JPS60119384A - Weathrproof small-sized wind-power generation apparatus - Google Patents

Weathrproof small-sized wind-power generation apparatus

Info

Publication number
JPS60119384A
JPS60119384A JP58226775A JP22677583A JPS60119384A JP S60119384 A JPS60119384 A JP S60119384A JP 58226775 A JP58226775 A JP 58226775A JP 22677583 A JP22677583 A JP 22677583A JP S60119384 A JPS60119384 A JP S60119384A
Authority
JP
Japan
Prior art keywords
blade
generator
shaft
wind
bevel gear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58226775A
Other languages
Japanese (ja)
Other versions
JPH0344229B2 (en
Inventor
Hisao Yamaguchi
久雄 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YAMAGUCHI KIKAI KENKYUSHO KK
Original Assignee
YAMAGUCHI KIKAI KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YAMAGUCHI KIKAI KENKYUSHO KK filed Critical YAMAGUCHI KIKAI KENKYUSHO KK
Priority to JP58226775A priority Critical patent/JPS60119384A/en
Publication of JPS60119384A publication Critical patent/JPS60119384A/en
Publication of JPH0344229B2 publication Critical patent/JPH0344229B2/ja
Granted legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H12/00Towers; Masts or poles; Chimney stacks; Water-towers; Methods of erecting such structures
    • E04H12/02Structures made of specified materials
    • E04H12/08Structures made of specified materials of metal
    • E04H12/085Details of flanges for tubular masts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/04Wind motors with rotation axis substantially parallel to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/91Mounting on supporting structures or systems on a stationary structure
    • F05B2240/912Mounting on supporting structures or systems on a stationary structure on a tower
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/728Onshore wind turbines

Abstract

PURPOSE:To allow the installation and equipment such as vane wheel, etc. to be operated under the high efficiency operation condition and improve servce life by facilitating conveyance and assembly by utilizing the standardized pipes on the market for the supporting pillars which occupy almost all the equipment weight, thus permitting light-weight construction and the reduction of construction cost. CONSTITUTION:STK steel pipes are adopted for a large parts of a supporting pipe part 2, and individual assembly part is prepared in a factory, and a construction is fabricated at a site. Therefore, the supporting pillar part 2 can be made lightweight, and conveyance and assembly can be facilitated, and the construction cost can be reduced. When the output voltage of a generator is over a rating voltage value, the control action for the blade-pitch tilt-angle of a vane wheel 5 by a servo-motor (not shown in the figure) is continued to gradually reduce the tilt angle. When the wind velocity is about 3-6m/sec or below in a standard wind-velocity range, the output voltage of the generator becomes below the rating value, and a diode rectifier (not shown in the figure) is not put into conduction, and the energy transformation in a low wind- velocity range is intentionally cut-off. Therefore, installation and equipment is designed so as to operate under the high-efficiency operation condition, and the volume can be reduced, and the service life can be prolonged.

Description

【発明の詳細な説明】 技術分野 本発明は離島、山小屋等の離隔地における照明或は通信
用に供する小規模電源を意図する風車を利用した全天候
に適する風力発電装置に関する。
DETAILED DESCRIPTION OF THE INVENTION TECHNICAL FIELD The present invention relates to a wind power generation device suitable for all weather conditions using a wind turbine and intended as a small-scale power source for lighting or communication in remote locations such as remote islands and mountain huts.

従来技術 風力エネルギ利用の構想は極めて古く、用途的には揚水
、濯概、製粉、製材用等の動力用風車として多用されて
きた。更には電気工学が急速に発達した19世紀後半に
おいて風車によシ発電機を駆動して動力用に供し、或は
通信や照明用として蓄電池を併用する電源設備も開発さ
れている。風力エネルギの変換原理も風車以外に例えば
回転シリンダを利用するもの或は風車を全く使用しない
静電界型変換装置も提案されているが、実際には回転翼
を有する風車利用のエネルギ変換設備がその大部分を占
めている。特に水平軸式風車は通常(4) 翼車の直径が4m以上で羽根幅の狭いプロペラ型羽根を
採用するものが多い。これらは台風や豪雪等に耐えうる
よう頑丈であシかつ安全運転の確保が要求されるため、
多額の構築費を要していたし、経常管理費もまた高価で
ある。特に留意すべきことは通常設計の風車におけるエ
ネルギ変換効率が予想以上に悪いので、実際上の利用に
際し採算的には引き合わない欠点を有していた。
BACKGROUND ART The concept of utilizing wind energy is extremely old, and wind turbines have been widely used for power purposes such as pumping water, rinsing, milling flour, and sawing lumber. Furthermore, in the latter half of the 19th century, when electrical engineering rapidly developed, power supply equipment was developed in which a wind turbine was used to drive a generator to provide power, or a storage battery was used in combination for communications and lighting. Regarding the principle of converting wind energy, in addition to wind turbines, for example, systems that use rotating cylinders, or electrostatic field conversion devices that do not use wind turbines at all, have been proposed, but in reality, energy conversion equipment that uses wind turbines with rotary blades is the most effective. It accounts for the majority. In particular, horizontal axis wind turbines usually (4) often have a diameter of 4 m or more and use propeller-type blades with a narrow blade width. These are required to be sturdy and able to withstand typhoons, heavy snowfall, etc., and to ensure safe operation.
It required a large amount of construction costs, and the current management costs were also high. What should be noted in particular is that the energy conversion efficiency of conventionally designed wind turbines is lower than expected, which has disadvantages that make them unprofitable for practical use.

発明の目的 本発明の目的は従来のプロペラ型風車装置の欠点を是正
し、基本的には故障発生率を極小化し、諸経費を低廉化
する小型電源装置を得ることにある。このため構築費に
関しては設備重量の大半を占める支柱に関し市販の規格
管を利用して運搬と組立てを容易にする設計構造が意図
され、また無人管理に適する構成が各所に採用されてい
る。また故障の発生に関連する耐久性について、本発明
は、全天候型構造を指向し、台風、豪雪等の悪天候下に
おいて強度的にも運転保守の上からも、総体的に装置の
安全性が常時確保されるよう意図されている。
OBJECTS OF THE INVENTION An object of the present invention is to correct the drawbacks of conventional propeller-type wind turbine devices, and to provide a compact power supply device that basically minimizes the failure rate and reduces overhead costs. For this reason, in terms of construction costs, the pillars, which account for the majority of the equipment's weight, were designed to use commercially available standard pipes to facilitate transportation and assembly, and configurations suitable for unmanned management were adopted at various locations. In addition, regarding durability related to the occurrence of failure, the present invention aims at an all-weather structure, and the overall safety of the device is maintained at all times in terms of strength and operation and maintenance under bad weather such as typhoons and heavy snow. intended to be secured.

更に本発明は多くの在来風車設備の如く動力設備として
適用することは第二義的とし、むしろ測候所における自
己記録データの通信用電源乃至は高圧線鉄塔付設の航空
標識灯用電源または高山豪雪地帯の山小屋において使用
する照明、通信用電源として適用することを第−義的に
考慮している。
Furthermore, the present invention is primarily applied as a power facility like many conventional wind turbine facilities, but rather as a power source for communication of self-recorded data at a weather station, a power source for an aviation beacon light attached to a high-voltage line tower, or heavy mountain snowfall. The primary consideration is to use it as a power source for lighting and communications in mountain huts in the area.

そのため故障発生を給体的に回避する意図の下に、利用
標準風連帯を3〜6m/8 の範囲に設定し、それ以上
の強風に対しては風車の羽根ピツチ傾斜角θを零に制御
して、風を素通υさせ風車をフェザリング状態に保持し
て被害を回避するようにしている。tfc前記標準風速
帯に達しない低風速時には発電機回転数は定格回転数に
達せず従って定格電圧が得られないため蓄電池に対する
定電流方式による浮動充電作用が困難とな9、充電効率
を下げ蓄電池寿命を低下せしめることになるので、低風
速範囲におけるエネルギ変換は意図的に遮断するように
している。即ち本発明における主電源は蓄電池であり、
その損耗量を補充するのが本発明における発電機の主た
る目的であυ、その利用風速帯は在来風車発電機の7〜
151rVsを理想とするものに比較し、遥かに安全性
と耐久性を保証しうる風速帯に設定されているので無故
障、長寿命が期待できる。
Therefore, with the intention of avoiding the occurrence of failures, the standard wind range for use is set in the range of 3 to 6 m/8, and the wind turbine blade pitch inclination angle θ is controlled to zero for stronger winds. This allows the wind to pass freely and maintains the wind turbine in a feathered state to avoid damage. TFC At low wind speeds that do not reach the standard wind speed band mentioned above, the generator rotational speed does not reach the rated rotational speed and therefore the rated voltage cannot be obtained, making it difficult to perform floating charging on the storage battery using the constant current method9, reducing charging efficiency and reducing the storage battery. Energy conversion in the low wind speed range is intentionally cut off, as this will shorten the service life. That is, the main power source in the present invention is a storage battery,
The main purpose of the generator in the present invention is to replenish the amount of wear and tear.
Compared to the ideal wind speed of 151 rVs, it is set in a wind speed range that guarantees far greater safety and durability, so it can be expected to have no failures and a long life.

発明の構成 本発明装置の構成は大別して、鋼管材組立による支柱系
と、該支柱管上において風向方向に指向して自由に旋回
可能な風車胴体の前側にファン型翼車と特殊フードを具
備する。また新規な可変ピッチ制御系を内蔵せしめた風
車胴体系並びに支柱管下部に配置された発電機と蓄電池
およびこれに協動する電気制御回路から構成される。
Structure of the Invention The structure of the device of the present invention can be roughly divided into a support system made of steel pipe assembly, and a fan-type impeller and a special hood on the front side of a wind turbine body that can freely rotate in the direction of the wind on the support pipe. do. It also consists of a wind turbine body system with a built-in new variable pitch control system, a generator and storage battery placed at the bottom of the strut pipe, and an electric control circuit that cooperates with these.

前記の各構成部分は費用低減化と耐久性向上を基本目的
として設計され、かつこの目的に沿って各所に精緻な特
殊構成が採用されている。例えば翼車の羽根軸に施され
たボールねじ連接機構、風車の回転主軸に施された主軸
の伸縮補償手段、電導ケーブルの捩れ防止構造並びに密
閉空間に対し呼吸機能をもつブリーザの採用等は早期損
耗を防(7) 止するために有効である。更に凡ての部品は密閉構造体
内に収容されかつ相対的運動部分相互間にはオイルシー
ルパツキン或はラビリンス構造を採用し、防塵、防水作
用に対しては特に設計上留意されている。
Each of the above-mentioned components is designed with the basic objectives of reducing costs and improving durability, and elaborate special configurations are adopted at various locations in line with this objective. For example, early adoption of a ball screw connection mechanism on the blade shaft of a blade wheel, expansion/contraction compensation means on the rotating main shaft of a wind turbine, a structure to prevent twisting of conductive cables, and a breather with a breathing function for closed spaces. Effective for preventing wear and tear (7). Further, all parts are housed in a sealed structure, and oil seal packing or labyrinth structure is used between relatively moving parts, and special attention is paid to dustproof and waterproof effects in the design.

本装置の支柱系は構築費節約と強度保持を考慮し、各種
寸法の規格鋼管材を利用し組立てられる。
The support system for this device is assembled using standardized steel pipes of various sizes, taking into consideration construction cost savings and strength preservation.

即ち上部支柱管を最小径とし最下部支柱管を最大径にと
して、それらの中間に結合される中間部支柱管の直径を
それらの間にある寸法径に選定する。
That is, the upper strut tube is set to have the minimum diameter, the lowermost strut tube is set to be the maximum diameter, and the diameter of the intermediate strut tube connected between these is selected to be a size between them.

該中間部支柱管は風車の設置高さに応じて規格寸法長さ
例えば6mの鋼管材を任意本数だけ溶接等の結合手段に
よって連結する。
The intermediate support pipe is made by connecting an arbitrary number of steel pipes having a standard length, for example, 6 m, by a connecting means such as welding, depending on the installation height of the wind turbine.

上部支柱管の開放端は風向に向って風車胴体を旋回自在
に担持するだめのころがシ軸受構造と軸封機構が施され
ている。また下部支柱管は発電機と蓄電池を収容する各
格納箱が固着手段によって支柱管壁側部に取付けられ、
更には内部点検および運転保守のためにいくつかの開放
可能な密封蓋が下部支柱管側に形成されている。
The open end of the upper support pipe is equipped with a roller bearing structure and a shaft sealing mechanism to support the wind turbine body so that it can rotate freely in the direction of the wind. In addition, in the lower support pipe, each storage box containing the generator and the storage battery is attached to the side of the support pipe wall by fixing means.
Additionally, several openable sealing lids are formed on the lower column side for internal inspection and operational maintenance.

(8) 本発明の風車胴体部分の特徴の一つは幅広い受風面積を
有しかつ小径の羽根をもつファン型翼車の採用にある。
(8) One of the features of the wind turbine body portion of the present invention is the adoption of a fan-type impeller having a wide receiving area and small diameter blades.

