JPS60119417A - Fluid measuring method by nmr imaging device - Google Patents

Fluid measuring method by nmr imaging device

Info

Publication number
JPS60119417A
JPS60119417A JP58227187A JP22718783A JPS60119417A JP S60119417 A JPS60119417 A JP S60119417A JP 58227187 A JP58227187 A JP 58227187A JP 22718783 A JP22718783 A JP 22718783A JP S60119417 A JPS60119417 A JP S60119417A
Authority
JP
Japan
Prior art keywords
magnetic field
blood vessel
fid signal
blood
applying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58227187A
Other languages
Japanese (ja)
Other versions
JPH0527052B2 (en
Inventor
Kimiharu Shimizu
公治 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP58227187A priority Critical patent/JPS60119417A/en
Publication of JPS60119417A publication Critical patent/JPS60119417A/en
Publication of JPH0527052B2 publication Critical patent/JPH0527052B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/704Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow using marked regions or existing inhomogeneities within the fluid stream, e.g. statistically occurring variations in a fluid parameter
    • G01F1/708Measuring the time taken to traverse a fixed distance
    • G01F1/716Measuring the time taken to traverse a fixed distance using electron paramagnetic resonance [EPR] or nuclear magnetic resonance [NMR]

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

PURPOSE:To visualize a fluid such as blood, etc. by determining a slice surface of a flow tube, and thereafter, executing a phase coding by applying an inclined magnetic field Gx and Gy, and extracting and FID signal at some time point of an inclined magnetic field Gz. CONSTITUTION:A static magnetic field H whose magnetic flux density is uniform is given to a blood vessel 10 of a living body going along an axis Z. Subsequently, an inclined magnetic field Gz being parallel to the axis Z and a 90 deg. pulse are applied to the blood vessel, and a specified part in the blood vessel is excited selectively. Next, phase information in the X direction and the Y direction of a slice surface is derived by applying inclined magnetic fields of Gx and Gy. Thereafter, an FID signal is extracted by inverting the inclined magnetic field Gz. The FID signal is sampled by giving a sampling pulse. Said procedures are repeated by a necessary number of times.

Description

【発明の詳細な説明】 (イ)産業−1−の利用分野 本発明はNMRイメージング装置による流体計測法に係
り、特に流体を直接可視化することにより、その速度、
径路を正確にめ得るNMRイメージング装置による流体
計測法に関する。
Detailed Description of the Invention (a) Field of Application in Industry-1- The present invention relates to a fluid measurement method using an NMR imaging device, and in particular, by directly visualizing a fluid, its velocity,
This invention relates to a fluid measurement method using an NMR imaging device that can accurately measure a path.

(ロ)従来技術 NMRイメージンク装置による流体計測法(例えば血流
速)では、励起パルスで励起した励起スライス面上のF
TD信号の強度より流速を算出する方法が採用されてい
る。
(b) In the fluid measurement method (for example, blood flow velocity) using a conventional NMR imaging device, F
A method is adopted in which the flow velocity is calculated from the intensity of the TD signal.

かかる方法では、計測する流体を直接に観察することが
不可能であり、またその計測精度にも問題がある。
With this method, it is impossible to directly observe the fluid to be measured, and there are also problems with the measurement accuracy.

第1図は前記従来のNMRイメージング装置による流体
計測法を説明するためのパルスシーケンス説明図である
。 以下、流体を血液としてまた、流管を血管として説
明してゆくものとする。
FIG. 1 is a pulse sequence explanatory diagram for explaining a fluid measurement method using the conventional NMR imaging apparatus. Hereinafter, the fluid will be described as blood and the flow tube as a blood vessel.

すなわち、血管である流管に平行してZ軸方向に一様な
磁束密度の磁場I(を与えておき、その血管に180°
パルスを与え、血液の核磁気モーメントを反転させ、所
定時間経過後に第1図に図示した90°パルス及び前記
スライス面を得るための傾斜磁場すなわち、2方向の変
位に比例した硼界強度を持ち、その磁界の方向が前記磁
場1−1の方向と平行な傾斜磁場Gzを与える。
In other words, a magnetic field I (with a uniform magnetic flux density) is applied in the Z-axis direction parallel to the flow tube, which is a blood vessel, and the blood vessel is
A pulse is applied to reverse the nuclear magnetic moment of the blood, and after a predetermined period of time, a gradient magnetic field is applied to obtain the 90° pulse and the slice plane shown in FIG. , provides a gradient magnetic field Gz whose direction is parallel to the direction of the magnetic field 1-1.

