JPS6011957B2 - Gasification method for solid carbon feedstock containing hydrocarbons - Google Patents
Gasification method for solid carbon feedstock containing hydrocarbonsInfo
- Publication number
- JPS6011957B2 JPS6011957B2 JP2504478A JP2504478A JPS6011957B2 JP S6011957 B2 JPS6011957 B2 JP S6011957B2 JP 2504478 A JP2504478 A JP 2504478A JP 2504478 A JP2504478 A JP 2504478A JP S6011957 B2 JPS6011957 B2 JP S6011957B2
- Authority
- JP
- Japan
- Prior art keywords
- reaction
- heat
- water gas
- solid carbon
- heat medium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C1/00—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
- C10J3/57—Gasification using molten salts or metals
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0913—Carbonaceous raw material
- C10J2300/093—Coal
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0953—Gasifying agents
- C10J2300/0956—Air or oxygen enriched air
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0953—Gasifying agents
- C10J2300/0959—Oxygen
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0953—Gasifying agents
- C10J2300/0973—Water
- C10J2300/0976—Water as steam
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0983—Additives
- C10J2300/0996—Calcium-containing inorganic materials, e.g. lime
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
- Carbon And Carbon Compounds (AREA)
Description
【発明の詳細な説明】
本発明は、溶融無機酸化物による石炭等の炭化水素を含
有する固体炭素原料(以下、いまいま単に「固体炭素原
料」という)のガス化法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for gasifying a solid carbon raw material containing hydrocarbons such as coal (hereinafter simply referred to as "solid carbon raw material") using a molten inorganic oxide.
石油系炭化水素資源の埋蔵量の限界のため、固体炭素原
料、特に石炭をガス化して燃料あるいは化学原料を得る
ためのプロセスの開発が世界各国で進められている。Due to the limited reserves of petroleum-based hydrocarbon resources, countries around the world are developing processes for gasifying solid carbon materials, especially coal, to obtain fuel or chemical raw materials.
そのために従来から行われている代表的な方法の一つは
コークス化炉を用いる熱分解(乾留)法であるが、それ
以外の方法の一つとして溶融床方式がある。この溶融床
方式は、高温の溶融熱媒体中に、石炭とともに水蒸気、
酸素、空気などのガス化剤を導入してガス化するもので
ある。One of the typical methods conventionally used for this purpose is the thermal decomposition (carbonization) method using a coking oven, but another method is the molten bed method. In this molten bed method, steam and coal are mixed together in a high-temperature molten heat medium.
Gasification is performed by introducing a gasification agent such as oxygen or air.
水蒸気を導入した場合は水性ガス反応により、COと日
2を主成分とする水性ガスが生成し、酸素等を導入する
ときは部分燃焼によりCOを主成分とする燃料ガスが得
られる。また水蒸気と酸素等を同時に導入して熱量のバ
ランスを探ることも行われている。そしてこの方式は、
固体炭素原料と熱媒体との接触状態がよいのでガス化速
度が大きい:固体炭素原料の性状のバラッキに対して適
合性を有するなどの優れた性質を有する。しかしながら
、このような溶融床方式により得られる生成ガスは、C
○、日2などを主成分とする低カロリーガスであり、こ
れをCO転化、メタネーション工程を通じて処理すれば
SNGと呼ばれる天然ガス相当の高カロリーガスに転化
させることができるものの、このような付加工程を要す
ること自体エネルギー的に必ずしも有利とはいえない。When water vapor is introduced, a water gas whose main components are CO and 2 is produced by a water gas reaction, and when oxygen or the like is introduced, a fuel gas whose main components are CO is obtained by partial combustion. In addition, attempts are being made to explore the balance of heat by introducing water vapor and oxygen at the same time. And this method is
The gasification rate is high because of the good contact state between the solid carbon raw material and the heat medium; it has excellent properties such as being compatible with variations in the properties of the solid carbon raw material. However, the produced gas obtained by such a molten bed method is
It is a low-calorie gas whose main components are CO2, etc., and if it is processed through a CO conversion and methanation process, it can be converted into a high-calorie gas called SNG, which is equivalent to natural gas. The fact that a process is required is not necessarily advantageous in terms of energy.