これは利用風速帯3〜6m/8における風力を出来るだ
け高効率的にエネルギ変換するためである。更に他の特
徴は回転可能な翼車の全周を包囲する特別なフードを胴
体上に取付けたことである。該フードの回転軸線を含む
長手断面形状は風の流入口から漸次断面を減小し、翼車
の回転中心断面において最小となる縮流ダクトを構成し
、動圧エネルギの増大作用によって風力の実質的な増加
を計るようにしている。例えばフード流入口直径と翼車
の外径比を2=1に選定すれば面積はA!=4倍になシ
外気風速2m/8のときプロペラ部では8m/sとなる
。そして利用エネルギは風速の3乗に比例することから
利用風速エネルギは64倍になる。この様にして変換効
率を高め小型化しうろことが第一目的である。フード設
置の第2目的はフード内壁面に電熱ヒートシートを張る
ことにより寒冷時に翼車の回転空間内に雨雪の氷結を防
止するようにしたことである。更にフードの第3目的は
フードの前後面に金網を張設することにより、木片の飛
来による翼車の損傷を防止し或は小鳥等の巣作りを阻止
して故障発生率を最小限に回避せしめている点である。
This is to convert wind power in the usable wind speed range of 3 to 6 m/8 into energy as efficiently as possible. A further feature is the installation of a special hood on the fuselage that surrounds the rotatable wheel. The longitudinal cross-sectional shape of the hood, which includes the rotational axis, gradually reduces its cross-section from the wind inlet, forming a contracted flow duct that is the smallest at the rotational center cross-section of the impeller, and by increasing the dynamic pressure energy, the wind flow is substantially reduced. We are trying to measure the increase. For example, if the ratio of the hood inlet diameter to the outer diameter of the impeller is set to 2=1, the area is A! = 4 times. When the outside air wind speed is 2 m/8, the wind speed at the propeller part is 8 m/s. Since the available energy is proportional to the cube of the wind speed, the available wind speed energy is 64 times greater. In this way, the primary objective is to increase the conversion efficiency and reduce the size. The second purpose of installing the hood is to prevent rain and snow from freezing in the rotating space of the impeller during cold weather by placing an electric heat sheet on the inner wall of the hood. Furthermore, the third purpose of the hood is to prevent the impeller from being damaged by flying wood chips or to prevent small birds from building nests, thereby minimizing the failure rate by installing wire mesh on the front and rear surfaces of the hood. This is a strong point.

なお風車胴体の外形輪郭は在来同様に空気抵抗減少のた
めにトーピード型とし、その前側には回転翼車のボス部
分の前端を包囲する流線形回転スピンナが形成され、胴
体後尾には胴体の尾部を形成る同様形状の固定スピンナ
が形成されている。
The external outline of the wind turbine body is a torpedo-shaped one in order to reduce air resistance, as is the case with conventional wind turbines.A streamlined rotating spinner is formed on the front side of the wind turbine to surround the front end of the boss portion of the rotary blade, and the rear part of the fuselage is formed with a streamlined rotating spinner that surrounds the front end of the boss portion of the rotary blade. A similarly shaped stationary spinner is formed forming the tail.

また胴体後部の上面に風車の回転平面を常時風向方向に
指向させるための垂直風向舵が胴体中心線に沿って設う
けられている。
In addition, a vertical wind rudder is provided on the upper surface of the rear part of the fuselage along the center line of the fuselage to always orient the rotation plane of the wind turbine in the direction of the wind.

次いで本発明の特徴とする装置の内部構成について説明
する。前述した水平軸式風車の回転を地上に設置した発
電機へ伝達するための回転伝動系は、風車胴体内に内蔵
した中空の翼車回転主軸と、垂直支柱管内を上下に縦走
して軸受けされた中間垂直伝動軸と、基板上に配置され
た発電機駆動軸とから成る。これらの軸相互間の回転伝
達は傘歯車対によって行なわれる。特に特徴ある構成と
して前記回転主軸は中空軸としその内部に可変ピッチ機
構を収容させるため該主軸内外は複数対のころがp軸受
によシ支承されるが、この場合特に昼夜の温度変化等に
よシ比較的長尺の回転主軸がその軸方向に膨張収縮作用
の害が消去される配慮がなされている。これは温度変化
による繰返しの熱応力によって疲労破壊が発生すること
を回避するためであυ、このことは耐久性向上のために
給体的要件である。前記回転主軸の伸縮作用は回転主軸
後側に配置されたころがり軸受対に対し、その各軸受外
輪のみをばね付勢力によシ抑圧し回転主軸の伸縮時にば
ね力に抗して移動可能に保持することによシ達成される
。本発明に係る風車の可変ピッチ制御系は胴体内部の後
方から前方に延びて内蔵される。即ち胴体後方にサーボ
モータが配置され、これに高減速歯車装置が連結され、
その前方に可変ピッチ制御出力軸が引出され、更に核制
御出力軸の前方には翼車の羽根軸を変角制御する可変ピ
ッチ作用と、可変ピッチ駆動軸と回転主軸とを共に同期
的に回転せしめる同期回転作用とを達成することのでき
る特殊な可変ピッチ制御機構が配置されている。該同期
回転機構は回転主軸を形成する中空管の内壁に固定化し
た内歯歯車によって連動回転される小傘歯車と、可変ピ
ッチ制御出力軸端に形成したキャリヤ上の傾斜遊星傘歯
車と、羽根軸下端に固着した傘歯車に連動可能に連結さ
れた大傘歯車の三者によって構成される傾斜式遊星傘歯
車機構の採用によって達成されるものである。
Next, the internal configuration of the device, which is a feature of the present invention, will be explained. The rotary transmission system for transmitting the rotation of the horizontal axis wind turbine mentioned above to the generator installed on the ground consists of a hollow blade wheel rotating main shaft built into the wind turbine body, and a bearing running vertically inside the vertical support tube. It consists of an intermediate vertical transmission shaft and a generator drive shaft located on the base plate. Rotation transmission between these shafts is performed by a pair of bevel gears. As a particularly characteristic structure, the rotating main shaft is a hollow shaft, and in order to accommodate a variable pitch mechanism inside, multiple pairs of rollers are supported by P bearings on the inside and outside of the main shaft. Consideration has been taken to eliminate the damage caused by expansion and contraction in the axial direction of the relatively long rotating main shaft. This is to avoid fatigue failure due to repeated thermal stress due to temperature changes, and this is a necessary requirement for improving durability. The expansion and contraction action of the rotating main shaft is achieved by suppressing only the outer ring of each of the rolling bearings arranged on the rear side of the rotating main shaft by the spring biasing force, so that the rotating main shaft can be moved against the spring force when the rotating main shaft expands and contracts. This is achieved by doing. A variable pitch control system for a wind turbine according to the present invention extends from the rear to the front inside the fuselage and is housed therein. That is, a servo motor is placed at the rear of the fuselage, and a high reduction gear is connected to this.
A variable pitch control output shaft is pulled out in front of it, and further in front of the nuclear control output shaft is a variable pitch action that controls the angle of the blade axis of the impeller, and a variable pitch drive shaft and a rotating main shaft that rotate together synchronously. A special variable pitch control mechanism is arranged that can achieve a synchronous rotational action. The synchronous rotation mechanism includes a small bevel gear rotated in conjunction with an internal gear fixed to the inner wall of a hollow tube forming a rotation main shaft, and an inclined planetary bevel gear on a carrier formed at the end of the variable pitch control output shaft. This is achieved by employing an inclined planetary bevel gear mechanism consisting of three large bevel gears operatively connected to a bevel gear fixed to the lower end of the blade shaft.

更に本発明の実施に当シ配慮された点は羽根ピツチ傾斜
角の変角回転部にボールねじ機構を採用したことである
。これは在来の可変ピッチ羽根軸上に作用する著しい半
径方向の推力作用によって該推力受部に起こる故障発生
率を極小にする為に採用されたものである。
Another point that has been taken into consideration in carrying out the present invention is that a ball screw mechanism is employed in the blade pitch angle changing rotation section. This was adopted in order to minimize the probability of failure occurring in the thrust receiver due to the significant radial thrust acting on the conventional variable pitch blade shaft.

該ボールねじ機構は風車ボスの中心線上から半径方向外
方に向って放射状に立設したボルルねじ棒と多数の鋼球
と鋼球収容ナツトとから成シ、該機構は中空の羽根軸内
部に内蔵されている。このため各羽根軸上に生ずる作用
風力の半径方向分力と遠心力による大なる推力はグリー
スによって潤滑された多数の鋼球による多点接触作用に
よって充分に吸収され、高負荷に耐えうるもので、故障
を皆無にできる。この場合ボールねじの展開ねじれ角は
2°以下であることが望ましい。更にまた本発明では装
置の耐用寿命を高めるために風車胴体並びに支柱管壁に
呼吸作用をもつブリーザが付設されている。該ブリーザ
装置は内部空間を外気に連通させ、内部空間を常に外気
と均衡した雰囲気に保持するためである。ブリーザによ
る連通作用は外界からの微塵、風水の浸入を完全に防止
し、通気作用のみを確実に達成しつる機能を具えたもの
である。これなしには長寿命は保証されない。
The ball screw mechanism consists of a ball screw rod that stands radially outward from the center line of the wind turbine boss, a large number of steel balls, and a steel ball housing nut, and the mechanism is installed inside a hollow blade shaft. Built-in. Therefore, the large thrust caused by the radial component of the acting wind force and centrifugal force generated on each blade shaft is sufficiently absorbed by the multi-point contact action of the many steel balls lubricated with grease, making it possible to withstand high loads. , completely eliminates malfunctions. In this case, it is desirable that the unfolded twist angle of the ball screw is 2° or less. Furthermore, in the present invention, a breather with a breathing effect is attached to the wind turbine body and the support tube wall in order to increase the service life of the device. This is because the breather device communicates the interior space with the outside air and maintains the interior space at all times in an atmosphere balanced with the outside air. The communication effect of the breather completely prevents the intrusion of fine dust and feng shui from the outside world, and has the function of reliably achieving only ventilation. Without this, long life cannot be guaranteed.

最後に本発明の特徴となる蓄電池を主力電源とする風力
−電力変換部は基板上の密封された格納箱内にすべてが
収容されている。発電機、蓄電池および制御回路を構成
する電装品類は保守と整備管理上、数個所に設置した開
放可能な密閉蓋によシ点検可能である。発を機と蓄電池
の耐用寿命を高め、かつこれらを小型化するために両者
を常時最高効率で作動せしめる構成要件が要求される。
Finally, the wind-power converter which uses a storage battery as a main power source, which is a feature of the present invention, is entirely housed in a sealed storage box on the board. The electrical components that make up the generator, storage battery, and control circuit can be inspected through openable airtight lids installed at several locations for maintenance and management purposes. In order to increase the useful life of the power source and storage battery, and to reduce their size, structural requirements are required that allow both to operate at maximum efficiency at all times.

即ち発電機においては常時その出力電圧値が定格電圧と
なるように電気的制御回路が組まれている。
That is, in a generator, an electrical control circuit is constructed so that the output voltage value always becomes the rated voltage.

それ故出力電圧値が予め定められた定格電圧値を超える
とコンピュータを介して電気的制御回路が働らきピッチ
可変の電気的制御信号がサーボモータへ送信され、風車
の羽根ピツチ傾斜角はその電圧差が零になるまで変角制
御される。この間の制御作用は全部ループ式フィードバ
ック制御方式によって遂行される。発電機は故障発生率
を少なくするために整流子を使用しない交流発電機が採
用されている。
Therefore, when the output voltage value exceeds the predetermined rated voltage value, the electric control circuit is activated via the computer and a pitch-variable electric control signal is sent to the servo motor, and the pitch angle of the windmill's blades is determined by the voltage. The angle is controlled until the difference becomes zero. All control operations during this time are performed using a loop feedback control method. The generator is an alternating current generator that does not use a commutator to reduce the failure rate.

蓄電池は定電流充電による浮動充電方式が採用される。The storage battery uses a floating charging method using constant current charging.

本発明に係る電気的制御方式によれば、まシ利用標準風
速帝以下の風速はこれを切り捨て利用しないことを基本
とする。また予め設定した利用標準風連帯以上の風速(
台風を含む)に対して羽根傾斜角θを零とし風を素通り
するようにさせであるから、風車の強度的安全保守は確
保される。つまシ利用風速帯以外の風は思い切って捨て
去る考え方が基本となっている。このような構想は在来
風力発電装置になかったもので、本発明装置の特徴とな
っている。
According to the electrical control method according to the present invention, wind speeds that are lower than the standard wind speed for use are basically truncated and not used. In addition, the wind speed is higher than the preset usage standard wind speed (
(including typhoons), the blade inclination angle θ is set to zero to allow the wind to pass through the wind turbine, ensuring strong safety and maintenance of the wind turbine. The basic idea is to completely discard winds outside the wind speed range where the tsumashi is used. Such a concept has not been found in conventional wind power generation devices, and is a feature of the device of the present invention.

以下本発明の一実施例を示す添付図面に従って説明する
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the accompanying drawings.