その後、前記スライス面におけるY方向の情報を得る目
的で傾斜磁場Gyすなわち、Y方向の変位に比例した磁
界強度を持ち、その磁界の方向が前記磁場Hの方向と平
行な傾斜磁場Gyを与えていわゆる位相コーディングを
行う。
Then, in order to obtain information in the Y direction on the slice plane, a gradient magnetic field Gy is applied, that is, a gradient magnetic field Gy having a magnetic field intensity proportional to the displacement in the Y direction and whose direction is parallel to the direction of the magnetic field H. So-called phase coding is performed.

その後、X方向の変位に比例した磁界強度を持ち、その
磁界の方向が前記磁場■1の方向と平行な傾斜磁場Gx
を印加してFID信号を取り出す方法である。この方法
はスピンワーブ法としてよく知られている。
After that, a gradient magnetic field Gx having a magnetic field strength proportional to the displacement in the X direction and whose direction is parallel to the direction of the magnetic field (1)
In this method, the FID signal is extracted by applying the FID signal. This method is well known as the spinwarb method.

ずなわち、GyではY方向の位相情報がまるのに対して
、GxではX方向の周波数情報がまるものであるが、従
来技術では前記Gx印加の時点でFID信号を取り出す
ものである。
That is, in Gy, the phase information in the Y direction is rounded, whereas in Gx, the frequency information in the X direction is rounded, but in the conventional technology, the FID signal is extracted at the time of applying the Gx.

かかる方法では、前記Gzは単にスライス面を決定する
のに使用するものであり、前記信号採取の時点ではGz
はすでに消滅しているから、血液そのものの移動に関連
する情報は得られず、血管をながれる血液(流体)部分
の濃淡が速度を表したものとみなしているのであり、そ
の測定の精度は低いものである。
In such a method, the Gz is simply used to determine the slice plane, and at the time of signal acquisition, the Gz
Since it has already disappeared, no information related to the movement of the blood itself can be obtained, and the density of the blood (fluid) flowing through the blood vessels is considered to represent the speed, and the accuracy of its measurement is low. It is something.

(ハ)目的 本発明は傾斜磁場Gzはスライス面決定にあづがること
は勿論のこと、血管を流れる血液の移動に関連する情報
、すなわぢ、血液の流速乃至ば血管の変位を可視像とし
て認識でき、その測定の精度を高くできるNMRイメー
ジング装置による流体計測法を提供することを目的とし
ている。
(C) Purpose The present invention provides that the gradient magnetic field Gz not only assists in determining the slice plane, but also information related to the movement of blood flowing through blood vessels, such as the flow velocity of blood or the displacement of blood vessels. It is an object of the present invention to provide a fluid measurement method using an NMR imaging device that can be recognized as a visual image and can improve the measurement accuracy.

(ニ)構成 本発明は90°パルスと傾斜磁場G2を加えて流管のス
ライス面を決定したあと、1頃斜磁場Gx及びGyを加
えて位相コーディングを行い、その後FJD信号を採取
する流体計測法であって、前記傾斜磁場Gzのある時点
において前記FID信号を採取するようにしたNMRイ
メージング装置による流体計測法である。
(D) Configuration The present invention applies a 90° pulse and a gradient magnetic field G2 to determine the slice plane of the flow tube, then applies gradient magnetic fields Gx and Gy around 1 to perform phase coding, and then collects the FJD signal. This is a fluid measurement method using an NMR imaging device in which the FID signal is collected at a certain point in the gradient magnetic field Gz.

(ホ)実施例 第2図は血管のスライス面を表す概念図、第3図は本発
明に係るNMRイメージング装置による流体計測法に使
用する各種パルスのシーケンス図である。
(E) Embodiment FIG. 2 is a conceptual diagram showing a slice plane of a blood vessel, and FIG. 3 is a sequence diagram of various pulses used in a fluid measurement method using an NMR imaging apparatus according to the present invention.

本発明を実施する場合の手順について説明する。The procedure for implementing the present invention will be explained.

■ Z軸に沿った生体の血管1oに磁束密度が一様な静
磁場■1を与える。すなわち血管1oは静磁場Hに平行
である。
■ Apply a static magnetic field ■1 with uniform magnetic flux density to the blood vessel 1o of the living body along the Z axis. That is, the blood vessel 1o is parallel to the static magnetic field H.