本発明は、上述したような溶融床方式の利点を維持しつ
つ、固体炭素原料から、より有用なガス燃料ならびに化
学合成原料をできる限り効率的に回収する方法を提供す
ることを目的とする。An object of the present invention is to provide a method for recovering more useful gas fuels and chemical synthesis raw materials from solid carbon raw materials as efficiently as possible while maintaining the advantages of the molten bed method as described above.
すなわち、石炭その他の固体炭素原料は、それ自体炭化
水素を含有する。そして、本発明者らの知見によれば溶
融熱媒体との直接接触に−より熱分解(乾留)した場合
、従釆の緩やかな熱分解反応とは様相を異にし約40〜
50%とかなりの高収率で、そのまま高カロリー燃料あ
るいは化学合成原料として使用し得る分解ガスおよび分
解油を生成する。そして残る残澄は、上記した水性ガス
反応の好適な原料となり得るものである。そして、固体
炭素原料について、まずできる限り熱分解反応を進行さ
せ、その後固体残湾について水性ガス反応を行うことに
より、全体として、より効率的な気体または液体炭素原
料の回収が可能であり、またこの際にも溶融床方式の接
触効率が高いという利点を有効に利用できる。そして、
いずれも吸熱反応である熱分解反応ならびに水性ガス反
応条件の維持に必要な熱媒体の加熱源は、熱媒体として
酸化に安定な無機酸化物を用いて、固体残澄を反応器中
で燃焼することにより発生熱量を有効に利用することが
出来る。本発明の溶融無機酸化物を熱媒体とする固体炭
素原料のガス化法は、上記の技術的思想に基づくもので
あり、より詳しくは下記の工程を含むことを特徴とする
。That is, coal and other solid carbon raw materials themselves contain hydrocarbons. According to the findings of the present inventors, when thermal decomposition (carbonization) is carried out by direct contact with a molten heat medium, the aspect is different from the slow thermal decomposition reaction of the secondary reactor, and the
At a considerably high yield of 50%, it produces cracked gas and cracked oil that can be used as high-calorie fuels or raw materials for chemical synthesis. The remaining liquid can serve as a suitable raw material for the water gas reaction described above. By first allowing the thermal decomposition reaction to proceed as much as possible for the solid carbon raw material, and then performing the water gas reaction on the solid residue, it is possible to recover the gaseous or liquid carbon raw material more efficiently as a whole. In this case as well, the advantage of the high contact efficiency of the molten bed method can be effectively utilized. and,
The heating source for the heat carrier necessary to maintain the conditions for the pyrolysis reaction and water gas reaction, both of which are endothermic reactions, uses an oxidation-stable inorganic oxide as the heat carrier, and burns the solid residue in the reactor. This allows the amount of heat generated to be used effectively. The method of gasifying a solid carbon raw material using a molten inorganic oxide as a heat medium according to the present invention is based on the above-mentioned technical concept, and more specifically includes the following steps.
‘1} 固体炭素原料の熱分解反応温度に置かれた反応
槽中の熱媒体浴に固体炭素原料を導入して熱媒体格との
直接接触下に分解し、分解ガスを回収するとともに熱媒
体裕中に固体残澄を残す工程、■ 固体残笹を部分的に
燃焼させて熱媒体を水性ガス反応温度まで加熱する工程
、および‘3’ 熱媒体中に水蒸気を導入して残る固体
残澄との間で水性ガス反応を行う工程。'1} The solid carbon raw material is introduced into the heat medium bath in the reaction tank placed at the thermal decomposition reaction temperature of the solid carbon raw material, decomposed in direct contact with the heat medium, and the cracked gas is recovered while the heat medium is heated. A process of leaving a solid residue in the heat exchanger, ■ A process of partially burning the solid residue and heating the heating medium to the water gas reaction temperature, and '3' A process of introducing water vapor into the heating medium and leaving a solid residue The process of carrying out a water gas reaction between
以下、図面を参照しつつ本発明を更に詳細に説明する。Hereinafter, the present invention will be explained in more detail with reference to the drawings.