実施例 第1図は本発明に係る風力発電装置全体の側面図を示し
、第2図は風車を前面からみた正面図を示す。同図にお
いて1は地面の基礎コンクリートブロック上に碇着した
基板で、2は基板1上に上中下3本の支柱管2 ap 
2 b 、 2 cを次々に連結して基板1上に直立状
に構築した風車装置の支柱部を示す。下部支柱管2aの
下方側壁の対向壁面には発電機格納箱8および蓄電池格
納箱9が取付けられている。支柱部2の上端には風車胴
体4が支柱の垂直中心線の回シに旋回可能に載置されて
おシ、そして胴体4の尾部に設は九垂直方向舵6によシ
翼車50回転平面が風向き方向Wに自動的に対面して旋
回するように設けられている。7は翼車50羽根外周を
包囲するフードで、フード内導入風速の増力作用と外界
から翼車を採掘するために取付けられておシ、この特殊
フードは本発明の重要な構成要件の一つとなっている。
Embodiment FIG. 1 shows a side view of the entire wind power generator according to the present invention, and FIG. 2 shows a front view of the wind turbine from the front. In the figure, 1 is a board anchored on a foundation concrete block on the ground, and 2 is a support pipe 2 ap that has three upper, middle, and lower support pipes on the board 1.
2B and 2C are connected one after another to show a support portion of a wind turbine device built upright on a substrate 1. A generator storage box 8 and a storage battery storage box 9 are attached to opposite wall surfaces of the lower side wall of the lower support pipe 2a. A wind turbine body 4 is mounted on the upper end of the strut 2 so as to be able to rotate around the vertical center line of the strut, and a blade wheel 50 is mounted on the tail of the fuselage 4 to be rotated by nine vertical rudders 6. is provided so as to automatically turn to face the wind direction W. Reference numeral 7 denotes a hood that surrounds the outer periphery of the 50 blades of the impeller, and is attached to increase the speed of the wind introduced into the hood and to extract the impeller from the outside world.This special hood is one of the important components of the present invention. It has become.

第3図は支柱部2を構成する各支柱管相互の連結構造を
拡大して示し、第4図は第3図のIV−■線に沿う水平
断面図である。これらの図面には支柱管内部を貫通する
垂直伝動軸や内挿された電導ケーブル管或は下部支柱管
壁土に付属している格納箱等は省略されている。第3図
において11は地下に埋設した基礎コンクリートブロッ
クで、この上面に方形状碇着基板12がアンカーボルト
によシ一体化されている。該基板12上に設けた多数の
植込みボルトを通して下部支柱管のフランジ13aはボ
ルト挿通孔を介してナツトによシ固定可能である。
FIG. 3 shows an enlarged view of the connection structure between the respective strut pipes constituting the strut portion 2, and FIG. 4 is a horizontal sectional view taken along the line IV--■ in FIG. 3. These drawings omit the vertical transmission shaft penetrating the interior of the support pipe, the conductive cable pipe inserted within the support pipe, the storage box attached to the lower support pipe wall soil, and the like. In FIG. 3, reference numeral 11 denotes a foundation concrete block buried underground, and a rectangular anchoring board 12 is integrally attached to the upper surface of this block with anchor bolts. The flange 13a of the lower support tube can be fixed with nuts through bolt insertion holes through a large number of stud bolts provided on the base plate 12.

各支柱管の上端および下端には予め連結用フランジ13
 、13’が溶接によシ固着され、特に各支柱管に取付
けた下端フランジ13の上表面隅部には複数個の補強リ
プ14が溶接手段に取付けられている。また下端フラン
ジ13の下表面には嵌合スリーブ(スピゴット)15が
溶層により形成され支柱管相互の整合的組立を容易にし
ている。本発明は軽量化と構築費低減のために支柱の構
築には市販の規格鋼管が採用され、例えば下部支柱管2
aには3m長さのSTK規格管を使用し、その下端には
特別に方形状ベースフランジ13aを癖接して碇着基板
12に強固にボルト締付けによシ固定するようにしてい
る。符号1は基礎ブロック上の固定部を総称して基板と
定義するものでおる。
Connecting flanges 13 are pre-installed at the upper and lower ends of each strut pipe.
, 13' are fixed by welding, and in particular, a plurality of reinforcing lips 14 are attached to welding means at the corners of the upper surface of the lower end flange 13 attached to each strut tube. Further, a fitting sleeve (spigot) 15 is formed of a melt layer on the lower surface of the lower end flange 13 to facilitate consistent assembly of the strut tubes. In order to reduce weight and construction costs, the present invention uses commercially available standard steel pipes for constructing the struts. For example, the lower strut pipe 2
A 3 m long STK standard pipe is used for a, and a rectangular base flange 13a is attached to the lower end of the pipe so that it is firmly fixed to the anchoring board 12 by tightening bolts. Reference numeral 1 designates the fixed parts on the basic block as a base plate.

各支柱管の上方外周表面には任意数(図では4個)の支
柱管吊下用の掛は爪16が設けられ組立てや運搬のため
に利用される。下部支柱管2aの周壁には内部点検や保
修のために数個の開閉蓋17が形成されている。下部支
柱管2aの上位にボルト結合された中間支柱管2bの直
径は強度上1部支柱管の直径よシ小さく、また支柱部2
の最上位にボルト結合された上部支柱管2cの直径は中
間支柱管の直径より小さい。中間および上部支柱管の長
さ寸法は例えば6mの規格管材を使用するが、風車の取
付は高さに応じて、中間支柱管2bは任意同長寸法の規
格管を採用して構築される。これら個々の支柱管はすべ
て工場生産方式によって加工準備され、ヘリコプタ−等
を利用して現地組立てによ如構築できるように設計され
ている。第5図は支柱部2の上端に旋回自在に載置され
た風車の外観図を示し、特に回転翼車5の周囲を取巻い
て胴体4上に固定されたフードのみが回転中心線に沿う
断面で示しである。第6図は翼車5に取p付けた断面−
ばいを蔽う幅広い羽根面積を有するファン型羽根の形状
を示す図面で、羽根傾斜角θ=90°として特別に描い
ている。前述したように本発明のフードは外部に対する
翼車の防護だけでなく、利用風速帯における風力を充分
に活用するため利用風速を増大させる縮流ダクトとして
その断面形状が設計されている。即ちフード7の断面は
流入口から翼車の回転中心平面位置に向って断面が漸減
するベルマウス状に形成されている。本発明の標準設計
の羽根外径を2mとし、フード流入口直径を2.6m、
翼車ボス部の外側径を0.4 mとすれば、フードの最
小縮径断面における風速v8は流入口風速Vに対しVe
”i 2 X Vのように増速される。風力エネルギの
変換効率は風速Vの3乗に比例して増加することが知ら
れているから、本発明における7−ドの適用は利用風速
帯を比較的低速範囲に定めて設計することが可能となり
、ファン形翼車の併用と共に故障発生率が小さくかつ風
力変換効率のよい風車装置を実現することができる。
An arbitrary number (four in the figure) of hooks 16 for suspending the strut tubes are provided on the upper outer circumferential surface of each strut tube and are used for assembly and transportation. Several opening/closing lids 17 are formed on the peripheral wall of the lower support pipe 2a for internal inspection and maintenance. The diameter of the intermediate strut pipe 2b bolted to the upper part of the lower strut pipe 2a is smaller than the diameter of the strut pipe in part for strength reasons.
The diameter of the upper strut tube 2c bolted to the top of the column is smaller than the diameter of the middle strut tube. Standard pipe materials having a length of, for example, 6 m are used for the middle and upper support pipes, but depending on the installation height of the wind turbine, the middle support pipe 2b is constructed using standard pipes having the same length. All of these individual strut tubes are prepared for processing using a factory production method, and are designed to be constructed by on-site assembly using a helicopter or the like. FIG. 5 shows an external view of the wind turbine rotatably mounted on the upper end of the support column 2. In particular, only the hood that surrounds the rotor wheel 5 and is fixed on the body 4 is along the rotation center line. It is shown in cross section. Figure 6 shows the cross section of the blade attached to the impeller 5.
This drawing shows the shape of a fan-type blade having a wide blade area that covers the air, and is specially drawn with a blade inclination angle θ=90°. As mentioned above, the hood of the present invention not only protects the impeller from the outside, but also has a cross-sectional shape designed as a contracted flow duct that increases the available wind speed in order to fully utilize the wind power in the available wind speed range. In other words, the cross section of the hood 7 is formed into a bellmouth shape that gradually decreases from the inlet to the plane of the rotation center of the impeller. The standard design of the present invention has a blade outer diameter of 2 m, a hood inlet diameter of 2.6 m,
If the outer diameter of the impeller boss is 0.4 m, the wind speed v8 at the minimum diameter cross section of the hood is Ve compared to the inlet wind speed V.
It is known that the conversion efficiency of wind energy increases in proportion to the cube of the wind speed V. It is now possible to design a wind turbine in a relatively low speed range, and with the combined use of a fan-type impeller, it is possible to realize a wind turbine device with a low failure rate and high wind power conversion efficiency.

フード7の縮径部内壁周表面には電熱利用のヒートシー
ト22が張設され、寒冷時にフード内部に雨水や雪が氷
結しないようにしている。その加熱電力は蓄′醒池から
の配純により約6vの電力で供給可能である。またフー
ド7の前面及び後面には金網23 、23’が張シ渡さ
れ、木片や枯葉等の飛散による侵入乃至は小鳥の巣作υ
による被害を防止するようにしている。フード7は厚み
5關の板金材で図示のごとき所望の断面形状を有する円
筒形状体としてプレスによシ折曲加工することができる
。これを風車胴体上に固定するためフードの後側に支持
構造がとられている。この支持構造は風車胴体4の前側
において胴体外表面全周を取囲んで締付は可能な1対の
半割りスリーブ25aと25bによって形成される。締
付は固定は半割りスリーブ25a、25bの長手方向に
沿う接合面に形成された両フランジ25’ 、 25’
を接合しボルトナツトにより固定することができる。
A heat sheet 22 using electric heat is stretched around the inner wall surface of the reduced diameter part of the hood 7 to prevent rainwater and snow from freezing inside the hood in cold weather. The heating power can be supplied at approximately 6 volts from the storage pond. In addition, wire meshes 23 and 23' are stretched over the front and rear surfaces of the hood 7 to prevent intrusion caused by flying pieces of wood, dead leaves, etc. or the creation of nests by small birds.
We are trying to prevent damage caused by The hood 7 is made of a sheet metal material with a thickness of 5 mm, and can be bent by a press into a cylindrical body having a desired cross-sectional shape as shown. A support structure is provided at the rear of the hood to secure it onto the wind turbine body. This support structure is formed on the front side of the wind turbine body 4 by a pair of half-sleeves 25a and 25b that surround the entire outer circumference of the body and can be tightened. Tightening and fixing are done by both flanges 25', 25' formed on the joint surfaces along the longitudinal direction of the half-split sleeves 25a, 25b.
can be joined and fixed with bolts and nuts.

上記半割シスリーブ25aと25bからそれぞれ半径方
向へ4本計8本の支持板24が7−ドの内周壁面に向っ
て延ばされフード内壁面上にアングル材26によって連
結されたものである。
A total of eight support plates 24, four each extending in the radial direction from the half-split sleeves 25a and 25b, are extended toward the inner circumferential wall surface of the hood, and are connected to the inner wall surface of the hood by angle members 26. .

胴体4の後部に風向垂直舵6が固定的に立設されると共
に胴体4の中央上部には吊下げ用のアイボルト28が付
属している。また胴体下部にはブリーザ31およびグリ
−スフ2グ32が取付けられている。33は開閉可能な
内部点検用閉鎖蓋である。
A wind direction vertical rudder 6 is fixedly erected at the rear of the fuselage 4, and an eye bolt 28 for hanging is attached to the upper center of the fuselage 4. Further, a breather 31 and a grease plug 32 are attached to the lower part of the fuselage. 33 is a lid for internal inspection that can be opened and closed.

風車胴体4の先端には回転スピンナ30が回転翼車5の
ボス部前端部を蔽って被覆され、流入空気の抵抗を減小
するように流線形に形堆られ、同様に胴体4の後端を被
覆するための固定スピンナ29が胴体尾部形状を形取っ
ている。
A rotary spinner 30 is covered at the tip of the wind turbine body 4 and covers the front end of the boss portion of the rotary blade wheel 5, and is shaped into a streamlined shape to reduce the resistance of incoming air. A fixed spinner 29 for covering the ends shapes the fuselage tail shape.

第6図は翼車5を構成する4枚の羽根を風の流入する前
方からみて描いた正面図で、特別に羽根傾斜角θ=90
°にして示している。実際にはθ=45°が最高効率で
あるからこの状態はない。しかし工作費を廉すくする為
にはこの形状が一番よい。
Figure 6 is a front view of the four blades that make up the impeller 5, viewed from the front where the wind flows in, and the blade inclination angle θ = 90.
It is shown in °. Actually, this condition does not exist because the highest efficiency is achieved when θ=45°. However, this shape is the best in order to reduce manufacturing costs.

