
換器3Q下部側面もしくは下端面の対称位置に夫々シリ
ンダ7′全固定し、シリンダ7′内に他側にロッド8′
を南するピストン9′を摺動可能に設け、シリンダ7′
の他端のカバー1u′を貫通したロッド8′の先端に当
て板11′ヲ固設し、ピストン9′の外周面及びカバー
10′のロッド貫通孔の内周面をラビリンス構造12と
なし、シリンダ1′の中間熱交換器3側の室には真空引
きライン13を連通し、真空引きライン13は中間熱交
換器3の外側もしくは内側に沿って前記実施例と同様原
子炉容器1外に導き、真空ポンプ(図示省略)に連通し
、シリンダ7′の中間熱交換器3側の室内にはスプリン
グ15′ft装入して、常時ピストン9′ヲ一定の力で
押し、ロッド8′の先端の当て板11′ヲ支持構造物6
に当てる構造となしである。
The vibration isolator 5 in the seismic support structure of the above embodiment is attached to the bottom of the intermediate heat exchanger 3, but if it is attached at a symmetrical position on the lower side of the intermediate heat exchanger 3, Fourth
The vibration isolator 5' has a structure as shown in the figure. That is, the cylinders 7' are completely fixed at symmetrical positions on the lower side surface or the lower end surface of the intermediate heat exchanger 3Q, and the rods 8' are installed inside the cylinders 7' on the other side.
A piston 9' is slidably provided to the south of the cylinder 7'.
A cover plate 11' is fixed to the tip of the rod 8' that has passed through the cover 1u' at the other end, and a labyrinth structure 12 is formed on the outer peripheral surface of the piston 9' and the inner peripheral surface of the rod through hole of the cover 10'. A vacuum line 13 is connected to the chamber on the intermediate heat exchanger 3 side of the cylinder 1', and the vacuum line 13 is connected to the outside of the reactor vessel 1 along the outside or inside of the intermediate heat exchanger 3 as in the previous embodiment. The cylinder 7' is connected to a vacuum pump (not shown), and a 15' spring is inserted into the chamber on the intermediate heat exchanger 3 side of the cylinder 7', and the piston 9' is constantly pushed with a constant force. Tip plate 11' support structure 6
There is a structure that corresponds to that and one without.

この実施例の場合も中間熱交換器3が熱膨張によって移
動すると、該中間熱交換器3の下部側面に取付けられて
いる防振器5′のシリンダ1′が移動することになる。
In this embodiment as well, when the intermediate heat exchanger 3 moves due to thermal expansion, the cylinder 1' of the vibration isolator 5' attached to the lower side surface of the intermediate heat exchanger 3 moves.

その□結果、シリンタボ′とピストン9′間を少量づつ
液体ナトリウムが移動することになり、抵抗力を発生さ
せることなく、シリンダT′がピストン9′に対し相対
的に移動する。地震時はシリンダ7′が急速に移動する
為、液体ナトリウムがシリンダ7′とピストン9′會移
動する時に大きな抵抗力が発生し、中間熱交換器3に対
し制振力となって働く。
As a result, liquid sodium moves little by little between the cylinder tab' and the piston 9', and the cylinder T' moves relative to the piston 9' without generating any resistance. Since the cylinder 7' moves rapidly during an earthquake, a large resistance force is generated when the liquid sodium moves between the cylinder 7' and the piston 9', which acts as a damping force on the intermediate heat exchanger 3.