第1図は、本発明の固体炭素原料のガス化法の反応槽の
一例の側断面図、第2図は後処理工程を含む装置例の工
程図である。本発明で、溶融状態で熱媒体として用いる
無機酸化物は、Si02、Na20、馬C、Ca0、M
g0、欧○、Pbo、B203、Znoなどの酸化物の
混合物であり、一部炭酸塩化しているものも用いられる
。FIG. 1 is a side sectional view of an example of a reaction tank in the solid carbon raw material gasification method of the present invention, and FIG. 2 is a process diagram of an example of the apparatus including a post-processing step. In the present invention, the inorganic oxides used as heat carriers in a molten state include Si02, Na20, MaC, Ca0, M
It is a mixture of oxides such as g0, O○, Pbo, B203, and Zno, and partially carbonated oxides are also used.
これら無機酸化物は、その組成を適当に選択することに
より、石炭の熱分解ならびに水性ガス反応温度である9
00〜150000で充分低い粘度(1倣oise以下
)の溶融熱媒体を与えることができる。例えば、次のよ
うな組成の混合物は、軟化点がいずれも70ぴ○以下で
あり、好ましい低粘度溶融熱媒体の例である(組成は重
量%)。表1
本発明の方法は、固定炭素、揮発分、灰分、その他の含
有量も含めて幅広い性状を有する固体炭素原料を使用す
ることができる。By appropriately selecting the composition of these inorganic oxides, the thermal decomposition of coal and water gas reaction temperature can be adjusted to 9.
00 to 150,000, it is possible to provide a molten heat medium with a sufficiently low viscosity (1 oise or less). For example, mixtures having the following compositions all have softening points of 70 pi or less and are examples of preferred low-viscosity melting heat transfer media (compositions are expressed in weight %). Table 1 The method of the present invention can use solid carbon raw materials having a wide range of properties including fixed carbon, volatile content, ash content, and other contents.
一般に10〜5値雲量%の揮発分(JISM8812、
925qCまでにガス化する成分)を有する石炭が好ま
しいがこの程度の揮発分を含有する石油グリーンコーク
ス、石油系重質油、石炭、オイルシェール、タールサン
ド等から得られる低揮発分ピッチも菱入原料となし得る
。以下は典型的な袋入原料である石炭の性状の例である
。第2表
*乾燥炭の灰分を除いた部分を100として。Generally, volatile content of 10 to 5-value cloud amount% (JISM8812,
Coal having a component that gasifies up to 925 qC is preferable, but low-volatile pitch obtained from petroleum green coke, petroleum heavy oil, coal, oil shale, tar sand, etc. containing this level of volatile content is also suitable. Can be used as raw material. The following is an example of the properties of coal, which is a typical bagged raw material. Table 2 *The part of dry charcoal excluding ash content is taken as 100.
以下、このような原料炭のガス化を例にとって本発明の
実施の態様を説明する。第1図に従い、900〜150
0qo、好ましくは1100〜1300q0、の熱分解
反応温度に維持された熱媒体1を内在させた反応槽2中
に粉砕された原料炭を配管3から装入する。Hereinafter, embodiments of the present invention will be described by taking gasification of raw coal as an example. According to Figure 1, 900-150
Pulverized raw coal is charged from a pipe 3 into a reaction tank 2 containing a heat medium 1 maintained at a thermal decomposition reaction temperature of 0 qo, preferably 1100 to 1300 q0.
この粉砕炭の装入は熱分解ないいま水性ガス反応生成ガ
スを循環させてこれにより吹き込むか、あるいは粉砕炭
にその20〜50重量%の油(たとえば、本発明方法に
より得られる熱分解留出油、石油系減圧残澄油などの重
質油)を混合してスラリー化して導入する方法が好適に
用いられる。反応槽2中の熱媒体量は、接触時間ならび
に熱分解反応継続時間の観点から原料炭装入量lk9′
hrに対し、12k9以上とすることが好ましい。これ
により原料炭の約45〜55重量%のCH4に富む分解
ガスならびに分解油が生成し、約45〜55重量%のコ
ークス固体残澄が生成する。The pulverized coal may be charged by pyrolysis or by circulating and injecting water gas reaction product gas, or by blowing into the pulverized coal 20 to 50% by weight of oil (e.g., pyrolysis distillate obtained by the method of the present invention). A method of mixing heavy oil such as oil, petroleum-based vacuum residual oil, etc. to form a slurry and introducing the slurry is preferably used. The amount of heat medium in the reaction tank 2 is determined based on the raw coal charge amount lk9' from the viewpoint of contact time and thermal decomposition reaction duration time.