第6図に示すようにn枚例えば4枚羽根を有する翼車の
羽根平面は流下断面の略全断面を蔽うような広幅羽根を
有するファン型羽根として形成され流入空気の大部分を
これに作用させて最大回転トルクを変換可能にしている
。羽根外径は2mの小径で、在来の4m以上の風車に対
し非常に小型に設計されている。第6図における羽根側
辺相互間の間隙及びフード内周表面と羽根先端周縁との
最短間隙は2〜3副程度でおる。上記各羽根は翼車中心
のボス部に枢着された羽根軸を介し、この羽根軸上に強
固に保持させ、個々の羽根自体は着脱交換可能に設計さ
れている。第7図は風車胴体4の内部構造を示す。同図
にはフード7を省略してしたころがり軸受装置41によ
って旋回可能に担持されている。胴体4の旋回摺動部を
構成する旋回座枠45はその中心線が支柱管の垂直中心
線に整合するように胴体中央の下側表面に取付けられて
いる。胴体旋回部の密封作用を確保するだめ複数個のO
−リングによるパツキンシール部43と2ビリンスシ一
ル部44が旋回摺動表面間に形成されている。またころ
が9軸受41にグリース潤滑を施こすため上部支柱管2
cの上部に溶接された軸受支持環47上の環状空間は充
填グリース室48を形成し、これらの充填グリースはグ
リース充填管42を通し提携用圧送ポンプを用いて下方
から圧送可能である。46は充填グリースの逸出を防止
するレザーカップで旋回運動する旋回座枠45に取付け
られている。まだ座枠45の中央開口内周には推力ころ
がυ軸受49が内装され、該中央開口を貫通する垂直伝
動軸100の上端軸受部として形成されている。
As shown in Fig. 6, the blade plane of a blade wheel having n blades, for example, 4 blades, is formed as a fan-type blade with wide blades that cover almost the entire cross section of the flow, and most of the incoming air is applied to this blade. This makes it possible to convert the maximum rotational torque. The outer diameter of the blades is 2m, making it much smaller than conventional wind turbines that are 4m or more. In FIG. 6, the gap between the sides of the blades and the shortest gap between the inner circumferential surface of the hood and the periphery of the tip of the blade are approximately 2 to 3 sub-spaces. Each of the blades is firmly held on the blade shaft via a blade shaft which is pivotally attached to the boss portion at the center of the impeller, and each blade itself is designed to be detachable and replaceable. FIG. 7 shows the internal structure of the wind turbine body 4. In the same figure, the hood 7 is omitted and is rotatably supported by a rolling bearing device 41. A rotating seat frame 45 constituting the rotating sliding portion of the fuselage 4 is attached to the lower surface of the center of the fuselage so that its center line aligns with the vertical center line of the strut tube. Multiple O's are installed to ensure the sealing effect of the fuselage rotating section.
- A ring seal 43 and a double seal 44 are formed between the pivoting sliding surfaces. In addition, in order to apply grease lubrication to the roller 9 bearing 41, the upper support pipe 2
The annular space above the bearing support ring 47 welded to the upper part of c forms a filled grease chamber 48, and these filled greases can be pumped from below through the grease filling pipe 42 using an associated pressure pump. Reference numeral 46 is a razor cup that prevents the filled grease from escaping and is attached to the pivoting seat frame 45 that pivots. A thrust roller υ bearing 49 is installed inside the center opening of the seat frame 45, and is formed as an upper end bearing portion of a vertical transmission shaft 100 passing through the center opening.

次いで風車胴体4の内部に形成した翼車の回転主軸50
並びに該回転主軸内部に配置した可変ビは翼車5のボス
本体51の後側面にボルトで強固に固着される。該主軸
50を胴体内部に回転自在挿着されている。また回転主
軸50の外側には傘歯車65が固着され、この傘歯車6
5は支柱管2の内部を貫通して設けた垂直伝動軸lOO
の上端端かられずか後方に離して胴体内壁とボルト締結
によシ一体化した支持隔壁67が設けられている。
Next, the rotation main shaft 50 of the blade wheel formed inside the wind turbine body 4
In addition, the variable beam disposed inside the rotating main shaft is firmly fixed to the rear side of the boss body 51 of the impeller 5 with bolts. The main shaft 50 is rotatably inserted into the body. Further, a bevel gear 65 is fixed to the outside of the rotating main shaft 50, and this bevel gear 6
5 is a vertical transmission shaft lOO provided through the inside of the strut pipe 2.
A support bulkhead 67 is provided at a distance slightly rearward from the upper end and is integrally connected to the inner wall of the fuselage by bolting.

羽根傾斜角を制御する所謂可変ピッチ制御系はこの隔壁
67を主たる支持部としている。即ち支持隔壁67の後
方には円環状ブラケット54が形成され、該ブラケット
54の背後に高減速歯車装置56の筐体を結合し、更に
サーボモータ57を接続しているから、これらは片持梁
状に支持隔壁67上に担持されることになる。サーボモ
ータ57の制御回転は高減速歯車装置ダ6の低速回転出
力軸58に引出され、スリーブ継手59を介して制御出
力軸60に連結されている。隔壁67の中心部開口を貫
通している制御出力軸60は推力玉軸受63によって軸
受されている。更に支持隔壁67上にはピッチ制御角セ
ンサー62が設けられておシ、該センサー62は翼車の
羽根傾斜角θが零度に変角されたときこれを感知しサー
ボモータ側に送信して電気制御回路を遮断する安全保護
手段を構成する。サーボモータから制御出力軸60に引
出される制御回転角度は一実施例において嵩高32.6
°の角度範囲である。従って固定的に設けたセンサー6
2に対し継手59.のフランジ面に植立したセンサーピ
ン61は通常32.6°の角度間隔。
A so-called variable pitch control system for controlling the blade inclination angle uses this partition wall 67 as a main support. That is, an annular bracket 54 is formed behind the support bulkhead 67, and the housing of the high reduction gear device 56 is coupled to the back of the bracket 54, and the servo motor 57 is further connected, so that these brackets are cantilevered. It is supported on the support partition wall 67 in a shape. The controlled rotation of the servo motor 57 is extracted to a low speed rotation output shaft 58 of the high reduction gear device DA 6, and is connected to a control output shaft 60 via a sleeve joint 59. The control output shaft 60 passing through the central opening of the partition wall 67 is supported by a thrust ball bearing 63. Furthermore, a pitch control angle sensor 62 is provided on the support bulkhead 67, and the sensor 62 senses when the blade inclination angle θ of the impeller is changed to 0 degrees, transmits it to the servo motor side, and generates electricity. It constitutes a safety protection means that interrupts the control circuit. The control rotation angle drawn from the servo motor to the control output shaft 60 has a bulk of 32.6 in one embodiment.
The angle range is °. Therefore, the fixed sensor 6
2 to joint 59. The sensor pins 61 planted on the flange surface are normally spaced at an angular interval of 32.6°.

をおいて離れており、羽根角θ→0と共にセンサービン
61はセンサー62に近づき、羽根角θ=0において電
気的制御回路を遮断する信号を発生し、翼車はフェザリ
ング状態に入る。支持F443壁67の前側において、
回転主軸50の内部に傾斜式遊星傘歯車機構70を組込
むことによシ同期回転作用と可変ピッチ制御作用を可能
にする閉回路歯車噛合伝動系が達成される4Sq@b)
The sensor bin 61 approaches the sensor 62 with the blade angle θ=0, and at the blade angle θ=0 a signal is generated to interrupt the electrical control circuit and the blade wheel enters the feathering state. On the front side of the support F443 wall 67,
By incorporating the inclined planetary bevel gear mechanism 70 inside the rotating main shaft 50, a closed-circuit gear mesh transmission system that enables synchronous rotation action and variable pitch control action is achieved.4Sq@b)
.

上記遊星傘歯車機構70は複数個の傾斜遊星傘歯車73
とこれに噛合する小傘歯車74および大傘歯車75によ
って構成される。この場合、傾斜遊星傘歯車73はサー
ボモータ57側の制御出力軸60の前端に形成したキャ
リヤ71上に設けた複数個の枢着ピン72上に回転自在
に枢着されている。また上記遊星傘歯車73の後側に配
置した小傘歯車74は平歯車76と一体な同−歯幹上に
形成され、この両頭歯車の両幹部は玉軸受80にしたピ
ン支軸78上の中間歯車77に噛合い、更に中空回転主
軸50の後端内壁に固定した内歯歯車79に連動して噛
合されている。遊星傘歯車73の前側に位置して噛合わ
された大傘歯車75は可変ピッチ駆動軸80の後端に一
体に固着されている。可変ピッチ駆動軸80は風車の回
転中、回転主軸50と一体を成して回転中心線の回りに
常時回転するものであり、同時にサーボモータ57から
回転制御作用を受けたとき、この制御回転角度量を翼車
の羽根軸へ伝達する役目を有している。即ち可変ピッチ
駆動軸80は回転主軸50と共に一体に回転すると共に
、この回転中別個の制御回転をする構成が採られていな
ければならない。これは傾斜式遊星傘歯車機構の採用に
よって達成されている。このため可変ピッチ駆動軸80
の前側および後側上には回転主軸50の内壁面に対面し
て前部玉軸受81および後部玉軸受82が取付けられ可
変ピッチ駆動軸80の自在な円滑回転作用を許容してい
る。玉軸受83は可変ピッチ駆動軸80の後端内部に内
装され、前記キャリヤ71の先端部分を中心軸線上に回
転自在に保持する支承部を構成している。比較的長尺を
なす回転主軸50の温度変化による膨張、収縮の影響を
考慮し、前述した回転主軸50の外側と内側に施した2
対のころがシ軸受の中その後部の1対即ち外側稜部玉軸
受66および内側後部玉軸受82の各軸受外輪に対し付
勢ばね84および85を取付けることによル、軸の伸縮
作用を自動的に補償することができる。即ち遊合嵌合状
態にある各軸受外輪は常にばね84及び85の押圧力を
うけるので回転主軸50が膨張或は収縮変化しても、こ
ろがυ軸受上の鋼球は対をなす内輪および外輪の間にほ
ぼ一定の軸方向押圧力を受けながら移動ol能に保持さ
れて円滑な回転を行なうことができるからである。この
構造上の特別な配麗は例えば昼夜における温度変化が主
軸上に繰返し熱応力を発生し、軸や玉軸受に早期疲労破
壊の起ることを回避しり歯車89が取り付けられ、この
傘歯車89は中空の羽根軸100の下端に固着した複合
傘歯車90に噛合う。複合傘歯車90は2枚の傘歯車9
0aと90bを重合しこれらをばねによって結合した公
知の背隙防止用傘歯車である。翼車5の取付は根部を構
成する羽根軸100は羽根支軸筒101内に回転可能に
挿着されている。該羽根支軸筒101はボス枠組51の
周囲に羽根数に合せて複数個放射状に突出して形成され
ている。
The planetary bevel gear mechanism 70 includes a plurality of inclined planetary bevel gears 73.
, and a small bevel gear 74 and a large bevel gear 75 that mesh with this. In this case, the inclined planetary bevel gear 73 is rotatably mounted on a plurality of pivot pins 72 provided on a carrier 71 formed at the front end of the control output shaft 60 on the servo motor 57 side. Further, a small bevel gear 74 disposed on the rear side of the planetary bevel gear 73 is formed on the same gear shaft integrally with the spur gear 76, and both trunks of this double-headed gear are mounted on a pin support shaft 78 with a ball bearing 80. It meshes with an intermediate gear 77, and is also interlocked with an internal gear 79 fixed to the inner wall of the rear end of the hollow rotating main shaft 50. A large bevel gear 75 positioned on the front side and meshed with the planetary bevel gear 73 is integrally fixed to the rear end of the variable pitch drive shaft 80. The variable pitch drive shaft 80 is integral with the rotation main shaft 50 and constantly rotates around the rotation center line during the rotation of the wind turbine, and when simultaneously receiving a rotation control action from the servo motor 57, this control rotation angle is changed. It has the role of transmitting the amount of energy to the blade shaft of the impeller. That is, the variable pitch drive shaft 80 must be configured to rotate together with the rotating main shaft 50 and to perform separate controlled rotations during this rotation. This is achieved by employing a tilting planetary bevel gear mechanism. Therefore, the variable pitch drive shaft 80
A front ball bearing 81 and a rear ball bearing 82 are mounted on the front and rear sides of the rotary main shaft 50 so as to face the inner wall surface thereof, allowing the variable pitch drive shaft 80 to rotate freely and smoothly. The ball bearing 83 is installed inside the rear end of the variable pitch drive shaft 80, and constitutes a support portion that rotatably holds the distal end portion of the carrier 71 on the central axis. In consideration of the influence of expansion and contraction due to temperature changes on the relatively long rotating main shaft 50, the above-mentioned
By attaching biasing springs 84 and 85 to each bearing outer ring of the pair of rollers at the rear of the pair of rollers, that is, the outer ridge ball bearing 66 and the inner rear ball bearing 82, the expansion and contraction of the shaft can be achieved. It can be compensated automatically. In other words, the outer rings of each bearing in the loosely fitted state are always subjected to the pressing force of the springs 84 and 85, so even if the rotating main shaft 50 expands or contracts, the steel balls on the υ bearings will not move between the inner rings and the inner rings that form the pair. This is because the outer ring can be held movably while receiving a substantially constant axial pressing force between the outer rings, and can rotate smoothly. The special arrangement of this structure is such that a bevel gear 89 is installed to prevent premature fatigue failure of the shaft and ball bearings due to repeated thermal stress generated on the main shaft due to temperature changes during day and night. meshes with a composite bevel gear 90 fixed to the lower end of the hollow vane shaft 100. The composite bevel gear 90 has two bevel gears 9.
This is a known back gap prevention bevel gear in which 0a and 90b are polymerized and connected by a spring. The blade wheel 5 is attached such that a blade shaft 100 constituting the root portion is rotatably inserted into a blade support shaft cylinder 101. A plurality of blade support shaft cylinders 101 are formed around the boss framework 51 so as to protrude radially in a number corresponding to the number of blades.