■ Z軸に平行な傾斜磁場Gzと90”パルスを血管に
加える。この際必要であれば、90”パルスを加エル前
に180°パルスを印加することもある。
■ A gradient magnetic field Gz parallel to the Z axis and a 90" pulse are applied to the blood vessel. At this time, if necessary, a 180° pulse may be applied before applying the 90" pulse.

■ ■と■の手順により、血管のうちの特定の部分が選
択的に励起される。
■ By the steps of ■ and ■, a specific part of the blood vessel is selectively excited.

■ ついで、Gx、 Gyの傾斜磁場を加えることによ
り、前記スライス面のX方向、Y方向の位相情報がまる
(2) Then, by applying gradient magnetic fields of Gx and Gy, the phase information in the X and Y directions of the slice plane is rounded.

■ その後、前記1項斜磁場Gzを反転する。(2) Thereafter, the first term oblique magnetic field Gz is reversed.

■ FID信号が採取されるが、この際重要なことは、
FID信号採取の時点においては前記傾斜磁場Gzば継
続している。
■ The FID signal is collected, but the important thing at this time is that
At the time of FID signal acquisition, the gradient magnetic field Gz continues.

■ サンプリングパルスを与え、FID信号をサンプリ
ングする。
■ Give a sampling pulse and sample the FID signal.

■ ■〜■の手順を必要回数繰り返す。例えばこの繰り
返しを64 X 64回、Gx、 Gyの位相コーディ
ングを変えながら反復するものとし、前記サンプリング
点を仮に64であるとすると、合計64 X 64 x
 54個のデータが得られる。
■ Repeat steps from ■ to ■ as many times as necessary. For example, if this repetition is repeated 64 x 64 times while changing the phase coding of Gx and Gy, and if the sampling point is 64, then the total is 64 x 64 x.
54 pieces of data are obtained.

■ 前記サンプリングデータを3次元フーリエ変換する
ことにより、3次元の画像が得られる。
(2) A three-dimensional image is obtained by subjecting the sampling data to three-dimensional Fourier transformation.

(へ)効果 以上■〜■の手順を考えると、スライス面の決定すなわ
ち、選択励起時点とFID信号の受信時点の時間差によ
り血管を流れる血液部分は第2図に図示するように、ス
ライス面から抜き出た形となり、その速度を可視像とし
て認識することができる。また、前記受信までの時間を
種々変えることにより、血液(流体)の変位をめること
もできる。
(To) Effects Above Considering the steps from ■ to ■, determining the slice plane, that is, depending on the time difference between the selective excitation time point and the reception time of the FID signal, the blood flowing through the blood vessel can be determined from the slice plane as shown in Figure 2. It becomes an extracted shape, and its speed can be recognized as a visible image. Furthermore, by varying the time until the reception, the displacement of blood (fluid) can be measured.

なお、傾斜磁場GzをがけたことにょるFID(3号の
分散は適当なフィルタを使用して補正することができる
Note that the dispersion of FID (No. 3) caused by applying the gradient magnetic field Gz can be corrected using an appropriate filter.

【図面の簡単な説明】[Brief explanation of the drawing]

第1は前記従来のNMRイメージング装置による流体計
測法を説明するためのパルスシーケンス説明図、第2図
は血管のスライス面を表す概念図、第3図は本発明に係
るNMRイメージング装置による流体計測法に使用する
各種パルスのシーケンス図である。 特許出願人 株式会社島津製作所 代理人 弁理士 大 西 孝 治 第1図
1 is a pulse sequence explanatory diagram for explaining the fluid measurement method using the conventional NMR imaging device, FIG. 2 is a conceptual diagram showing a slice plane of a blood vessel, and FIG. 3 is a fluid measurement method using the NMR imaging device according to the present invention. FIG. 3 is a sequence diagram of various pulses used in the method. Patent applicant: Shimadzu Corporation Representative: Patent attorney: Takaharu Ohnishi Figure 1

Claims (1)

【特許請求の範囲】[Claims] (1)90“パルスと傾斜磁場Gzを加えて流管のスラ
イス面を決定したあと、傾斜磁場G×及びGyを加えて
位相コーディングを行い、その後FTD信号を採取する
流体計測法であって、前記傾斜磁場Gzのある時点にお
いて前記FID信号を採取するよ・うにしたことを特徴
とするNMRイメージング装置による流体計測法。
(1) A fluid measurement method in which the slice plane of the flow tube is determined by applying a 90" pulse and a gradient magnetic field Gz, and then phase coding is performed by applying gradient magnetic fields Gx and Gy, and then an FTD signal is collected, A fluid measurement method using an NMR imaging device, characterized in that the FID signal is collected at a certain point in the gradient magnetic field Gz.
JP58227187A 1983-11-30 1983-11-30 Fluid measuring method by nmr imaging device Granted JPS60119417A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58227187A JPS60119417A (en) 1983-11-30 1983-11-30 Fluid measuring method by nmr imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58227187A JPS60119417A (en) 1983-11-30 1983-11-30 Fluid measuring method by nmr imaging device