It is preferable to set it to 12k9 or more with respect to hr. This produces about 45-55% by weight of the raw coal of CH4-rich cracked gas and cracked oil, and about 45-55% by weight of coke solid residue.
反応の継続に伴い熱媒体温度が低下し、熱媒体裕中にコ
ークス質が蓄積してくる。このため、原料炭の装入は、
格温が50〜300℃、好ましくは100〜200qo
、低下した場合、あるいは、生成コークス質が浴の粘度
を増加させるのでコークス質固体残績が熱媒体量の8重
量%に達する前の段階で停止する。このため、熱媒体浴
は、この温度低下をも考慮して初期温度として1100
00〜1300o○を採用するのが好ましい。次いで低
下した沿線を、蓄積したコークス質固体残澄の一部燃焼
により、1000〜1500つ0、好ましくは1100
〜1300午○の水性ガス反応温度まで加熱する。As the reaction continues, the heat medium temperature decreases and coke builds up in the heat medium. For this reason, charging of coking coal is
The temperature is 50-300℃, preferably 100-200qo
, or if the produced coke increases the viscosity of the bath, the process is stopped before the coke solid residue reaches 8% by weight of the heating medium amount. Therefore, the initial temperature of the heat medium bath is set to 1100, taking this temperature drop into account.
It is preferable to adopt 00 to 1300o○. Next, the reduced railway line area is reduced to 1000 to 1500, preferably 1100 by partially burning the accumulated coking solid residue.
Heat to water gas reaction temperature of ~1300 pm.
固体機笹の燃焼は、配管4から空気ないいま酸素を吹き
込んで行うが、必要に応じて、反応槽中の俗1より上部
に配置したノズル5を用いて燃料を燃焼することもでき
る。加熱は、生成コークス質の約50〜7の重量%に相
当するコークス質の燃焼によって行えるが、上述したよ
うにこの量はノズル5における補助燃焼により減少する
ことができる。格温が水性ガス反応の温度まで回復した
ら、コークス質固体残湾の燃焼を停止し、配管4から過
熱水蒸気を導入して、固体残澄との間で水性ガス反応を
行わせる。Combustion of the solid bamboo is carried out by blowing air or oxygen through the pipe 4, but if necessary, the fuel can also be combusted using the nozzle 5 disposed above the pipe 1 in the reaction tank. Heating can be achieved by burning coke corresponding to about 50-7% by weight of the produced coke, but as mentioned above this amount can be reduced by auxiliary combustion in nozzle 5. When the temperature has recovered to the water gas reaction temperature, combustion of the coking solid residue is stopped, and superheated steam is introduced from the pipe 4 to cause a water gas reaction with the solid residue.
これにより、およその組成として&52容量%、C04
舷容量%、C0滋容量%の組成を有する水性ガスを、コ
ークス質lko当り約州わの割合で得ることができる。
水性ガス反応の進行に伴い、浴温が低下するが、100
0℃、好ましくは1100qoに達するまでに水性ガス
反応を終了させる。残存コークス質の燃焼および水性ガ
ス反応の他の実施態様として過熱水蒸気とともに酸素を
導入してコークス質の部分燃焼を行い、格温の低下を防
止することができる。一例として原料炭の約55重量%
の残存コークス質(原料炭に対し約4重量%の灰分を含
む)の約1箱重量%を水性ガス反応で消費する場合、コ
ークス質lkg当り、たとえば150℃の水蒸気3k9
、02ぶれを用いることができる。水性ガス反応終了後
、未反応コークス質を空気を配管4から吹き込むことに
より燃焼して、また必要により/ズル5により燃焼を燃
焼させて、水性ガス反応により低下した俗温を熱分解反
応温度まで回復させる。This gives an approximate composition of &52% by volume, C04
Water gas having a composition of % by volume and % by volume of C0 can be obtained at a rate of about 1.5 kg per coke.
As the water gas reaction progresses, the bath temperature decreases, but 100
The water gas reaction is completed by the time the temperature reaches 0°C, preferably 1100 qo. As another embodiment of the combustion of residual coke and the water gas reaction, oxygen can be introduced together with superheated steam to partially burn the coke and prevent the temperature from decreasing. As an example, about 55% by weight of coking coal
If about 1 box weight % of the remaining coke (containing about 4 weight % ash content based on raw coal) is consumed in a water gas reaction, for example, 3 k9 of steam at 150°C per 1 kg of coke
, 02 blur can be used. After the water gas reaction is completed, the unreacted coke is combusted by blowing air through the pipe 4, and if necessary, the combustion is combusted by the /zuru 5 to bring the ordinary temperature lowered by the water gas reaction to the pyrolysis reaction temperature. Recover.