ボス枠組51の後側面104には前述した回転主軸50
の前端部がボルトによシ固着されて一体化すると共に該
主軸を風車胴体4の内面に対しテーパコロ軸受52を介
し回転可能に支持せしめている。この相対回転部におけ
る回転ボス部と静止胴体4間の密封作用を確保するため
オイルシール106とラビリンス107が両者間に設け
られる。
On the rear side surface 104 of the boss framework 51 is the rotational main shaft 50 described above.
The front end of the main shaft is fixedly fixed with bolts and integrated, and the main shaft is rotatably supported on the inner surface of the wind turbine body 4 via a tapered roller bearing 52. An oil seal 106 and a labyrinth 107 are provided between the rotating boss section and the stationary body 4 in order to ensure a sealing effect between the rotating boss section and the stationary body 4 in this relative rotating section.

この封止部は胴体4上に固着した環状の封止カバー10
5内に取付けたオイルシールの盾部をボス側に取付けた
摺接リング(焼入れ琢磨されている)108に摺接せし
めると同時にその内方に2ビリンスシ一ル部107を併
置してこの部の外部に対する密封作用を確保せしめてい
る。
This sealing part is an annular sealing cover 10 fixed on the body 4.
At the same time, the shield part of the oil seal installed in 5 is brought into sliding contact with the sliding contact ring (quenched and polished) 108 installed on the boss side, and at the same time, the 2-billinth seal part 107 is placed side by side inside the ring 108 to make this part. This ensures a sealing effect against the outside.

ボス枠組51の前面にはボス内部空間を密閉する閉鎖板
110をボルトによシ固定し、かつ該閉鎖板周縁に折曲
成形したリング状フランジの外周に絞シ加工によシ流巌
形状に形成した前部スピンナー30が固定しである。閉
鎖板110の内側中心部にはボールねじ柿121を固定
化するための固定座枠113が閉鎖板に一体化されてい
る。ねじ棒固定座枠113にはねじ棒数に相当するねじ
棒取付座114を有し、ボールねじ棒1.21の軸線を
羽根軸線に正しく一致させて該ねじ棒を取付座上に固着
している。112はボス内部にグリースを充填するため
のグリース充填プラグである。
A closing plate 110 for sealing the internal space of the boss is fixed to the front surface of the boss framework 51 with bolts, and the outer periphery of a ring-shaped flange bent and formed around the periphery of the closing plate is formed into a flowing rock shape by drawing. A formed front spinner 30 is fixed. A fixing seat frame 113 for fixing a ball screw persimmon 121 is integrated into the closing plate 110 at its inner center. The threaded rod fixing seat frame 113 has threaded rod mounting seats 114 corresponding to the number of threaded rods, and the axis of the ball screw rod 1.21 is correctly aligned with the blade axis and the threaded rods are fixed on the mounting seats. There is. 112 is a grease filling plug for filling the inside of the boss with grease.

中空の羽根軸100の内方下端に複合傘歯車90が固着
され、可変ピッチ駆動軸90の前端に固着した駆動傘歯
車89と噛合して羽根面傾斜角度が制御されることは既
述のとおりである。本発明においてはこの羽根軸中空内
部にボールねじ機構120を内蔵させることによル翼車
5の回転中羽根軸にかかる著しい半径方向推力に対抗さ
せ、羽根軸部に生じ易い早期故障を回避している。いう
までもなく可変ピッチ制御方式における羽根軸は流入す
る風力作用に逆って羽根軸自体を回転するための大なる
トルク力を必要とする。更に流入空気の半径方向分力と
羽根の全重量に作用する回転遠心力を受ける。ボールね
じ機構1120によればこの羽根軸上に作用する外向き
推力をグリース潤滑による多数の鋼球によシ受は止め、
かつ羽根軸に必要な回転トルクを軽減しうる長所をもつ
ことが既に実証されている。従って従来この羽根軸部に
兎角生じ勝ちだった故障を解消し、風車の耐用寿命を著
じるしく大ならしめる効果がある。ボールねじ機構12
0はボールねじ棒121に噛合されて循環する多数の鋼
球とこの循環路を形成する嵌合ナツトからなる公知のボ
ールねじ機構で、ボールねじ棒121のねじピッチは通
常わずかのピッチ角が付与されている。例えば本実施例
においてねじの有効直径59m、ねじピッチ5amとし
たときねじの傾斜角αは と計算される。この微小傾斜角度αは羽根軸上に作用す
る大きな推力を多数の鋼球によって故障なく受け止める
に充分であると同時に、ころがり接触であるため変角作
用に必要な回転トルクが小さくてすみ、サーボモータの
容量を小型化しうる効果がある。ただしボールねじ機構
の性質に基き、前記固定ボールねじ棒121に嵌合する
羽根軸100は極めてわずかではあるがその回転作用と
同時に半径方向外方に移動し、結果として複合傘歯車9
0と駆動傘歯車90の噛合面に些少の背隙を生ずる。例
えばボールねじ棒121のねじピッチ5II11とすれ
ば、実際に羽根軸が変角制御される角度範囲を約60’
〜0°であるとすれば、羽根軸100がねじ棒121に
対して浮き上る移動量は60゜ 最大5園×。、 牛0.8鴎程度である。この噛合背隙
は背隙防止用の複合傘歯車90の採用によって常時背隙
のない噛合作用かえられる。
As described above, the composite bevel gear 90 is fixed to the inner lower end of the hollow blade shaft 100 and meshes with the drive bevel gear 89 fixed to the front end of the variable pitch drive shaft 90 to control the blade surface inclination angle. It is. In the present invention, the ball screw mechanism 120 is built into the hollow interior of the blade shaft to counteract the significant radial thrust applied to the blade shaft during rotation of the impeller 5, thereby avoiding early failure that is likely to occur in the blade shaft. ing. Needless to say, the blade shaft in the variable pitch control system requires a large torque force to rotate the blade shaft itself against the action of the inflowing wind force. Furthermore, it is subjected to a radial component of the incoming air and a rotational centrifugal force acting on the total weight of the blade. According to the ball screw mechanism 1120, the outward thrust acting on the blade shaft is stopped by a large number of steel balls lubricated with grease, and
Moreover, it has already been demonstrated that it has the advantage of reducing the rotational torque required for the blade shaft. Therefore, this has the effect of eliminating the failure that conventionally tends to occur in the blade shaft portion, and significantly extending the useful life of the wind turbine. Ball screw mechanism 12
0 is a known ball screw mechanism consisting of a large number of steel balls that are engaged with a ball screw rod 121 and circulate, and a fitting nut that forms this circulation path, and the thread pitch of the ball screw rod 121 is usually given a slight pitch angle. has been done. For example, in this embodiment, when the effective diameter of the screw is 59 m and the screw pitch is 5 am, the inclination angle α of the screw is calculated as follows. This small inclination angle α is sufficient for the large number of steel balls to absorb the large thrust acting on the blade shaft without failure, and at the same time, since it is a rolling contact, the rotational torque required for the angle changing action is small, and the servo motor This has the effect of reducing the capacity of the device. However, due to the nature of the ball screw mechanism, the vane shaft 100 fitted into the fixed ball screw rod 121 moves radially outward at the same time as its rotation, albeit very slightly, and as a result, the compound bevel gear 9
A slight back gap is created between the meshing surfaces of the gear 0 and the drive bevel gear 90. For example, if the thread pitch of the ball screw rod 121 is 5II11, the angle range in which the blade shaft is actually controlled is approximately 60'.
If the angle is ~0°, the amount of movement of the blade shaft 100 relative to the threaded rod 121 is 60°, which is a maximum of 5°. , about 0.8 of a cow. By employing a composite bevel gear 90 for preventing back gaps, the meshing action without any back gaps can be changed.

羽根軸100を挿入したボス枠組の支軸筒部101の外
方端面周りにはシールパツキン102が設けられている
。幅広い羽根表面を有する個々の羽根は羽根支持管12
3上に保持腕124の結合によって取シ付けられる。上
記羽根支持管123は中空羽根軸100の中空孔内に挿
入され、羽根軸上端に形成したフランジ103にボルト
締結によシ着脱可能に固定されている。羽根支持軸12
3の下端内部にカップ状閉塞部材122が圧入嵌合され
、ボールねじ機構に対するグリース充填室が羽根軸10
0の下側内部に形成されている。
A seal packing 102 is provided around the outer end surface of the support shaft cylindrical portion 101 of the boss framework into which the blade shaft 100 is inserted. Individual blades with a wide blade surface are connected to a blade support tube 12.
3 by the connection of the retaining arm 124. The blade support tube 123 is inserted into the hollow hole of the hollow blade shaft 100, and is removably fixed to the flange 103 formed at the upper end of the blade shaft by fastening bolts. Blade support shaft 12
A cup-shaped closing member 122 is press-fitted into the lower end of the blade shaft 10 to form a grease filling chamber for the ball screw mechanism.
It is formed inside the lower side of 0.

翼車5の羽根130と羽根支持軸123の取外し可能な
取付構造を第5図を参照して説明する。
A removable mounting structure for the blades 130 of the impeller 5 and the blade support shaft 123 will be described with reference to FIG. 5.

羽根1300半径方向中心線に沿って羽根支持軸123
を保持する支持金127が羽根表面の内外2個所に取付
けられる。更に羽根支持軸123の内方端に溶着した保
持腕124の腕先端が湾曲連結杆125を介しナツト1
26によって羽根130に連結固定される。更に締結ナ
ラ)12.1によシ羽根支持軸123の端部外周に旋條
した雄ねじ部に螺合し支持金127に当接して羽根本体
を羽根支持軸123上のフランジ124に抗して強固に
締付けているiこのように個々の羽根130を強固に取
付けている。羽根支持軸123は中空羽根軸100の上
端に形成した取付けフランジ103上のボルト締結部を
解き離すことにより分解交換が可能である。設計上風車
のオリ用風速帯は3m/8から6m/sとし、このとき
の翼車回転数は100〜20 Or、p、mとするのが
好ましい。
The blade support shaft 123 along the radial centerline of the blade 1300
Support metals 127 for holding the blade are attached at two locations on the inside and outside of the blade surface. Furthermore, the arm tip of the holding arm 124 welded to the inner end of the blade support shaft 123 is connected to the nut 1 via the curved connecting rod 125.
It is connected and fixed to the blade 130 by 26. Furthermore, the screw is screwed into the external threaded part turned around the outer periphery of the end of the blade support shaft 123 according to the tightening screw (12.1), and is brought into contact with the support metal 127 to push the blade body against the flange 124 on the blade support shaft 123. Firmly tightened In this way, the individual blades 130 are firmly attached. The blade support shaft 123 can be disassembled and replaced by releasing the bolted portion on the mounting flange 103 formed at the upper end of the hollow blade shaft 100. In terms of design, it is preferable that the wind speed band for wind turbines is 3 m/8 to 6 m/s, and the rotational speed of the impeller at this time is 100 to 20 Or, p, m.

更に風車胴体4の内部には、前述したサーボモータ57
と基板上に配置した電気機器との間を接続する電導ケー
ブルが収容されている。本発明においてはこれらの電導
ケーブルに対し、胴体内装部分と支柱管以下の内装ケー
ブルを分離収容する構造並びに胴体の旋回運動に伴って
ケーブルに捩れを起さないためのスリップリング機構が
採られている。先ずサーボモータ57に導びかれた電動
ケーブル140は胴体4の支持隔壁670周壁取付部を
構成する接続環142に形成したケーブル貫通孔を通し
て保持され、胴体4の旋回中心線上において胴体4の中
央内壁面に固定された環状のケーブル支持環144の周
シを半周だけ取巻いてこれに保持される。そして更に支
持環144の下コネクタ145は胴体4を支柱管2から
別個に分離して搬送し、或はこれらの分解組立を容易に
するために設けた電導ケーブルのだめの連結部で、上部
および下部の電導ケーブルから引出された個々の電線は
この部分で相互に連結され或は分離することができる。
Furthermore, inside the wind turbine body 4, the above-mentioned servo motor 57 is installed.
A conductive cable is housed to connect the board and the electrical equipment arranged on the board. In the present invention, for these conductive cables, a structure is adopted in which the interior cables of the fuselage interior and the interior cables below the strut pipe are housed separately, and a slip ring mechanism is adopted to prevent twisting of the cables due to the rotational movement of the fuselage. There is. First, the electric cable 140 led to the servo motor 57 is held through a cable through hole formed in a connecting ring 142 that constitutes the peripheral wall attachment portion of the support bulkhead 670 of the fuselage 4, and is held within the center of the fuselage 4 on the rotation center line of the fuselage 4. It is held by surrounding half of the circumference of an annular cable support ring 144 fixed to the wall surface. Further, the lower connector 145 of the support ring 144 is a connecting part of a conductive cable receptacle provided to separate the body 4 from the support pipe 2 and transport it, or to facilitate disassembly and assembly thereof, and connects the upper and lower parts. The individual wires drawn out from the conductive cable can be interconnected or separated in this section.