尚、防振器の取付位&、方向は、前記実施例に限定され
るものではなく、中間熱交換器の移動方向や直角方向に
取付けても耐震上有効である0 以上の説明で判るように本発明による原子炉内設置機器
の耐震支持構造は、原子炉冷却材を動作流体とするダッ
シュポット形式の防振器を原子炉内設!機器に直接取付
け、これに対応して原子炉内に支持構造物金膜けたもの
であるから、熱膨張による機器と支持構造物間の相対変
位を前記防振器により吸収でき、また地震時には防振器
に大きな抵抗力が生じ、原子炉内設置機器に対し制振力
となって働くので、極めて有効な耐震支持構造と云える
。また本発明の耐震支持構造に於ける防振器は、前述の
如く原子炉冷却材を動作流体とするダッシュポット形式
の単純な構造であるから、動作が確実で故障することが
無く、その上原子炉内設置機器に直接取付けであるので
、該設置機器の卓出時に検査することができる等の効果
がある。
Note that the mounting position and direction of the vibration isolator is not limited to the above example, and it is effective for earthquake resistance even if it is mounted in the moving direction of the intermediate heat exchanger or in the right angle direction. The seismic support structure for equipment installed in a nuclear reactor according to the present invention includes a dashpot-type vibration isolator that uses reactor coolant as the working fluid inside the reactor! Since it is attached directly to the equipment and the support structure is covered with a corresponding gold film inside the reactor, the vibration isolator can absorb the relative displacement between the equipment and the support structure due to thermal expansion, and it also provides protection in the event of an earthquake. It can be said to be an extremely effective earthquake-resistant support structure because a large resistance force is generated in the vibrator, which acts as a damping force for the equipment installed inside the reactor. Furthermore, since the vibration isolator in the seismic support structure of the present invention has a simple dashpot-type structure using reactor coolant as the working fluid as described above, it operates reliably and does not malfunction. Since it is directly attached to the equipment installed in the reactor, it has the advantage of being able to inspect the installed equipment when it is taken out.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による原子炉内設置機器の耐震支持構造
の一実施例を示す図、第2図は第1図のAs拡太縦断面
図、第3図及び第4図は本発明の耐震支持構造の他の実
施例全示す要部拡大縦断面図である。 1・・・原子炉容器 2・・・ルーフスラブ 3・・・
中間熱交換器 4・・・フランジ 5,5′・・・防振
器6・・・支持構造物 7,7′・・・シリンダ 8,
8′・・・ロッド 9,9’・・・ピストン 10 、
1 (j’・・・カバー 1i、ii’ ・・・当て板
 12・・・ラビリンス構造 13・・・真窒引きライ
ン 14・・・止弁 15・・・スプリング 第1図 第2図 第3図
FIG. 1 is a diagram showing an embodiment of an earthquake-resistant support structure for equipment installed in a nuclear reactor according to the present invention, FIG. 2 is an enlarged vertical cross-sectional view of FIG. 1, and FIGS. FIG. 7 is an enlarged vertical cross-sectional view of main parts showing all other embodiments of the earthquake-resistant support structure. 1... Reactor vessel 2... Roof slab 3...
Intermediate heat exchanger 4...Flange 5, 5'...Vibration isolator 6...Support structure 7,7'...Cylinder 8,
8'...Rod 9, 9'...Piston 10,
1 (j'... Cover 1i, ii'... Backing plate 12... Labyrinth structure 13... True nitrogen drawing line 14... Stop valve 15... Spring Figure 1 Figure 2 Figure 3 figure

Claims (1)

【特許請求の範囲】[Claims] 原子炉内に設置される機器に、原子炉冷却材を動作流体
とするダッシュポット形式の防振器を取付け、これに対
応して原子炉内に支持構造物を設け1成る原子炉内設置
機器の耐震支持構造。
A dashpot-type vibration isolator that uses reactor coolant as a working fluid is attached to equipment installed in a nuclear reactor, and a support structure is provided in the reactor correspondingly. seismic support structure.
JP58228646A 1983-12-02 1983-12-02 Earthquake-resistant support structure of apparatus installed in nuclear reactor Pending JPS60120293A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58228646A JPS60120293A (en) 1983-12-02 1983-12-02 Earthquake-resistant support structure of apparatus installed in nuclear reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58228646A JPS60120293A (en) 1983-12-02 1983-12-02 Earthquake-resistant support structure of apparatus installed in nuclear reactor

Publications (1)

Publication Number Publication Date
JPS60120293A true JPS60120293A (en) 1985-06-27

Family

ID=16879594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58228646A Pending JPS60120293A (en) 1983-12-02 1983-12-02 Earthquake-resistant support structure of apparatus installed in nuclear reactor

Country Status (1)

Country Link
JP (1) JPS60120293A (en)

Similar Documents

Publication Publication Date Title
JPS60120293A (en) Earthquake-resistant support structure of apparatus installed in nuclear reactor
US3775250A (en) Device for suspending and supporting a reactor pressure vessel in a nuclear power plant
JPS5813157Y2 (en) Buffer support equipment for structures installed in highly radioactive atmospheres
JPS5813159Y2 (en) Buffer support device used in a highly radioactive atmosphere
JPS58178290A (en) Reactor container structure
JPS6214087A (en) Drive for control rod
JPS6148789A (en) Supporter for core of nuclear reactor
JPS5811688A (en) Earthquake-proof supporting structure of vessel
JPH0131158B2 (en)
JPS6195285A (en) Support structure of circulating pump of fast breeder reactor
JPS6370195A (en) Tank type fast breeder reactor
JPS61110085A (en) Tank type fast breeder reactor
JPS63246699A (en) Support structure of nuclear-reactor in-core structure
JPS6184594A (en) Earthquake-proof supporter for reactor vessel
JPS59151092A (en) Reactor
JPS60174403A (en) Supporter for long-sized structure
JPS63139295A (en) Nuclear reactor housing
JPS607387A (en) Support structure of core of nuclear reactor
JPS6131997A (en) Vessel for high-temperature liquid
JPS60165586A (en) Nuclear reactor
JPS59151094A (en) Reactor
JPS599588A (en) Upper reactor core mechanism
JPS59164979A (en) Vibration proof device of equipment in reactor primary cooling system
JPS585695A (en) Structure for supporting stand pipe of reactor pressure vessel
JPS6013286A (en) Supporter for nuclear reactor containing vessel