なお、水性ガス反応において部分燃焼を併用し、またこ
の水性ガス反応中でコークス費を完全に消費すれば、水
性反応後に独立の残存コークス質燃焼工程を設けなくと
も熱媒体俗温を維持し、直ちに熱分解反応に移行するこ
とができる。コークス質の燃焼後、炭種によって異なる
が、原料炭の約3〜3屯重量%、通常5〜1の重量%の
灰分が熱煤体浴中に混入する。この灰分は、Si022
5〜6の重量%、AI20315〜35重量%、Fe2
035〜25重量%、Ca01〜15重量%の他に少量
のMg0、Na20、K20などを含むものであり、融
点は一般に1200〜1500ooの間にある。従って
、このような灰分は本発明において溶融熱媒体の一部を
占めることができる。しかし裕中に蓄積される灰分につ
いては、格のレベルと組成変化に応じて適宜反応槽側壁
または底部に設けた配管6または7から熱媒体を抜き出
し、また溶融熱媒体供給ノズル8から新規な無機酸化物
を供給する。上記方法によって生成したガス状生成物な
らびに後処理ガスは、通常の後処理系により処理される
。In addition, if partial combustion is used in the water gas reaction and the coke cost is completely consumed during the water gas reaction, the temperature of the heating medium can be maintained without the need for an independent residual coke combustion process after the water gas reaction. The thermal decomposition reaction can proceed immediately. After combustion of the coking, ash is mixed into the hot soot bath, depending on the type of coal, about 3 to 3 tonne weight percent of the raw coal, usually 5 to 1 weight percent. This ash content is Si022
5-6 wt%, AI20315-35 wt%, Fe2
In addition to 035 to 25% by weight and 01 to 15% by weight of Ca, it contains small amounts of Mg0, Na20, K20, etc., and its melting point is generally between 1200 and 1500oo. Therefore, such ash can occupy a part of the molten heat transfer medium in the present invention. However, regarding the ash content accumulated in the furnace, the heating medium is extracted from the piping 6 or 7 provided on the side wall or bottom of the reaction tank as appropriate depending on the grade level and composition change, and the new inorganic Supply oxide. The gaseous products produced by the above method as well as the after-treatment gas are treated by conventional after-treatment systems.
第2図は、このような後処理系を含めた本発明実施装置
の一例の工程図である。反応槽2からの生成ガスは配管
9より、まず熱交換器10に入り、ここで廃熱を回収す
るとともにその底部で凝縮した高沸点分解蟹出油を11
より回収し、次い0で熱交換器10からの排出ガスは、
凝縮器12に入り、ここで主として熱分解工程中で生成
する軽質分解油ならびに水性ガス反応工程での未反応水
蒸気を液体生成物回収装置13により回収する。凝縮器
12の出口ガスは、本発明方法の各工程において著しく
異なる組成を有する。従って、熱分解工程からの排出ガ
スは、熱分解ガス回収装置14に、燃焼排ガスは排ガス
処理系ないし大気放出系15に、水性ガス反応工程から
の排出ガスは水性ガス回収装置16にそれぞれ回収され
る。反応槽の圧力は、このような後処理系での圧力損失
を考慮して、常圧〜10気圧程度の圧力が採用される。
なお、上記の例においては反応槽が一糟であるため、工
程からの生成物が経時的に一定しないが、反応槽を複数
基並列することにより、経時的変化はかなり平滑化し得
る。FIG. 2 is a process diagram of an example of an apparatus for implementing the present invention including such a post-treatment system. The generated gas from the reaction tank 2 first enters the heat exchanger 10 through the pipe 9, where the waste heat is recovered and the high boiling point decomposed crab oil condensed at the bottom is transferred to the heat exchanger 10.