146はコネクタ145を内蔵しかつ下部電導ケーブル
150を固定的に保持す接続スリーブ146は傘歯車1
01の画枠内部にわずかの間隙を置いて挿入され傘歯車
101の内部に設けた玉軸受147を介して傘歯車10
1がスリーブ146に対して自由に回転しうるように構
成されている。151は上方電導ケーブル150の上方
コイル巻成形部でケーブル配線工事のだめの余剰部とし
て形成されている。
146 is a connecting sleeve 146 which has a built-in connector 145 and holds the lower conductive cable 150 fixedly;
The bevel gear 10 is inserted into the picture frame of No. 01 with a slight gap, and the bevel gear 10
1 can freely rotate relative to the sleeve 146. Reference numeral 151 denotes an upper coil-wound portion of the upper conductive cable 150, which is formed as a surplus portion for cable wiring work.

第8図は基板上における支柱管内部に配置された各構造
部分を拡大して示している。前述した電導ケーブルは上
方から下方に向って垂下し、153として示した下方電
導ケーブルの上方にも下方のコイル巻成形部152が形
成されている。上記下方電導ケーブル153の下端には
スリップリング装置160が設けられている。該スリッ
プリング装置の目的は、風車胴体4の旋回運動時におい
て、胴体中央内部から支柱管内部を貫通して垂下する電
導ケーブルに捩れを生じて疲労断線を生じないように意
図したものである。
FIG. 8 shows an enlarged view of each structural part arranged inside the column tube on the substrate. The aforementioned electrically conductive cable hangs downward from above, and a lower coiled portion 152 is also formed above the lower electrically conductive cable designated as 153. A slip ring device 160 is provided at the lower end of the lower conductive cable 153. The purpose of the slip ring device is to prevent fatigue breakage due to twisting of the conductive cable that extends from the center of the body through the inside of the support tube and hangs down during the rotational movement of the wind turbine body 4.

下方電導ケーブル153の下側に外被スリーブ161が
増付けられ、該スリーブ161の下端に絶縁材料製のス
リップリング保持環162が結合され、該保持環162
上に間隔を置いた4個のスリップリング163が取付け
られている。この場合釜スリップリングは下方電導ケー
ブル153から引出された個々の電線に接続されている
。また、には2個の玉軸受167.167が取付けられ
ているため、電導ケーブル153は固定案内筒166の
垂直中心線の回シに極めて軽快に回転可能である。従っ
て胴体4と共に旋回作用をうける電導ケーブルの捩シ作
用はこのスリップリングam 160によって回避され
る。なお164はスリップリングに摺接するプラッシュ
のホルダーを示す。
A jacket sleeve 161 is added to the lower side of the lower conductive cable 153, and a slip ring retaining ring 162 made of an insulating material is coupled to the lower end of the sleeve 161.
Four spaced apart slip rings 163 are mounted on top. In this case, the hook slip ring is connected to individual wires led out from the lower conductive cable 153. Further, since two ball bearings 167 and 167 are attached to the , the conductive cable 153 can be rotated very easily around the vertical center line of the fixed guide tube 166. A twisting effect on the conductor cable, which is subjected to a pivoting action together with the fuselage 4, is therefore avoided by this slip ring am 160. Note that 164 indicates a plush holder that slides into contact with the slip ring.

垂直伝動軸100の下端に水平傘歯車170を固着し、
この傘歯車170は案内ハウジング168に設けた推力
玉軸受173によって垂直伝動軸の中心線に整合して回
転自在に支持させておる。下部支柱管2&の下端に溶着
したベースフランジ13aの中央開口内部には増速機台
枠188が固着され、該台枠18B上に増速機180が
強固に取付けられている。該増速機の入力軸181上に
前記水平傘歯車170と噛合う入力傘歯車171が固着
されている。上記した1対の傘歯車170と171はグ
リースを満したグリース筺174内において回転する。
A horizontal bevel gear 170 is fixed to the lower end of the vertical transmission shaft 100,
The bevel gear 170 is rotatably supported by a thrust ball bearing 173 provided in the guide housing 168 in alignment with the center line of the vertical transmission shaft. A speed increaser underframe 188 is fixed inside the central opening of the base flange 13a welded to the lower end of the lower support pipe 2&, and the speed increaser 180 is firmly mounted on the underframe 18B. An input bevel gear 171 that meshes with the horizontal bevel gear 170 is fixed on the input shaft 181 of the speed increaser. The pair of bevel gears 170 and 171 described above rotate in a grease container 174 filled with grease.

175はグリース注入管である。増速機180の左側に
配置した発電機190は下部支柱管2aの周壁に穿った
開口部に整合して固定した座板184上に片持梁形式で
保持固定され、可撓継手183を用いて該発電機と増速
機との間を連結している。電導ケーブル155は発れる
ケーブルを示す。185は、発電機を取巻く密閉箱で支
柱管壁にボルトで取付けられているが、別個に点検開放
可能な閉@蓋をもつ開口窓を設けておくのが好ましい。
175 is a grease injection pipe. A generator 190 placed on the left side of the speed increaser 180 is held and fixed in a cantilever manner on a seat plate 184 that is aligned and fixed to an opening bored in the peripheral wall of the lower support pipe 2a, using a flexible joint 183. The generator is connected to the speed increaser. Conductive cable 155 shows the cable that originates. Reference numeral 185 is a sealed box surrounding the generator, which is bolted to the support pipe wall, but it is preferable to provide an opening window with a lid that can be inspected and opened separately.

上記増速機180は翼車の回転数を出来るだけ増速して
発電効率を高めるためのものであるが、その増速比は例
えば9:1である。翼車の回転数を100 r、p、m
から20゜r、p、mの範囲に定めた場合、設計例にお
いて発電機回転数は1600〜3.20 Or、p、m
の定格回転数で運転可能である。下表は上記条件の下で
設計された翼車から発電機にいたる中間増速段における
増速比率と配分された増速回転数を示す。
The speed increaser 180 is used to increase the rotational speed of the impeller as much as possible to increase power generation efficiency, and its speed increase ratio is, for example, 9:1. The rotation speed of the impeller is 100 r, p, m
In the design example, the generator rotation speed is 1600 to 3.20 Or, p, m.
It can be operated at the rated rotation speed. The table below shows the speed increase ratio and allocated speed increase speed in the intermediate speed increase stage from the impeller to the generator designed under the above conditions.

以下余白 第9図はこれまで説明した風車胴体4に内蔵された閉回
路歯車噛合系の骨組図を示す。以下この図面に従って本
発明の同期回転機構並びに可変ピッチ制御機構の原理を
説明する。
The blank space in FIG. 9 below shows a skeleton diagram of the closed-circuit gear meshing system built into the wind turbine body 4 described above. The principles of the synchronous rotation mechanism and variable pitch control mechanism of the present invention will be explained below with reference to this drawing.

第9図から明らかなように閉回路歯車噛合系は次の歯車
噛合連鎖によって形成されている、即ち回転主軸50→
内歯歯車79→中間歯車77→中心歯車76→傾斜式遊
星傘歯車機構70(小傘歯車74→遊星傘歯車73→大
傘歯車75)→可変ピッチ駆動軸80→駆動傘歯車89
→複合傘歯車90→回転主軸50、 なる噛合ループを形成する。
As is clear from FIG. 9, the closed circuit gear meshing system is formed by the following gear meshing chain, namely, the rotating main shaft 50→
Internal gear 79 → intermediate gear 77 → center gear 76 → inclined planetary bevel gear mechanism 70 (small bevel gear 74 → planetary bevel gear 73 → large bevel gear 75) → variable pitch drive shaft 80 → drive bevel gear 89
→ Composite bevel gear 90 → Rotating main shaft 50, forming a meshing loop.

サーボモータによって回転制御される制御出力軸60が
可変ピッチ制御を行なわない静止状態にあるとき即ち遊
星傘歯車機構70のキャリヤ’?+が静止しているとき
、翼車5が自由に回転可能であるためには回転主軸50
と口」変ピッチIiX動軸80とが風車の回転中心軸線
の回シに同方向かつ同一回転数つまりこれらは一体化し
て回転することが必要不可欠である。
When the control output shaft 60 whose rotation is controlled by the servo motor is in a stationary state without variable pitch control, that is, the carrier' of the planetary bevel gear mechanism 70? + is stationary, in order for the impeller 5 to be freely rotatable, the rotation main shaft 50
It is essential that the variable pitch IiX moving shaft 80 rotates in the same direction and at the same rotation speed as the rotational center axis of the wind turbine, that is, they rotate as one unit.

このため今、回転主軸50を回転駆動源とし、キャリヤ
71を固定化した条件下で、回転主軸50を中心軸線X
−Xの回りにN回転したとき内歯歯車79から中間歯車
77、中心歯車76を経て遊星傘歯車機構70から引出
される可変ピッチ駆動軸80の回転もまた同一回転方向
でかつN回転であるように各噛合歯車相互間間の歯数比
を決定する必要がある。
Therefore, under the condition that the rotational main shaft 50 is used as a rotational drive source and the carrier 71 is fixed, the rotational main shaft 50 is set to the central axis X.
- When the variable pitch drive shaft 80 makes N rotations around X, the rotation of the variable pitch drive shaft 80 that is pulled out from the planetary bevel gear mechanism 70 from the internal gear 79 via the intermediate gear 77 and the center gear 76 is also in the same rotational direction and N rotations. It is necessary to determine the ratio of the number of teeth between each meshing gear.

例えば回転主軸50の毎分回転数Nのとき、中し2は符
号番号歯車の歯数とする)と計算され、さらに遊星傘歯
車機構70において大傘歯車75となる。従って可変ピ
ッチ駆動軸80の毎分回転ば可変ピッチ駆動軸80の毎
分回転数はNとなり、回転方向もまた同一方向となる。
For example, when the number of revolutions per minute of the rotating main shaft 50 is N, the middle 2 is calculated as the number of teeth of the code number gear), and further becomes the large bevel gear 75 in the planetary bevel gear mechanism 70. Therefore, if the variable pitch drive shaft 80 rotates per minute, the number of revolutions per minute of the variable pitch drive shaft 80 is N, and the rotation direction is also the same.

これは本発明における同期回転機構の原理となっている
。この場合制御出力軸60はサーボモータ57から高減
速歯車装置56を通し大減速比例えばiによりて制御回
転されるため実質的に不可逆回転機構を構成し、同期回
転機構側からサーボモータ側への回転作用は阻止され制
御出力軸60は翼車の回転中自動ロック状態に保持され
るものである。
This is the principle of the synchronous rotation mechanism in the present invention. In this case, the control output shaft 60 is controlled to rotate from the servo motor 57 through the high reduction gear device 56 at a large reduction ratio, e.g. Rotational action is prevented and the control output shaft 60 is held in a self-locking state during rotation of the impeller.

次に翼車5の羽根傾斜角制御機構を同じく第9図を参照
して説明する。この場合は制御出力軸60が回転駆動源
となり、回転主軸50から小傘歯車74に至る連鎖歯車
部分は固定化された条件で、可変ピッチ駆動軸80が制
御回転作用をうけるものと考えてよい。前例によれば遊
星傘歯車機構における大小の傘歯車75と74の歯数比
は固定しキャリヤ71を1回転すれば大傘歯車75は反
対方向に即ち いまボス51内に配置した駆動傘歯車89とこれに噛合
う複合歯歯車90の各歯数を68枚および37枚とすれ
ば、複合傘歯車90は ピッチ制御出力軸60の1回転に対し、羽根軸100は
2.76回転の割合で制御回転をうけることになる。し
かしながら実際における中空羽根軸100のピッチ傾斜
角θは60’以内であるから、#22°以内で作動され
ることになる。
Next, the blade inclination angle control mechanism of the impeller 5 will be explained with reference to FIG. 9 as well. In this case, the control output shaft 60 becomes the rotational drive source, and the variable pitch drive shaft 80 can be considered to be subject to controlled rotation under fixed conditions in the chain gear portion from the rotational main shaft 50 to the small bevel gear 74. . According to the previous example, the ratio of the number of teeth between the large and small bevel gears 75 and 74 in the planetary bevel gear mechanism is fixed, and when the carrier 71 rotates once, the large bevel gear 75 moves in the opposite direction, that is, the drive bevel gear 89 disposed inside the boss 51. Assuming that the number of teeth of the composite bevel gear 90 that meshes with these is 68 and 37, the composite bevel gear 90 rotates at a rate of 2.76 rotations of the blade shaft 100 for one rotation of the pitch control output shaft 60. It will undergo controlled rotation. However, since the pitch inclination angle θ of the hollow blade shaft 100 is actually within 60', it is operated within #22°.

以上は本発明のピッチ制御を可能にする原理である。The above is the principle that enables the pitch control of the present invention.