Publications (2)

Publication Number Publication Date
JPS60119417A true JPS60119417A (en) 1985-06-26
JPH0527052B2 JPH0527052B2 (en) 1993-04-20

Family

ID=16856849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58227187A Granted JPS60119417A (en) 1983-11-30 1983-11-30 Fluid measuring method by nmr imaging device

Country Status (1)

Country Link
JP (1) JPS60119417A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62106321A (en) * 1985-11-05 1987-05-16 Toshiba Corp Magnetic resonance imaging apparatus
JPH01131649A (en) * 1987-02-27 1989-05-24 Hitachi Ltd Mr imaging method and apparatus
JPH02291841A (en) * 1989-04-28 1990-12-03 Shimadzu Corp Moving body measuring apparatus
JPH0318347A (en) * 1989-06-15 1991-01-25 Hitachi Ltd Sequence formation of nuclear magnetic resonance imaging device
JP2003515119A (en) * 1999-11-16 2003-04-22 ウォーリン・ベンチャーズ・インコーポレイテッド Magnetic resonance analysis flowmeter and flow measurement method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62106321A (en) * 1985-11-05 1987-05-16 Toshiba Corp Magnetic resonance imaging apparatus
JPH0658377B2 (en) * 1985-11-05 1994-08-03 株式会社東芝 Magnetic resonance imager
JPH01131649A (en) * 1987-02-27 1989-05-24 Hitachi Ltd Mr imaging method and apparatus
JPH02291841A (en) * 1989-04-28 1990-12-03 Shimadzu Corp Moving body measuring apparatus
JPH0318347A (en) * 1989-06-15 1991-01-25 Hitachi Ltd Sequence formation of nuclear magnetic resonance imaging device
JP2003515119A (en) * 1999-11-16 2003-04-22 ウォーリン・ベンチャーズ・インコーポレイテッド Magnetic resonance analysis flowmeter and flow measurement method
JP4808885B2 (en) * 1999-11-16 2011-11-02 ウォーリン・ベンチャーズ・インコーポレイテッド Magnetic resonance analysis flow meter and flow measurement method

Also Published As

Publication number Publication date
JPH0527052B2 (en) 1993-04-20

Similar Documents

Publication Publication Date Title
EP0126381B1 (en) An nmr method for measuring and imaging fluid flow
EP0171070B1 (en) Nmr multiple-echo phase-contrast blood flow imaging
EP0233906B1 (en) Magnetic resonance imaging of high velocity flows
Axel et al. A time-of-flight method of measuring flow velocity by magnetic resonance imaging
JPH04290953A (en) Method and device for measuring transfer characteristic of fluid passing through porous medium by nmr image processing
US4520828A (en) Nuclear magnetic resonance method and apparatus
JPH05184555A (en) Magnetic resonance imaging method and device therefor
US4836209A (en) NMR imaging of moving material using variable spatially selected excitation
US4947837A (en) Method of blood flow imaging
JPH0616766B2 (en) High-speed flow measurement method using NMR imaging device
JPH03268742A (en) Imaging device
JPS60119417A (en) Fluid measuring method by nmr imaging device
US4862080A (en) Method of deriving a spin resonance signal from a moving fluid, and device for performing this method
US5309099A (en) Method of determining real-time spatially localized velocity distribution using magnetic resonance measurements
JPH0399632A (en) Magnetic resonance imaging apparatus
JP3452400B2 (en) Magnetic resonance imaging equipment
EP0106472B1 (en) Nuclear magnetic resonance method and apparatus
JPH01502161A (en) A method for displaying moving parts within the body through measurements using nuclear magnetic resonance
US4991586A (en) Method for monitoring vascular flow using magnetic resonance signals
GB2127155A (en) Flow determination by nuclear magnetic resonance
JPS62105013A (en) Liquid measuring method by nmr imaging device
JPS5983041A (en) Inspecting method and apparatus utilizing nuclear magnetic resonance
EP2511726A1 (en) A method and system for determining the flip angle in the transient phase of a gradient echo pulse sequence
JP3366390B2 (en) MRI equipment
JPH0622934A (en) Magnetic resonance imaging device and method