The exhaust gas from the heat exchanger 10 is recovered from the
The liquid product enters the condenser 12, where light cracked oil mainly produced during the pyrolysis process and unreacted water vapor from the water gas reaction process are recovered by a liquid product recovery device 13. The outlet gas of the condenser 12 has a significantly different composition in each step of the process according to the invention. Therefore, the exhaust gas from the pyrolysis process is collected in the pyrolysis gas recovery device 14, the combustion exhaust gas is collected in the exhaust gas treatment system or atmospheric release system 15, and the exhaust gas from the water gas reaction process is collected in the water gas recovery device 16. Ru. The pressure in the reaction tank is from normal pressure to about 10 atm, taking into consideration the pressure loss in the post-treatment system.
In the above example, since there is only one reaction tank, the product from the process is not constant over time, but by arranging a plurality of reaction tanks in parallel, changes over time can be considerably smoothed out.
上記本発明方法により、原料炭(三池炭)を処理する場
合の原料炭1のn当りの物質収支の一例は下記の通りで
ある。An example of the material balance per n of raw coal 1 when raw coal (Miike charcoal) is treated by the method of the present invention is as follows.
(原料炭は熱分解ガスを循環して反応槽中に装入するが
、その熱分解ガスの寄与分は以下の表からは除いてある
。)熱分解油 生成量 72k
g熱分解ガス 〃 517Nで(約381
k9)熱分解後残炭量(灰分を含まず) 511
k9燃焼炭量(熱分解後) 306k
g〃 (水性ガス反応後) 139k9水
蒸気導入量 201k9水性
ガス反応消費コークス量 66kg水性ガ
ス生成量 26州〆空気導入量
(熱分解後) 5431N〆〃 (水性
ガス反応後) 246洲で灰分生成量
36X9上記したように本発明の
固体炭素原料のガス化法においては、溶融無機酸化物を
熱媒体とする同一反応槽において熱分解ならびに水性ガ
ス反応を逐次的に行い、更に生成コークス質を熱源とし
て有効に利用する方法を採用することにより以下のよう
な特徴が生ずる。(Coking coal is charged into the reaction tank by circulating pyrolysis gas, but the contribution of that pyrolysis gas is excluded from the table below.) Pyrolysis oil production amount 72k
g Pyrolysis gas 〃 517N (approx. 381
k9) Amount of remaining coal after pyrolysis (excluding ash) 511
K9 combustion coal amount (after pyrolysis) 306k
g〃 (After water gas reaction) 139k9 steam introduction amount 201k9 water gas reaction consumption coke amount 66kg water gas production amount
36 By adopting a method of effective utilization, the following characteristics arise.
‘11 高温で安定である溶融無機酸化物を熱媒体とし
て用い、良好な流動性を示す状態で固体炭素原料と直接
接触させるので処理効率が高い。'11 Processing efficiency is high because a molten inorganic oxide that is stable at high temperatures is used as a heat medium and brought into direct contact with the solid carbon raw material while exhibiting good fluidity.
■ 特に最初の熱分解工程での高い接触効率のため、化
学原料としてならびに高カロリー燃焼として特に有用な
分解ガス、分解油を原料炭に対して高い割合で回収する
ことができる。‘31 熱分解後の残留コークス質を原
料として水性ガス反応を行うことにより、最大限のガス
化が可能となる。■ Due to the high contact efficiency, especially in the first pyrolysis step, cracked gas and cracked oil, which are particularly useful as chemical raw materials and for high-calorie combustion, can be recovered in a high ratio relative to coking coal. '31 Maximum gasification is possible by performing a water gas reaction using residual coke after thermal decomposition as a raw material.
■ 生成ガスは、いずれも個別的に回収するためその特
性を生かして有効に利用することができる。■ Since all produced gases are recovered individually, they can be used effectively by taking advantage of their characteristics.
‘51 熱分解後の価値の低下した残留コークス質を部
分燃焼して、熱分解反応ならびに水性ガス反応の熱源と
して有効に利用するため熱効率が良い。'51 Thermal efficiency is high because residual coke whose value has decreased after pyrolysis is partially combusted and effectively used as a heat source for pyrolysis reactions and water gas reactions.
‘61 熱媒体が酸化に対して安定であるため、反応槽
内で残留コークス質を燃焼しても変質することがない。'61 Since the heat transfer medium is stable against oxidation, even if residual coke is burned in the reaction tank, it will not change in quality.