第10図は本発明の風力発電装置における電気的制御回
路の一実施例を示す。この例示は風力発電設備の無人運
転化を目標とした制御方式を示し、特に僻地や鉄塔用信
号灯に対する電力供給源として小型風力発電設備用とし
て示されている。同図に示す発電機Gは整流子を有しな
い交流発電機であシ、これは保守管理上直流発電機よシ
信頼度が高く、無人化に対し有利である。DRはダイオ
ード整流器で、蓄電池Bへの充電回路入口部に挿入され
発電機出力電圧が定格電圧以下のときはDRは通電せず
充電不能である。蓄電池Bの耐用寿命を高めるため蓄電
池は常時100%充電率を維持するよう浮動充電方式に
より充電される。CTは変流器で発電機Gの出力回路に
設けられ、この出力電流はブリッジ整流器CRによシ引
出され、とれに対応する電圧値はツェナーダイオード2
と抵抗Rからなる基準電圧回路の電圧値と比較される。
FIG. 10 shows an embodiment of the electrical control circuit in the wind power generator of the present invention. This example shows a control method aimed at unmanned operation of wind power generation equipment, and is particularly shown for use in small wind power generation equipment as a power supply source for signal lights for remote areas and steel towers. The generator G shown in the figure is an alternating current generator without a commutator, which has higher reliability than a direct current generator in terms of maintenance and management, and is advantageous for unmanned operation. DR is a diode rectifier, which is inserted into the charging circuit entrance to storage battery B, and when the generator output voltage is below the rated voltage, DR is not energized and cannot be charged. In order to increase the useful life of the storage battery B, the storage battery is charged by a floating charging method so as to maintain a 100% charging rate at all times. CT is a current transformer installed in the output circuit of the generator G, this output current is drawn out by the bridge rectifier CR, and the voltage value corresponding to the bridge rectifier CR is
and a voltage value of a reference voltage circuit consisting of a resistor R.

その差電圧値が増巾器Aによp増巾され、サーボモータ
SMへ送信され可変ピッチ制御する。上記の差電圧に相
当する制御信号が生ずる限り、即ち発電機の出力電圧値
が定格電圧値以上となっている間はサーボモータSMに
よる翼車5の羽根ピツチ傾斜角の制御作用は継続されて
傾斜角θは漸次減少し、発電機Gの出力電圧が基準電圧
値(定格電圧)と等しく差電圧値が零になればサーボモ
ータの制御作用は停止し、翼車の羽根傾斜角はθよシボ
なる羽根傾斜角によって平衡的回転を行うようになる。
The differential voltage value is amplified by an amplifier A and sent to the servo motor SM for variable pitch control. As long as the control signal corresponding to the above voltage difference is generated, that is, as long as the output voltage value of the generator is equal to or higher than the rated voltage value, the control action of the blade pitch inclination angle of the blade wheel 5 by the servo motor SM continues. The inclination angle θ gradually decreases, and when the output voltage of the generator G becomes equal to the reference voltage value (rated voltage) and the differential voltage value becomes zero, the control action of the servo motor stops and the blade inclination angle of the impeller increases to θ. Balanced rotation is achieved by the angle of inclination of the blades.

もし風速が大で発電機Gの回転数、従って出力電圧を定
格値まで減少制御しえないとき、羽根傾斜角θは零とな
りセンサー62の作動によシ全電気回路系は遮断され翼
車はフェザーリング状態となって風力エネルギの変換作
用はない。ただしこの翼車の7エザリング状態は設定し
た標準風速帯例えば3〜6m/8以上に限られ、風速が
上記風速帯以下の場合は発電機出力電圧は定格値以下と
なってダイオード整流器DRは通電せず、充電作用は行
なわれない。即ち本発明においては設定標準風速帝以外
の風速に対しては凡てこれを無視し風力エネルギの変換
作用は専ら高効率の運転作用を保証しうる設定風速帯に
おいてのみ利用することが基本となっている。本発明の
充電方式は発電機Gの回転数、従りて出力電圧が略一定
下で遂行されるから定電流充電制御でメジ、このことは
充電時間の短縮化を意味する。通常蓄電池の寿命向上の
ためには100%充電率を理想とし、過充電は寿命を低
下する。この過充電作用を回避するために、前記電気回
路には蓄電池Bと直列に放電電力測定器Pが挿入され、
充電を行う場合に負荷りにおいて既に消費された電力量
が該測定器Pにおいて計数されており、この計数値が零
になるまで充電作用を継続し、充電率100%に達した
とき充電作用は停止する。このとき測定器Pは継電器R
Yを開いて変流器CTの電圧に平衡する抵抗Rの電圧を
下げ、発電機の電流は蓄電池の自己放電だけまかなう値
まで下げる必要がある。そのため測定器Pには一定放電
量以下では積算を中止する手段を設ける必要がある。
If the wind speed is high and the rotational speed of the generator G, and therefore the output voltage, cannot be controlled to be reduced to the rated value, the blade inclination angle θ becomes zero and the sensor 62 is activated, cutting off the entire electrical circuit system and the blade wheel. It is in a feathering state and there is no wind energy conversion effect. However, the 7 ether ringing state of this impeller is limited to the set standard wind speed band, for example, 3 to 6 m/8 or more, and when the wind speed is below the above wind speed band, the generator output voltage becomes below the rated value and the diode rectifier DR is energized. No charging action takes place. That is, in the present invention, all wind speeds other than the set standard wind speed are ignored, and the wind energy conversion action is basically used only in the set wind speed range where highly efficient operation can be guaranteed. ing. Since the charging method of the present invention is performed with the rotational speed of the generator G, and thus the output voltage, being substantially constant, constant current charging control is effective, which means that the charging time is shortened. Normally, in order to improve the lifespan of a storage battery, a 100% charging rate is ideal, and overcharging reduces the lifespan. In order to avoid this overcharging effect, a discharge power measuring device P is inserted in series with the storage battery B in the electric circuit,
When charging, the amount of electricity already consumed in the load is counted by the measuring device P, and the charging action is continued until this counted value becomes zero, and when the charging rate reaches 100%, the charging action is stopped. Stop. At this time, the measuring device P is the relay R
It is necessary to open Y to lower the voltage of resistor R that is balanced with the voltage of current transformer CT, and to lower the generator current to a value that covers only the self-discharge of the storage battery. Therefore, it is necessary to provide the measuring device P with a means to stop the integration when the discharge amount is below a certain level.

なお第10図における継電気RYを無接点式のものを採
用し、サーボモータSMに機械的制御機器を具備する汎
用誘導電動機を使用してオン、オフ制御(無接点方式)
に改変することも可能であるO いずれにしても本発明に係る翼車羽根の可変ピッチ制御
作用は発電機回転数従って出力電圧が略一定の標準電圧
値に維持され、標準風速帯3〜6熊4において最高の風
車効率が保たれる。また蓄電池に対しては過充電を回避
し、負荷消耗電力のみを補充して100%充電率を確保
する浮動充電方式が採用される。このように本発明は設
備の耐用寿命向上のために、その適用目的を制限しかつ
各構成要素に対し強度的に有利な小型容量化と耐候性設
計がその基本となっている。
In addition, the electrical relay RY in Fig. 10 is of a non-contact type, and the servo motor SM is controlled on and off using a general-purpose induction motor equipped with a mechanical control device (non-contact method).
In any case, the variable pitch control action of the impeller blades according to the present invention maintains the generator rotational speed and therefore the output voltage at a substantially constant standard voltage value, and in the standard wind speed range 3 to 6. The highest wind turbine efficiency is maintained in Bear 4. In addition, a floating charging method is adopted for the storage battery, which avoids overcharging and replenishes only the load consumed power to ensure a 100% charging rate. Thus, in order to improve the service life of equipment, the present invention is based on a design that limits the application purpose and has a smaller capacity and weather resistance that is advantageous in terms of strength for each component.

発明の効果 以上は一実施例について述べたが本発明装置の特徴を総
括すればつき゛のとおりである。
Effects of the Invention Although one embodiment has been described above, the features of the apparatus of the present invention can be summarized as follows.

市販製品であるSTK鋼管を大幅に採用し、個々の組立
部品類は出来るだけ工場生産によシ準備し、構築物は現
場組立を立前とする。これは全重量の大部分を占める支
柱部を軽量化し、その運搬を容易にして、構築費の低廉
化を計かるためである。また翼車やサーボモータや発電
機及び蓄電池の設備機器類は高能率運転条件下で作動す
ることが要求されているから小形容量化と耐用寿命が増
大できる。その上、構成部の各所に耐久性と安全保守を
確保する設計が取シ入れられているから無入代設備とし
て最適である。更にマクロ、ミクロ的視点から風水害や
雪害等のあらゆる場合に対応して配慮されているので長
寿命が保証される。これは在来の風車設備にはなかった
特徴である。これは人里能れた山奥とか、富士山頂など
の豪雪地帯に適応できるように意図されたものである。
Commercially available STK steel pipes will be used to a large extent, individual assembly parts will be prepared for factory production as much as possible, and structures will be assembled on-site. This is to reduce the weight of the pillars, which account for most of the total weight, to make them easier to transport and to reduce construction costs. In addition, since equipment such as impellers, servo motors, generators, and storage batteries are required to operate under highly efficient operating conditions, their capacity can be reduced and their service life can be increased. Furthermore, each component is designed to ensure durability and safe maintenance, making it ideal as a no-cost facility. Furthermore, since it is designed to deal with all kinds of damage from wind, flood, and snow from a macro and micro perspective, a long lifespan is guaranteed. This is a feature not found in conventional wind turbine equipment. This was designed to be suitable for areas with heavy snowfall, such as remote areas in the mountains and the summit of Mt. Fuji.

そのため機器類はすべて密封された格納箱内に収められ
、また運動部分相互間にはすべてオイルシール或はラビ
リンスで以て封鎖され防塵、防水対策が講じられている
。また各部の潤滑方式は保守管理が簡易にすむグリース
潤滑方式が採用されている。
For this reason, all equipment is housed in a sealed storage box, and all moving parts are sealed with oil seals or labyrinths to ensure dustproof and waterproof measures. Additionally, each part uses a grease lubrication method that simplifies maintenance and management.

風車胴体及び支柱管上には外気の呼吸作用をもつブリー
ザ−が設けられて内外温度変化による内部雰囲気の均衡
化を図る注意が払われると共に回転主軸の温度変化によ
って生ずる膨張収縮作用を補償する手段が配慮されてい
る。これは繰返し熱応力の発生による主軸の早期疲労破
損を阻止するためにきわめて効果がある。翼車周シに設
けたフードは風速の動圧力発生ダクトとして機能させ、
利用風速帯の風力を最大限にエネルギ変換することがで
きる。更にこのフードは外部からの飛来物に対する保護
遮蔽体としても役立つ。
A breather is provided on the wind turbine body and strut pipe to take care of balancing the internal atmosphere due to changes in internal and external temperatures, and means to compensate for expansion and contraction caused by changes in temperature of the rotating main shaft. is taken into consideration. This is extremely effective in preventing early fatigue failure of the spindle due to repeated thermal stress. The hood installed around the blade wheel functions as a duct for generating dynamic pressure of wind speed.
It is possible to convert wind power within the wind speed range into energy to the maximum extent possible. Furthermore, the hood also serves as a protective shield against external projectiles.

運動部分はすべてころがり軸受設計としである。All moving parts are with rolling bearing design.

翼車には羽根面積の大なる俵数枚から成るファン型翼車
を用いて、フード内に流入する風速エネルギを最大限に
羽根面に吸収せしめ翼車の運転効率を高めるようにしで
ある。翼車の外径は2mを標準とし、在来の4メートル
以上のプロペラ風車に比較し、極めて小型であるからコ
ンパクトであり故障率が少ない。更に筐だ、発を機は自
動可変ピッチ制御方式によシ定格回転数が確保され、主
電源である蓄電池は浮動充電方式によって常時発電機か
ら最大限の風力発電効率をもって充電をうけることがで
き、蓄電池寿命を高めるように配慮している。なお標準
風速以上では羽根ピツチ傾斜角は零となシフエザリング
状態となる。勿論これは暴風や突風に対する安全手段を
とるためである。
A fan-type impeller consisting of several bales with a large blade area is used for the impeller, and the wind speed energy flowing into the hood is absorbed into the blade surface to the maximum extent, thereby increasing the operating efficiency of the impeller. The outer diameter of the blade wheel is 2 meters as standard, and compared to conventional propeller wind turbines of 4 meters or more, it is extremely small, making it compact and having a low failure rate. Furthermore, the generator uses an automatic variable pitch control system to ensure the rated rotation speed, and the storage battery, which is the main power source, uses a floating charging system to constantly charge the generator with maximum wind power generation efficiency. , consideration has been given to increasing the battery life. Note that above the standard wind speed, the blade pitch inclination angle becomes zero, resulting in a shifted state. Of course, this is to take safety measures against strong winds and gusts.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の風力発電装置全体の外観側面図で、第
2図は第1図の風車を前側からみた正面図、第3図は第
1図に示す支柱管の組立構造を示す拡大断面図、第4図
は第3図の■−■線に沿う断面平面図、第5図は本発明
装置の風車胴体を含む支柱管上部の拡大された側面図で
、特に翼車のフード部分を断面で示す。第6図は第5図
の翼車面を示し、第8図は第7図に関連して支柱管下部
に設けた発電機駆動系を示す拡大縦断面図、第9図は本
発明の可変ピッチ制御機構の原理説明図、第10図は本
発明の電気的制御回路の一実施例を示す。 ■・・・基板、2・・・支柱管部、4・・・風車胴体、
5・・・翼車、6・・・垂直風向舵、7・・・フード、
8・・・発電機格納箱、9・・・蓄電池格納箱、50・
・・回転主軸、56・・・高減速傘歯車装置、57・・
・サーボモータ、70・・・傾斜式遊星傘歯車機構、1
0o・・・垂直伝動軸、180・・・増速機、190・
・・発N、磯。 手続補正書(方式) 昭和59年3月9 日 特許庁長官 若 杉 和 夫 殿 1、 事件の表示 昭和58年特許願第226775号 2、発明の名称 耐候性小型風力発電装置 3、補正をする者 事件との関係 特許出願人 名称 株式会社 山口機械研究所 4、代理人 住所 〒105東京都港区虎ノ門−丁目8番10号静光
虎ノ門ビル 電話504−07215、補正命令の日付 昭和59年2月28日(発送日) 承薔\ 6、補正の対象 明細書の「図面の簡単な説明]の欄 7、補正の内容 明細書第49ページ、7行目の「正面図、」と「第」と
の間に次の文言を挿入補正する。 「第7図は第7図A、第7図Bおよび第7図C相互間の
配置結合関係を示すブロック図、」(2)
Figure 1 is an external side view of the entire wind turbine generator of the present invention, Figure 2 is a front view of the wind turbine in Figure 1 seen from the front, and Figure 3 is an enlarged view showing the assembly structure of the strut tubes shown in Figure 1. 4 is a sectional plan view taken along the line ■-■ in FIG. 3, and FIG. 5 is an enlarged side view of the upper part of the strut tube including the wind turbine body of the device of the present invention, especially the hood part of the blade wheel. is shown in cross section. FIG. 6 shows the impeller surface of FIG. 5, FIG. 8 is an enlarged vertical cross-sectional view showing the generator drive system provided at the lower part of the strut tube in relation to FIG. 7, and FIG. FIG. 10, which is a diagram explaining the principle of the pitch control mechanism, shows an embodiment of the electrical control circuit of the present invention. ■... Board, 2... Support pipe section, 4... Wind turbine body,
5... impeller, 6... vertical wind rudder, 7... hood,
8... Generator storage box, 9... Storage battery storage box, 50.
...Rotating main shaft, 56...High reduction bevel gear device, 57...
・Servo motor, 70... Inclined planetary bevel gear mechanism, 1
0o... Vertical transmission shaft, 180... Speed increaser, 190.
...N, Iso. Procedural amendment (method) March 9, 1980 Kazuo Wakasugi, Commissioner of the Patent Office1, Indication of case: 1982 Patent Application No. 2267752, Title of invention: Weather-resistant small wind power generator 3, Make amendments Relationship with the case Patent applicant name: Yamaguchi Machinery Research Institute 4, agent address: Shizuka Toranomon Building, 8-10 Toranomon-chome, Minato-ku, Tokyo 105 Phone: 504-07215 Date of amendment order: February 1982 April 28th (shipment date) Confirmation \ 6. Column 7 of "Brief explanation of drawings" of the specification subject to amendment, page 49, line 7 of the statement of contents of the amendment, "Front view," and "No. ” and the following words are inserted and amended. "Figure 7 is a block diagram showing the arrangement and connection relationship among Figure 7 A, Figure 7 B, and Figure 7 C." (2)