そして生成する灰分は、この熱媒体と同質のため熱媒体
の一部としてそのまま使用可能である。The generated ash is of the same quality as the heating medium, so it can be used as is as part of the heating medium.
第1図は本発明のガス化法を実施するための反応槽の一
例の側断面図、第2図は本発明のガス化法を実施するた
めの後処理工程を含む装置例の工程図である。
1・・・・・・溶融熱媒体、2・・・・・・反応槽、3
・・・・・・原料炭装入配管、4・・・・・・水蒸気な
らびに酸素、空気導入管、5・・・・・・燃料燃焼ノズ
ル、6,7…・・・熱媒体抜き出し配管、8・・・・・
・熱媒体供給ノズル、9…・・・生成ガス排出管、10
・・・・・・熱交換器、12・・・・・・凝縮器、14
・・・・・・熱分解ガス回収装置、15・・・・・・燃
焼ガス処理系、16・・・・・・水性ガス回収装置。
多J図巻2図FIG. 1 is a side sectional view of an example of a reaction tank for implementing the gasification method of the present invention, and FIG. 2 is a process diagram of an example of an apparatus including a post-processing step for implementing the gasification method of the present invention. be. 1... Melting heat medium, 2... Reaction tank, 3
... Coking coal charging pipe, 4 ... Steam, oxygen and air introduction pipe, 5 ... Fuel combustion nozzle, 6, 7 ... Heat medium extraction pipe, 8...
・Heating medium supply nozzle, 9...Produced gas discharge pipe, 10
... Heat exchanger, 12 ... Condenser, 14
... Pyrolysis gas recovery device, 15 ... Combustion gas treatment system, 16 ... Water gas recovery device. Multi J picture scroll 2
Claims (1)
化水素含有固体炭素原料のガス化方法。 (1) 炭化水素を含有する固体炭素原料の熱分解反応
温度に置かれた反応槽中の熱媒体浴に該固体炭素原料を
導入して熱媒体浴との直接接触下に分解し、分解ガスを
回収するとともに熱媒体浴中に固体残渣を残す工程、(
2) 固体残渣を部分的に燃焼させて熱媒体を水性ガス
反応温度まで加熱する工程、および(3) 熱媒体中に
水蒸気を導入して残る固体残渣との間で水性ガス反応を
行う工程。[Scope of Claims] 1. A method for gasifying a hydrocarbon-containing solid carbon raw material using a molten inorganic oxide as a heat medium, which includes the following steps. (1) The solid carbon raw material containing hydrocarbons is introduced into a heat medium bath in a reaction tank placed at the thermal decomposition reaction temperature, and is decomposed in direct contact with the heat medium bath to produce cracked gas. The process of recovering solid residue and leaving a solid residue in the heat medium bath (
2) Partial combustion of the solid residue to heat the heat transfer medium to a water gas reaction temperature; and (3) Step of introducing water vapor into the heat transfer medium to perform a water gas reaction with the remaining solid residue.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2504478A JPS6011957B2 (en) | 1978-03-07 | 1978-03-07 | Gasification method for solid carbon feedstock containing hydrocarbons |
GB7828591A GB2016036A (en) | 1978-03-07 | 1978-07-03 | Gasification of solid carbonaceous materials |
FR7820210A FR2419316A1 (en) | 1978-03-07 | 1978-07-06 | METHOD AND DEVICE FOR THE GASIFICATION OF SOLID CARBON MATERIALS |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2504478A JPS6011957B2 (en) | 1978-03-07 | 1978-03-07 | Gasification method for solid carbon feedstock containing hydrocarbons |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS54118403A JPS54118403A (en) | 1979-09-13 |
JPS6011957B2 true JPS6011957B2 (en) | 1985-03-29 |
Family
ID=12154910
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2504478A Expired JPS6011957B2 (en) | 1978-03-07 | 1978-03-07 | Gasification method for solid carbon feedstock containing hydrocarbons |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPS6011957B2 (en) |
FR (1) | FR2419316A1 (en) |
GB (1) | GB2016036A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09178401A (en) * | 1995-12-26 | 1997-07-11 | Natl House Ind Co Ltd | Anchor bolt to anchor bolt gap measurement method and jig and scale reading jig used for it |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5699428A (en) * | 1980-01-12 | 1981-08-10 | Natl Res Inst For Metals | Preparation of acetylene and ethylene form solid carbon using hydrogen plasma |
DE3142888A1 (en) * | 1981-10-29 | 1983-05-11 | M.A.N. Maschinenfabrik Augsburg-Nürnberg AG, 8000 München | "METHOD AND DEVICE FOR HYDROGENATING GASIFICATION OF COAL" |
DE3231531A1 (en) * | 1982-03-05 | 1983-09-15 | Klöckner-Humboldt-Deutz AG, 5000 Köln | METHOD AND REACTOR FOR GENERATING GAS CONTAINING ESSENTIAL CO AND H (DOWN ARROW) 2 (DOWN ARROW) |
FR2929955B1 (en) * | 2008-04-09 | 2012-02-10 | Saint Gobain | GASIFICATION OF COMBUSTIBLE ORGANIC MATERIALS |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE897310C (en) * | 1948-12-07 | 1953-11-19 | Roman Dipl-Ing Rummel | Method and device for the gasification of fuels |
DE1044333B (en) * | 1952-06-19 | 1958-11-20 | Roman Rummel Dipl Ing | Process for generating high-heating gas by gasifying fuels in a slag bath |
US2953445A (en) * | 1955-08-11 | 1960-09-20 | Rummel Roman | Gasification of fuels and decomposition of gases |
BE789722A (en) * | 1971-10-05 | 1973-04-05 | Exxon Research Engineering Co | PROCESS FOR CRACKING A HYDROCARBON CHARGE |
-
1978
- 1978-03-07 JP JP2504478A patent/JPS6011957B2/en not_active Expired
- 1978-07-03 GB GB7828591A patent/GB2016036A/en not_active Withdrawn
- 1978-07-06 FR FR7820210A patent/FR2419316A1/en not_active Withdrawn
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09178401A (en) * | 1995-12-26 | 1997-07-11 | Natl House Ind Co Ltd | Anchor bolt to anchor bolt gap measurement method and jig and scale reading jig used for it |
Also Published As
Publication number | Publication date |
---|---|
JPS54118403A (en) | 1979-09-13 |
FR2419316A1 (en) | 1979-10-05 |
GB2016036A (en) | 1979-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4187672A (en) | Apparatus for converting carbonaceous material into fuel gases and the recovery of energy therefrom | |
US6298651B1 (en) | Power generation method and power generating apparatus | |
US8404910B2 (en) | Low oxygen biomass-derived pyrolysis oils and methods for producing the same | |
US9234146B2 (en) | Process for the gasification of heavy residual oil with particulate coke from a delayed coking unit | |
US4533438A (en) | Method of pyrolyzing brown coal | |
CN104232147B (en) | A kind of heavy oil lightweight treatment technique | |
CN102965131B (en) | Efficient and clean utilization technology for highly volatile young coal | |
JPS5844601B2 (en) | Bubunsanganiyorgouseigasno seizouhouhou | |
CN211394370U (en) | System for pyrolysis of junked tire of boiler flue gas of thermal power plant | |
CN102453510B (en) | Combined processing method of copyrolysis of heavy oil and coal | |
JPS585225B2 (en) | Method of heating coke particles | |
JPS60248793A (en) | Thermal decomposition of heavy oil | |
JP2006104261A (en) | Method for reforming hydrocarbon-based heavy raw material | |
US10526202B2 (en) | Process for production of high quality syngas through regeneration of coked upgradation agent | |
JPS6011957B2 (en) | Gasification method for solid carbon feedstock containing hydrocarbons | |
CN110283609B (en) | Pyrolysis-coking combined process and system for preparing coal tar by pyrolyzing pulverized coal | |
CN103189473A (en) | Method and equipment for producing coke during indirectly heated gasification | |
JP2853548B2 (en) | Vertical coal pyrolysis unit | |
CN102453511B (en) | Method for preparing synthesis gas by coupled processing of coal and heavy oil | |
CN102453512B (en) | Processing method for heavy oil and coal copyrolysis | |
CN104946282B (en) | A kind of handling process of smalls | |
CN102382668B (en) | Coal cracking and heavy oil cracking joint production method | |
JPS5940187B2 (en) | Light oil manufacturing method | |
CN114272859A (en) | System and method for efficiently and qualitatively utilizing carbon-containing substances | |
JP2024135577A (en) | Pyrolysis-type processing system and pyrolysis-type processing method |