Claims (1)

【特許請求の範囲】 1、直立支柱管の垂直中心線画りに風車胴体を旋回自店
に架設した水平軸式風車を具備する風力発電設備におい
て、風車胴体(4)の前側に巾広ファン型羽根をもつ回
転翼車(5)が露出して支持され、該翼車の外周を包囲
してフード(7)を胴体上に固設し、かつ前記胴体内部
にサーボモータ(57)によって翼車羽根のピッチ傾斜
角を制御する自動可変ピッチ制御機構を組込むと共に翼
車(5)の回転主軸(50)を支柱管内に配置した垂直
伝動軸(100)を介して支柱管下部に格納し配置され
た発電機(190)へ連結して翼車の回転を発電機入力
軸へ伝達できるようにし、更に前記発電機出力回路を蓄
電池へ接続せしめた充電回路中に前記サーボモータ(5
7)へ翼車の羽根ピツチ角制御信号を送信可能にする電
気的制御回路を形成せしめることによシ、予め定めた利
用風連帯において発電機の発生出力電圧と基準電圧−と
の差量に対応する電気信号をサーボモータへ送信して翼
車羽根ピツチ角を基準角度θから零度に制御し、発電機
を常に定格運転状態に保本って蓄電池側へ浮動充電する
ようにしたことを特徴とする耐候性小型風力発電装置。 2、特許請求の範囲第1項記載の装置において、前記風
車胴体(4)に内蔵された翼車羽根角の可変ピッチ制御
機構は、翼車(5)と一体な中空の回転主軸(50)の
内壁に固着した内歯歯車(49)へ歯車連鎖を通して連
結された小傘歯車(74)と、サーボモータ(57)に
よって制御回転可能な出力制御軸(60)の外端め彩域
七充キャリヤ(71)上に枢着した傾斜遊星傘歯車(4
4)と、翼車(5)の羽根軸(100)へ傘歯車対によ
り連結された可変ピッチ駆動軸(80)上の大傘歯車(
75)とによって構成される傾斜式遊星傘歯車機構(7
0)によって形成されていることを特徴とする耐候性小
型風力発電装置。 3、特許請求の範囲第2項記載の装置において、前記中
空の回転支軸(50)はその外側および内側表面に配置
された2対のころがυ軸受(52、81;66.82)
を介して風車胴体(4)の内壁と可変ピッチ駆動軸(8
0)の外側との間に回転自在に支持されると共に、回転
主軸(50)の後部ころがシ軸受対(66、82)の各
軸受外輪がばね付勢をうけて移動可能に設けられ、これ
によって温度変化による回転主軸の伸縮作用を許容可能
にして繰返し熱応力の発生による疲労破壊を回避せしめ
たことを特徴とする耐候性小型風力発電装置。 4、特許請求の範囲第1項記載の装置において、前記発
電機(190)の電気的出力回路に変流器(CT)とブ
リッジ整流器(CR)からなる出力電圧検出回路を形成
すると共に前記回路に接続された蓄電池Q3)の充電回
路にはダイオード整流器DRおよび基準電圧発生回路(
ZR)を介装せしめて、発電機の出力電圧が定格値以下
のときは前記充電回路を不通状態として風力電力変換作
用を阻止し、定格値以上の出力電圧を発生するときに基
準電圧との差量に対応する電気的制御信号をトルクモー
タに送信して翼車羽根角を自動的に変角制御し発を機の
(3) 出力電圧を常に定格値に保った状態で蓄電池へ浮遊充電
せしめるようにしたことを特徴とする耐候性小型風力発
電装置。
[Scope of Claims] 1. In a wind power generation facility equipped with a horizontal shaft type wind turbine in which the wind turbine body is rotated on the vertical center line of an upright support pipe, a wide fan type is installed on the front side of the wind turbine body (4). A rotary blade wheel (5) having blades is exposed and supported, a hood (7) is fixedly installed on the body to surround the outer periphery of the blade wheel, and the blade wheel is mounted inside the body by a servo motor (57). An automatic variable pitch control mechanism for controlling the pitch inclination angle of the blades is incorporated, and the rotational main shaft (50) of the impeller (5) is housed and disposed at the bottom of the strut tube via a vertical transmission shaft (100) disposed within the strut tube. The servo motor (5) is connected to the generator (190) so that the rotation of the impeller can be transmitted to the generator input shaft.
7) By forming an electrical control circuit that can transmit the blade pitch angle control signal of the impeller, it is possible to control the difference between the output voltage of the generator and the reference voltage in a predetermined usage range. The system is characterized by transmitting a corresponding electric signal to the servo motor to control the pitch angle of the impeller blades from the reference angle θ to zero degrees, keeping the generator in the rated operating state at all times, and floatingly charging the storage battery. A weather-resistant small wind power generator. 2. In the device according to claim 1, the variable pitch control mechanism for the blade angle of the blade wheel built into the wind turbine body (4) includes a hollow rotating main shaft (50) integral with the blade wheel (5). A small bevel gear (74) is connected through a gear chain to an internal gear (49) fixed to the inner wall of the servo motor (57). Inclined planetary bevel gear (4) pivotally mounted on carrier (71)
4) and a large bevel gear (
75) and a tilted planetary bevel gear mechanism (75).
0) A weather-resistant small wind power generation device characterized by being formed by. 3. In the device according to claim 2, the hollow rotating support shaft (50) has two pairs of rollers disposed on its outer and inner surfaces as υ bearings (52, 81; 66, 82).
The inner wall of the wind turbine body (4) and the variable pitch drive shaft (8
0), and the rear roller of the rotating main shaft (50) is provided so that each bearing outer ring of the bearing pair (66, 82) is movable under spring bias. A weather-resistant small wind power generation device characterized in that this allows the expansion and contraction of the rotating main shaft due to temperature changes and avoids fatigue failure due to repeated occurrence of thermal stress. 4. The device according to claim 1, wherein an output voltage detection circuit consisting of a current transformer (CT) and a bridge rectifier (CR) is formed in the electrical output circuit of the generator (190), and the circuit A diode rectifier DR and a reference voltage generation circuit (
When the output voltage of the generator is below the rated value, the charging circuit is disconnected to prevent the wind power conversion action, and when the output voltage is higher than the rated value, the voltage is different from the reference voltage. An electrical control signal corresponding to the difference is sent to the torque motor to automatically change the blade angle of the impeller blade and start the engine. A weather-resistant small wind power generation device characterized by being designed to
JP58226775A 1983-12-02 1983-12-02 Weathrproof small-sized wind-power generation apparatus Granted JPS60119384A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58226775A JPS60119384A (en) 1983-12-02 1983-12-02 Weathrproof small-sized wind-power generation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58226775A JPS60119384A (en) 1983-12-02 1983-12-02 Weathrproof small-sized wind-power generation apparatus

Publications (2)

Publication Number Publication Date
JPS60119384A true JPS60119384A (en) 1985-06-26
JPH0344229B2 JPH0344229B2 (en) 1991-07-05

Family

ID=16850413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58226775A Granted JPS60119384A (en) 1983-12-02 1983-12-02 Weathrproof small-sized wind-power generation apparatus

Country Status (1)

Country Link
JP (1) JPS60119384A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001248170A (en) * 2000-03-07 2001-09-14 Toa Harbor Works Co Ltd Method for constructing foundation for tower-like heavy object on existing caisson and foundation structure therefor
WO2006059472A1 (en) * 2004-11-30 2006-06-08 Global Energy Co., Ltd. Propeller and horizontal-shaft windmill
US20110058937A1 (en) * 2007-03-23 2011-03-10 Flodesign Wind Turbine Corporation Nacelle configurations for a shrouded wind turbine
KR101033215B1 (en) 2010-10-12 2011-05-06 화이버텍(주) Composite wind tower and method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001248170A (en) * 2000-03-07 2001-09-14 Toa Harbor Works Co Ltd Method for constructing foundation for tower-like heavy object on existing caisson and foundation structure therefor
JP4550208B2 (en) * 2000-03-07 2010-09-22 東亜建設工業株式会社 Foundation structure for building tower-like heavy load foundation on existing caisson
WO2006059472A1 (en) * 2004-11-30 2006-06-08 Global Energy Co., Ltd. Propeller and horizontal-shaft windmill
US8128338B2 (en) 2004-11-30 2012-03-06 Kabushiki Kaisha Bellsion Propeller and horizontal-axis wind turbine
US20110058937A1 (en) * 2007-03-23 2011-03-10 Flodesign Wind Turbine Corporation Nacelle configurations for a shrouded wind turbine
US8657572B2 (en) * 2007-03-23 2014-02-25 Flodesign Wind Turbine Corp. Nacelle configurations for a shrouded wind turbine
KR101033215B1 (en) 2010-10-12 2011-05-06 화이버텍(주) Composite wind tower and method thereof

Also Published As

Publication number Publication date
JPH0344229B2 (en) 1991-07-05

Similar Documents

Publication Publication Date Title
US8464990B2 (en) Pole mounted rotation platform and wind power generator
TWI589774B (en) Wind power installation pod
US7528497B2 (en) Wind-turbine with load-carrying skin
US8222762B2 (en) Direct-drive generator/motor for a windmill/hydropower Plant/Vessel where the generator/morot is configured as a hollow profile and a method to assemble such a windmill/hydropower plant
US8308430B2 (en) Wind turbine/generator set having a stator cooling system located between stator frame and active coils
EP2982859B1 (en) Wind turbine for generating electricity with naval technology
US4474529A (en) Windmill
US7719129B2 (en) Electric generator for wind and water turbines
KR101890436B1 (en) Gear box, seal, and cover arrangements
US20090196748A1 (en) Wind turbine improvements
MX2007013790A (en) Systems and methods for tethered turbines.
US8193656B2 (en) Water and wind current power generation system
US20230417219A1 (en) Vertical wind turbine comprising a coaxial pitch motor, kit for same, and method for operating same
KR102060281B1 (en) Hybrid Small Wind Turbine Generator
US1974008A (en) Wind turbine
US11519387B2 (en) Vertical wind turbine comprising rotor blade-supporting pitch motor, as well as kit for same, and method for operating same
JPS60119384A (en) Weathrproof small-sized wind-power generation apparatus
JPS6143276A (en) Power generating windmill apparatus
RU2671667C1 (en) Aeroenergostat ground-generator
RU2438040C2 (en) Aero-electric power plant
CN217270620U (en) Large vertical axis wind turbine transmission system
RU2563048C1 (en) High-altitude solar and wind power plant
WO2013117652A1 (en) A bearing assembly for a vertical axis wind turbine
US20110113776A1 (en) Aero-Hydro Power Plant
CN211116395U (en) Multi-impeller wind generating set